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ABSTRACT

We study galaxy mergers using a high-resolution cosmological hydro/N-body simulation with star formation and
compare the measured merger timescales with theoretical predictions based on the Chandrasekhar formula. In contrast
to Navarro et al., our numerical results indicate that the commonly used equation for the merger timescale given by
Lacey and Cole systematically underestimates the merger timescales for minor mergers and overestimates those for
major mergers. This behavior is partly explained by the poor performance of their expression for the Coulomb
logarithm, In (m,i/mg). The two alternative forms In (1 + mpyi/mg) and % In[l+ (mpﬁ/msat)z} for the Coulomb
logarithm can account for the mass dependence of merger timescale successfully, but both of them underestimate the
merger timescale by a factor 2. Since In (1 4- mi/m ) represents the mass dependence slightly better, we adopt this
expression for the Coulomb logarithm. Furthermore, we find that the dependence of the merger timescale on the cir-
cularity parameter e is much weaker than the widely adopted power law €%-78, whereas 0.94¢%%° + 0.60 provides a good
match to the data. Based on these findings, we present an accurate and convenient fitting formula for the merger

timescale of galaxies in cold dark matter models.

Subject headings: dark matter — galaxies: clusters: general — galaxies: kinematics and dynamics —

methods: numerical
Online material: color figures

1. INTRODUCTION

Dynamical friction plays a crucial role in the formation and
evolution of galaxies. During the merger of two dark matter halos,
galaxies in a less massive halo will become the satellite galaxies of
the more massive one. These satellite galaxies gradually lose their
energy and angular momentum under the action of dynamical
friction and are predestined to sink to the center of the massive
dark matter halo if they are not disrupted by the tidal force.

Dynamical friction takes effect through interaction of galaxies
with background dark matter particles. Chandrasekhar (1943) gave
a description of this phenomenon for an idealized case where a
rigid object moves through a uniform sea of collisionless matter
particles. This description can be applied to the case of a satellite
galaxy moving in a dark matter halo. The orbits of dark matter
are deflected by the galaxy, which produces an enhancement of
dark matter density behind the galaxy. Consequently, the galaxy
suffers a steady deceleration by the drag of the wake and will
eventually merge to the central galaxy of the dark matter halo.
The merger timescale, i.e., the time elapsing between entering
the virial radius of the dark matter halo and final coalescence of
satellite and central galaxy, can be derived using Chandrasekhar’s
formula (see, e.g., Binney & Tremaine 1987). In addition, taking
into account the dependence on the orbital circularity, Lacey &
Cole (1993) derived the following expression for the merger time-
scale of a satellite galaxy orbiting around a massive halo with
circular velocity V:
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where € is the circularity parameter of the satellite’s orbit, and .
is the radius of a circular orbit with the same energy as the sat-
ellite’s orbit. The term f'(¢) describes the dependence of Tchandra
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on the orbital circularity and is approximated by f(¢) ~ €%8 for
€ > 0.02 (Lacey & Cole 1993). The term C is a constant, approx-
imately equal to 0.43, and m g is the satellite mass. The term In A
is the Coulomb logarithm, which is given by In (d max /d min ), Where
dmax 18 the maximum relevant impact parameter at which back-
ground particles are scattered into the wake and dy;, is the min-
imum impact parameter (Chandrasekhar 1943; White 1976). It is
expected to be applicable for cases where the satellite mass is
much smaller than that of the primary halo.

There have been many works which used N-body simulations
to check the validity of Chandrasekhar’s formula and its appli-
cation to the merging of satellite and central galaxies, but no con-
sensus has been reached on the accuracy of such applications.
This is because a galaxy merger is a more complicated process
than a pure motion of a rigid body through a uniform collision-
less matter distribution as considered by Chandrasekhar. The
primary halo has a density increasing inward to the halo center,
which makes it nontrivial to choose the maximum impact pa-
rameter for the Coulomb logarithm (Hashimoto et al. 2003; Jiang
& Binney 2000; van den Bosch et al. 1999). Because the satellites
lose their mass due to the tidal interaction by the primary halo, one
has to follow both the trajectory and the mass evolution of the
satellites to derive their merger timescale. Unfortunately, there is
still a considerable amount of uncertainty in modeling these pro-
cesses (Tormen et al. 1998; Gao et al. 2004; Zentner et al. 2005).
A further complication is that due to the similar orbits of the
tidally stripped mass and the satellite itself, the tidal debris will
trail the satellite for a significant amount of time, which in turn
will exert a drag force on the satellite (Fujii et al. 2006; Fellhauer
& Lin 2007). Besides, the merger can alter the structure of the
primary halo, which is another complication for accurately com-
puting the merger timescale ( Zaritsky & White 1988; Cora et al.
1997).

It is, however, very useful to give a simple prescription for the
merger timescale of the satellites. Navarro et al. (1995) used an
N-body/hydrodynamics simulation with gas cooling to deter-
mine the merger timescales. Their simulation did not include a
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recipe for star formation; thus, they used the cold gas at the cores
of dark matter halos as a proxy for galaxies. They found a good
agreement with the prediction of equation (1) if the satellite mass
Mgy 18 taken to be the sum of the cold gas core and the associated
dark matter halo at the moment when it crosses the virial radius
of the primary halo for the first time. They further pointed out
that the predicted merger timescale is too long if only the cold gas
is taken for the satellite mass.

The N-body study of Navarro et al. (1995) provides a strong
support for using equation (1) to determine the merger timescale
in both theoretical and observational studies, if m 4 is taken to be
the total mass of the satellite at the virial radius of the primary
halo. For example, this equation is an important ingredient in mod-
eling mergers of galaxies in analytical studies of galaxy formation
(e.g., Kauffmann et al. 1999; Cole et al. 2000; Monaco et al. 2000;
Somerville & Primack 1999; Menci et al. 2002; Nagashima et al.
2002; Hatton et al. 2003; Khochfar & Ostriker 2007; Baugh 2006
for an excellent review) and in understanding the merger rates of
galaxies in the cosmological context (e.g., Ostriker & Turner 1979;
Lin et al. 2004; Gill et al. 2005; Maller et al. 2006; Conroy et al.
2007; White et al. 2007; Zheng et al. 2007). However, there are
indications that the Navarro et al. prescription underestimates the
merger time or overestimates the merger rate. Springel et al.
(2001b) and Kang et al. (2005) found that the luminosity of cen-
tral galaxies in rich clusters is reduced if the orbital evolution of
satellites is determined by high-resolution N-body simulations
compared to the luminosities based on the Navarro et al. merger
rates. We also note that the N-body experiment by Colpi et al.
(1999) gave a merger timescale that is longer than what Navarro
et al. suggests. They even found a much weaker dependence on
the circularity with the exponent of only about 0.4 (instead of
0.78). Therefore, it is not yet clear what causes these discrepancies,
especially the one between Colpi et al. and Navarro et al. It would
be helpful to point out that Navarro et al. used a cosmological
hydro/N-body simulation with gas cooling and included both ma-
jor and minor mergers in their study, while Colpi et al. used N-body
simulations of galaxy mergers and considered minor mergers only.

In this paper, we use a high-resolution hydro/N-body cosmo-
logical simulation to clarify this situation. In the simulation gas
cooling and star formation are included so that the galaxy mergers
can be identified unambiguously and the merger timescale can be
well measured. Our results can be directly compared with Navarro
et al. (1995); therefore, they are used to study the origin of the
discrepancies mentioned above. We show that the Navarro et al.
prescription actually underestimates the merger time for minor
merges, qualitatively in good agreement with Colpi et al. (1999),
but overestimates it for major mergers. In light of our simula-
tion results, we propose an accurate fitting formula for the merger
timescale that accounts well for the dependences on mass and
circularity of the individual satellites and can therefore accom-
modate both, minor and major merger events.

The paper is organized as follows. In § 2, we describe our sim-
ulation and our method for calculating the merger timescale in
the simulation. Section 3 gives a comparison between our sim-
ulation result and the theoretical prediction. A new fitting formula
for the merger timescale is derived in § 4. Finally, we summarize
our results in § 5.

2. MERGER TIMESCALES IN SIMULATION

2.1. The Simulation

A parallel version of the smoothed particle hydrodynamics
(SPH) code GADGET?2 (Springel et al. 2001b; Springel 2005)
is used to simulate the structure formation and evolution in the
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universe. The cosmological parameters that we use are 2, =
0.732,Q,, = 0.268, 2, = 0.044, 03 = 0.85, and a Hubble con-
stant Hy = 100 7 km s~ Mpc~! with 2 = 0.71. The box is
100 2~' Mpc on a side, with 512% dark matter particles and
5123 gas particles. The resulting mass resolution for dark matter
and gas particles is 4.6 x10% A=! M, and 9.2x107h~! M,
respectively. The simulation includes the physical processes of
radiative cooling and star formation. It also includes supernova
feedback, outflows by galactic winds, and a subresolution mul-
tiphase model for the interstellar medium as detailed in Springel
& Hernquist (2003). The simulation has the same mass resolu-
tion and model parameters as the star formation run of Jing et al.
(2006), except that the softening length of the gravitational force
is greatly reduced in the current simulation, where we use a spline
kernel (Springel 2005), roughly equivalent to a Plummer force
softening of 4.5 4! kpc (comoving). There are a total of 88 snap-
shot outputs from z = 2.0 to the present time, z = 0, with an equal
logarithmic scale factor interval of A lna = 0.01 between two
consecutive outputs. The large number of outputs enables us to
accurately sample orbits of satellites within massive halos. Both
the good force resolution and the dense sampling of snapshots are
crucial for the current study.

2.2. Construction of Halo Merger Trees

Dark matter halos are identified using the friends-of-friends
(FOF) method, with a linking length of 0.2 times the mean in-
terparticle separation. To obtain a sufficient number of halos with
reasonable mass resolution, we only focus on the halos with masses
myir > 5x10'2 h=! M, at the present epoch. The virial mass of
ahalo m;, is defined as the mass enclosed within the virial radius
rvir within which the mean mass density is A(z) times the critical
density of the universe at redshift z. For A(z) we adopt the fitting
formula for flat universes provided by Bryan & Norman (1998),

A(z) = 1877 — 82x — 39x?, (2)

where x is the density parameter for the vacuum density (the
cosmological constant) at redshift z.

Then we trace these halos back to z = 2.0 to construct the
main branch of the merger tree for each halo. For halo 4 at some
snapshot, halo B at an earlier snapshot that, among all its pro-
genitors, contributes the largest number of particles to A4 is defined
as the main progenitor of 4. All the other progenitors of halo A4,
each of which is required to have more than half its particles merg-
ing with 4, are taken as satellite halos of halo B, while B is called
the primary halo. Note that we use “satellite” to represent the
whole halo, including both dark and stellar matter.

We do not use the orbital energy as the criterion to identify a
satellite as being bound or unbound, since an orbit that starts out
unbound will not necessarily remain unbound, because dynamical
friction may sufficiently reduce its energy (see, e.g., Benson
2005). They find that only about 2% of all initially unbound
orbits fail to become bound and so escape from their primary halo.
Furthermore, to reduce artificial effects caused by the finite nu-
merical resolution we keep only those satellites that have central
galaxies more massive than 2.0 x 10'® 2= M. Typically, these
satellite galaxies are surrounded by a dark matter halo comprising
more than 1000 particles before entering the primary halo.

2.3. Merging Timescale of Galaxies

The galaxies are also identified with the friends-of-friends
method applied to the star particles but with a small linking length
of4.88 h—1kpc. Besides the central galaxies of the primary halos
we only focus on those galaxies that have been the central galaxies
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FiG. 1.—Basic characteristics of all mergers (solid histograms) and the mergers in the complete sample (dashed histograms). The panels from the top left to the bottom left
clockwise show the distributions of the mass ratio of the primary halo to the satellite, the first crossing redshift, the mass ratio of the stellar mass of the central galaxy to the
primary, and the ratio of r. to the virial radius 7;, respectively. [See the electronic edition of the Journal for a color version of this figure.]

of the approaching satellite halos. Throughout, the former are ref-
erred to as central and the latter as satellite galaxies. The de-
scendant of a galaxy, C, is the galaxy in a subsequent snapshot
that shares the most star particles with C. A galaxy merger is
identified if the satellite galaxy and the central galaxy begin to
have the same descendant at one snapshot and continue to have
the same descendant for the following four snapshots (>0.5
of the dynamical time of a halo). We use this criterion to ensure
that the merger is a real merger, not just a close flyby.

The merger timescale is defined as the time elapsed between
the moment when the satellite galaxy first crosses the virial ra-
dius of the primary halo and the final coalescence of satellite and
central galaxy. The computation of the merger timescale from
the simulation involves four distinct snapshots: snapshot a, the
last snapshot for which the satellite halo is identified as a single
halo; snapshots b and b+1, between which the satellite galaxy
crosses the virial radius of the primary halo for the first time; and
finally, snapshot ¢, beginning of the coalescence of satellite and
central galaxy. To accurately determine the point in time when
the satellite galaxy enters the primary halo, we assume that the
satellite galaxy moves with constant velocity from its actual lo-
cation, both measured at snapshot b, until it hits the virial radius,

which has been fixed at snapshot a. However, a substantial frac-
tion (~14%) of the satellite galaxies do not reach the virial radius
within the time interval between snapshots b and b+1. This hap-
pens because, in general, satellites are in accelerated motion. In
such cases, we choose snapshot b+1 as the time at which the
satellite reaches the virial radius. Due to the dense time sampling
by the large number of snapshots, this uncertainty constitutes only
a marginal source of error.

Finally, the merger timescale for each completed merger event
is defined to be the interval between the time when the satellite
first enters the virial radius and the middle point between snap-
shots ¢ and c—1.

Some basic statistical properties of the mergers are presented
in Figure 1. There is almost an equal amount of major mergers
and minor mergers, if we use the mass ratio myi/mg = 3 as the
dividing line. Since we examine only snapshots starting from red-
shiftz = 2, the redshifts at which the eventually merging satellites
first cross the virial radius of the primary halo span the range be-
tween z = 0.4 and 2. (Satellites that approach more recently than
z = 0.4 do not have sufficient time to merge with the central
galaxy.) The ratio of the stellar mass of a central galaxy to the dark
matter mass of the primary halo varies from 0.5% to 5% with an



1098 JIANG ET AL. Vol. 675
1011 _|||||| T T ||||||| T T TTTTTT T T |||||_ T T T T T T T T T T T
E InA=In(m,,/m,) - ., a E i 1
L . . . - i —InA=In(m_,/m_,)
1010 f(€)=e°. 8 . - B _1/2]n[ ) +{[';]Pri/r:]sal)2] -
- - o
)
Z : Fs - -
8 =
2100 | - Nyt .
5 o 3 E |
= - . = L + -
10° 3
:||||| 1 1 ||||||| .| 1 ||||||| 1 1 ||||||: i
108 109 1010 1011 O 1 1 11 1 | 1 1 1 1 1 11 1
Tsimu [ yrs ] 0.1 1

FiG. 2.—Comparison of the merger timescale 7, in the simulation with theo-
retical dynamical friction timescale Tchandra from eq. (1). The solid line represents
Tchandra = Tsimu- The Coulomb logarithm is in the form In A = In (my;./mgy), and
f(e) = €*78. [See the electronic edition of the Journal for a color version of this
Sigure.]

average of 2%. This ratio is in reasonable agreement with the
observed values of galaxy groups (Gonzalez etal. 2007; Lin et al.
2003). The satellite sample has a wide spectrum of orbital en-
ergies, as displayed by the distribution of 7./ryi;, which ranges
from 0.6 to 1.5 with an average 0.8. Thus, we believe that our
sample represents a typical sample of galaxy mergers.

3. COMPARISON WITH THEORY

Equation (1) is only applicable for mergers with mass ratios
Mopri/Mga > 1, where mpg and m g, stand for the mass of the pri-
mary and the satellite halo, respectively (Binney & Tremaine
1987). As mentioned above, A in the Coulomb logarithm In A is
defined as the ratio between the maximal and the minimal impact
parameters (dmax/dmin) for which encounters between the sat-
ellite and the dark matter particles can be considered effective. An
equivalent expression for A is given by

A=

dmaxVé,p o mpﬁ (3)
G(mga + Mam) M ’

where Vi, and my, are the typical velocity and mass of back-
ground dark matter particles, respectively. The transition from the
middle to the expression on the right-hand side is obtained by set-
ting dmax = 7'pri (the radius of the primary halo), Viyp = Vpyi (the
circular velocity of the primary halo), and assuming m g, <K M gy.

Therefore, according to equation (1) a correct estimate of the
satellite mass is pivotal for the determination of the dynamical
friction timescale. A satellite orbiting in the potential well of the
primary halo loses a large fraction of its initial mass due to the
exposure to the global tidal field (e.g., Tormen et al. 1998; Gao
et al. 2004; Shaw et al. 2007) and due to high-speed encounters
with other satellites (e.g., Moore et al. 1996; Gnedin 2003). Based
on a hydro/N-body simulation Navarro et al. (1995) investigated
the dependence of the dynamical friction timescale on the Cou-
lomb logarithm In A = In (mpy/m ) by considering two extreme
choices for mgy: (1) mg, Was considered to be the total virial mass
of the satellite before entering the primary halo, i.e., the sum of the

msat / mpri

FiG. 3.—Mass dependence of the median value of Ty /7 chandra When different
forms are used for the Coulomb logarithm. [See the electronic edition of the Journal

for a color version of this figure.]

gas (representative for the stellar component in their simulation)
and the cold dark matter within the satellite’s virial radius; (2) #2gy
only accounted for the cold gas associated with the satellite galaxy
at the center of the approaching dark matter halo. They found that
when the total virial mass is chosen for m,, equation (1) gives a
good prediction for the merger timescale although the scatter is
very large. If only the cold gas is adopted for m g, equation (1) sig-
nificantly overestimates the merger timescale, because the cold
gas mass is always much smaller than the virial mass. Based on
this numerical investigation, equation (1) with the initial satellite
virial mass for mg, is widely used in galaxy formation studies
(e.g., Cole et al. 2000; Kauffmann et al. 1999; Kang et al. 2005).
Here we also follow this convention for m1 .

With the present analysis we aim to examine the validity of
equation (1) by means of a cosmological high-resolution N-body/
hydro simulation. Figure 2 compares the merger timescale 7'changra
computed according to equation (1) with the merging time 7',
measured in the simulation. The solid diagonal displays 7 chandra =
T'simu- The results indicate a qualitative agreement between the
prediction of equation (1) and the timescales measured from the
simulation. However, scatter between Tchandra and Tgimu 1S €X-
tremely large. To see whether the large scatter is caused by the
failure of equation (1) for mass ratios ¢ /myi ~ 1 we plot the
median value of Tsimu/T Chandra @S @ function of m g, /mpy; in Fig-
ure 3 (the solid line). The figure clearly shows that the time ratio
increases monotonically with decreasing mass ratios. That is, the
time ratio is significantly smaller than 1 (0.55 for the mass ratio
larger than 0.65) for the major mergers and approaches 4 for minor
mergers (for the mass ratio smaller than 0.065). This implies that
equation (1), which is expected to be valid for minor mergers,
actually underestimates the merger timescale for them. This result
is in approximate agreement with Colpi et al. (1999), who found
that the friction timescale for m g /m i ~ 0.02 is underestimated
by a factor of 2 if equation (1) is used. On the other side, our
result points out that equation (1) significantly overestimates
the dynamical friction timescales for major mergers. Despite the
fact that the formula is not expected to be applicable to major
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Fic. 4—Same as Fig. 1, but we replace In A by 1 3 In(1+ A?), while A is un-
changed, and replace . by rvi;. [See the electronic edition of the Journal for a color
version of this figure.]

mergers, it is still widely used for major mergers in the literature.
Our findings do not agree with Navarro et al. (1995), who advocate
a good agreement between their simulation result and equation (1)
for minor mergers with mass ratios less than 0.5. In § 4 we use our
simulation data to improve the description for the merger timescale
in the hierarchical clustering scenario.

4. FITTING FORMULA FOR THE MERGER TIMESCALE
IN COSMOLOGICAL CONTEXT

First, because r. = r;, we rewrite the formula of 7T chandra aS
—_— 4)

where r./V. o (Gp) "2, where p is the mean mass density of
the halo at that redshift. Thus, r./V, is proport10na1 to the age
of the universe at the epoch being considered,” independent of
primary and/or satellite halo masses. Consequently, the mass
dependence of Tcpandra 1S solely accounted for by the mass ratio
between satellite and primary halo, and its circularity dependence
is included by the function f(¢). It is suggestive to isolate those
two dependencies to find the cause of the discrepancies between
the merger timescales derived from equation (1) and the simula-
tion. Therefore, in § 4.1 we focus on the dependence of the merg-
ing timescales on the mass ratios. Subsequently, we examine the
circularity dependence in detail. Finally, these investigations will
lead us to a new description of merger timescales in the cosmo-
logical context.

4.1. Dependence on the Mass Ratio and Coulomb Logarithm

The strong dependence of Tsimy/7chandra ON the mass ratio
M gat/M i shown in Figure 3 (solid 1ine) indicates that the mass
dependence of Tchandra @s described by equation (1) is incorrect.
Here we first consider revising the Coulomb logarithm. In fact,
in the original derivation of the formula (see Binney & Tremaine

3 The quatity . is about ry;, but there is scatter, so the statement is approx-
imately valid.

Tsimu [ YI‘S ]

Fic. 5.—Same as Fig. 1, but we replace In A by In (1 4+ A) and replace 7. by 7.
[See the electronic edition of the Journal for a color version of this figure.)

1987), the Coulomb logarithm should read 5 Lin (14 A?). Only if
the satellite mass is much smaller than the pnmary mass can thlS
expression be written as In A. In the 11terature In(1+4A?)is
simply used to include mergers that do not sat1sfy the condi-
tion mg; << mpg; (e.g., Somerville & Primack 1999). But an-
other version, namely, In (1 + mpi/mgy), is even more widely
used for the same purpose (e.g., Springel et al. 2001a; Volonteri
et al. 2003; Kang et al. 2005) despite the fact that there is no
clear physical motivation for adopting it. Here we examine the
mass dependence using these two alternative forms for the Cou-
lomb logarithm.

The dashed line and the dotted line in Figure 3 show the mass
dependence of T'simu/T chandra fOr these two alternative forms of
the Coulomb logarithm. For mass ratios less than 0.1 the two
curves are quite similar to that of In A (solid line). However, for
mass ratios ~1 they display substantial differences. The mass
dependence becomes significantly smaller for these two forms,
especially for the form In (1 + mpi/mg); however, it does not
disappear completely.

As atrial to improve the description for the mass dependence,
we replace 7, in equation (1) by ry; for the two forms of the
Coulomb logarlthm mentloned above. Figures 4 and 5 show

snmu/TChandra fOI' 2 In (1 =+ A ) and In (1 + mprl/msat) respec-
tively. The plot based on either of the two forms does not differ
much. Here we want to emphasize two points. First, the scatter in
the plots is much smaller than in Figure 2. Second, the value of
T Chandra 18 Systematically smaller than that of T, . Although the
scatter is smaller, it nevertheless will provide some deeper in-
sight to examine whether the scatter depends on the mass ratio.
In analogy to Figure 3, we plot in Figures 6 and 7 the me-
dian value of Tsimu/Tchandra @S a function of the mass ratio, for
1 >In(1+ A%)andIn (1 + Mopri /M at), TEespectively. While there isa
moderate dependence on the mass ratio when the form JIn [1+
(mpn/msat) | is used, it is very interesting to recognize that the
dependence of Tgimu/ T Chandra O the mass ratio for In (1 + 71 /M ga)
is strongly reduced. This implies that the mass dependence of
the merger timescale can be well represented by the form In (1 4
Mpri/Mg,t), although many previous works using this form actu-
ally systematically underestimate the merger timescale or over-
estimate the merger rate by a factor 2.
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points in Fig. 4.

In the following discussion we will always use the form
In (1 + mpi/mgy) for the Coulomb logarithm. We prefer to use
this form with r, replaced by ry;;, as this gives a much tighter
correlation between 7' chandra and Tsimy and can effectively absorb
the dependence on the mass ratio. Moreover, in many practical
applications, it is usually easier to use r; than to use r..

4.2. Dependence on Circularity and the Revised Form of f(€)

Now we check the dependence of the merger time on the ini-
tial circularity parameter e. This parameter is determined from the
velocity and position of a satellite when it first crosses the virial
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Fi6. 7.—Ratio of Tjmy t0 Tchandra as @ function of mass ratio for merger points
in Fig. 5 (upper dashed line) and for those after eq. (5) is applied (lower solid
line). [See the electronic edition of the Journal for a color version of this figure.]

FiG. 8.—Ratio of Tsimy t0 Tchandra as @ function of e for merger points in Fig. 5
(upper dashed line) and for those after eq. (5) is applied (lower solid line). The
lower dotted line is for f(€) = 1.48¢"?7 with eq. (5). [See the electronic edition
of the Journal for a color version of this figure.)

radius of the primary halo. As in the literature, we assume that
the halo is an isothermal sphere when determining the circularity.
In Figure 8 (upper line), we show the median value of 7y,,/
T'Chandra as a function of circularity, where we have used In (14
Mpi/Migyt) for the Coulomb logarithm and f'(e) = €978 when we
calculate T'changra- The figure shows that the satellites on very
eccentric orbits tend to merge in a much longer timescale com-
pared to the theoretical prediction. If we still use an exponential
form to represent f (¢) = €, the exponent « should be smaller than
the widely used value 0.78 advocated by Lacey & Cole (1993).

Here we explore the form of f(€) as a function of the initial
circularity e. Substituting the merging time in equation (1) with
what we measure in the simulation, 7, with r;;., and the Coulomb
logarithm with In (1 + mp/ms,), we obtain the values of f(e)
for each merged satellite. Subsequently, we pick the median value
of f(e) in each circularity bin in our merged satellite sample.
Computing the median value, however, demands some caution.
Because there is considerable scatter in T, even for the same
circularity and the same mass ratio (which owes to the fact that
the internal structure and merger history of the primary halo may
introduce some scatter into the merger timescale), there may ex-
ist a selection (or incompleteness) bias against those satellites
of long T'merger. Those mergers would happen after our fifth last
snapshot and thus be missed in our study. This effect becomes
more severe at larger €, because the merger times become sys-
tematically longer on more circular orbits. As a result, only those
mergers with smaller 7' ereer (for the same €) are selected into the
merger sample, which will artificially lower the estimate of f(¢)
for large €. In order to avoid such selection bias for the determi-
nation of f(€), we construct a complete merger sample of primary
halos and satellites at the first 14 snapshots (redshift 1.55-2.0)
with mass ratio greater than 0.1 (152 pairs). In this sample, all
these satellites but two are found to have merged with the cen-
tral galaxies of the primary halos before the fifth last snapshot.
Therefore, our sample is complete for measuring f'(¢), except for
the bin at e = 0.50, where the completeness is 98%, and the bin
at e = 0.70, with the completeness of 97%.
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Fic. 9.—Fitting function of f(¢). The expression f(€) = 0.94¢%%° + 0.60 is
represented by the solid curve, while f(¢) = 1.48¢%27 is denoted by the dashed
line. The squares are from the complete sample of mergers, and the triangles are

from all mergers. [See the electronic edition of the Journal for a color version of

this figure.]

In Figure 9 we present our estimate of /(e) from this complete
sample. We first fit the data with f(¢) = ae® and find the best-
fitting values ¢ = 1.48 and o = 0.27. The fitting curve is dis-
played by the dashed line. If we use all mergers identified instead
of the complete sample, the function f(e) would be under-
estimated at larger € as shown by the triangles in the figure, which
in turn would lead to an even smaller . However, the degree of
the underestimation becomes less serious, since the dependence
on € as shown by the complete sample is much weaker than the
original function f(€) = €978, To check whether the circularity
dependence in Figure 8 is fully accounted for by this fitting for-
mula, we plot the median value of Ty, /T as a function of the
circularity parameter (Fig. 8, dotted line). Compared with the
dashed line [ f(¢) = €%78] the dependence on ¢ is strongly re-
duced. However, we note that the new time ratio is still a little
higher for the smallest circularity bin. This can be contributed
to the artificial effect of the pure exponential fitting form, which
falsely results in a vanishing merger timescale for e = 0. If we
consider two merging halos with equal masses and assume that
they will merge within a free-fall timescale r;;/V., equation (4)
gives f(e) = 0.60. Therefore, to avoid the artificial effect at e =
0 due to the pure exponential form and to reduce the somewhat
too high time ratio in the smallest circularity bin we fit our sim-
ulation data with f(¢) = ae® + 0.60. The best-fitting results are
a =0.94 and a = 0.60. The solid line in Figure 9 shows the
best-fitting curve, which matches the data very well. The solid
line in Figure 8 demonstrates that the Tjm, /75 in the first cir-
cularity bin has moderately decreased, now approaching to a
value of 1.

The exponent « that we find here is much smaller than the
widely used value o = 0.78. At this point it is worth recalling
that o« = 0.78 was obtained by Lacey & Cole (1993) analytically
for the case where a rigid satellite falls into an isothermal sphere.
The fact that our f(€) always exceeds €*7® can be interpreted as
an indication for the mass loss of satellites in the simulation (cf.
Colpi etal. 1999). Satellites on radial orbits lose their mass much
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faster than those on circular orbits, which implies that satellites
on radial orbits show relatively prolonged merging timescales
compared to satellites on circular orbits. Therefore, one expects
higher values for f(¢) or equivalently lower values for « for small
€. In a future paper (A. Faltenbacher et al. 2008, in preparation)
we explore this qualitative explanation using an analytical model
similar to those of Zentner & Bullock (2003) and Zentner et al.
(2005; see also Bullock et al. 2000; Taylor & Babul 2001, 2004).

4.3. Taking into Account Both the Mass
and Circularity Dependencies

Combining our results on the mass and circularity dependencies,
we write the merger timescale as

0.94€%%0 1 0.60 Mpri 1 Tvir (5)
2C M gat 1n[1+(mpri/msat)] V.’

Tq =

In Figure 10 this equation is compared with the merger timescale
of all mergers measured in the simulation. Remarkably, the scat-
ter in the plot is much smaller than that in Figures 4 and 5, in-
dicating that 7', describes the merger timescale much better than
equation (1). To assess the scatter in more detail Figure 11 displays
the distribution of T, /T The solid histogram shows the dis-
tribution based on the early complete merger sample as described
in § 4.2, and the dotted histogram gives the distribution for all
mergers identified in our simulation.

The distribution for the sample of all mergers is shifted toward
the left relative to the complete sample. This is caused by the lack
of long-time mergers among recently infalling satellites in the
sample of all mergers. These long-time mergers would be in-
cluded in the sample if the simulation were evolved beyond the
present time z = 0. This also leads to the trend of the data points
lying slightly above the solid diagonal in Figure 10.

The distribution of x = T, /T is well fitted by the log-normal
distribution

2
p(nx)dInx = exp { (n) ] dlnx (6)

1
\/2_71'0' 20 2
with o = 0.4 (Fig. 11, smooth solid line). This distribution func-
tion combined with the fitting function (5) provides a description
for the merger time in a statistical sample.

From Figure 8 we have learned that the circularity dependence
is accounted for by equation (5). Now, we examine the mass
dependence when equation (5) is applied. Therefore, we plot the
median value of Ty, /T as a function of the mass ratio in Fig-
ure 7 (solid line). Strikingly, we find no dependence on the mass
ratio, which indicates that the dependencies of the merger time
on mass and circularity are completely reproduced by equation (5).

4.4. Distribution of Circularity

Once the distribution of circularity is known for a population
of infalling satellites, one can determine how many of the sat-
ellites merge into central galaxies at a certain epoch in a statis-
tical way by using equations (5) and (6). Various authors (e.g.,
Tormen 1997; Zentner et al. 2005; Khochfar & Burkert 2006)
have studied this distribution, with similar conclusions that or-
bits with intermediate e are common, while those at both ends
(e = 0 or 1) are rare. Figure 12 shows our result for all resolved
satellite halos, with an average value of € being about 0.51, which
is consistent with 0.53 £ 0.23 in Tormen (1997). The distribution
can be well described by

ple)de = 2.77¢"19(1.55 — €)% de, (7



1011 IIIII| I IIIIIII| I UL I UL

InA=In(1 +mpﬂ/msal)

f(e)=0.94*€980+0.60
1010 .

~ E s 2 .';:. E
0 B :'.,’: \ A i
S;‘ B q:"t :f é‘.?. ° 7

L . e 43 '.g:o ° -

—_— a e oo

'E 109 o ."’ﬁ;"’ ° *
B~ Y

108

L1111 Lol Lol L1 11111
108 109 1010 1011
Tsimu [ YI'S ]
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Fic. 13.—Mean circularity as a function of the mass ratio. [See the electronic
edition of the Journal for a color version of this figure.)

which is shown as the solid line in Figure 12. The circularity dis-
tribution is independent of the mass ratio of the primary halo and
the satellite, as shown by Figure 13.

It is worth noting that in semi-analytical models, the circularity
parameter was often randomly drawn from a uniform distribu-
tion between 0 and 1 (e.g., Kauffmann et al. 1999; Somerville &
Primack 1999). According to our findings such an approach biases
the estimate for the input dynamical friction timescales.

5. CONCLUSIONS AND DISCUSSION

In this paper we have analyzed galaxy mergers in a SPH/N-body
simulation and compared the merger timescale with the theoretical

prediction based on the Chandrasekhar formula. We have obtained
the following main conclusions.

1. In contrast with Navarro et al. (1995), we find that the
widely used equation (1), with the satellite’s total mass at its first
crossing of the host virial radius taken for mg,, systematically
underestimates the merger timescale for minor mergers and over-
estimates it for major mergers;

2. We show that the two alternative forms In (1 + m1py/msa)
and % In [1+ (mpi/m sar)”] for the Coulomb logarithm, which also
are widely used in the literature, account for the mass depen-
dence of merger timescale successfully. However, both of them
underestimate the merger timescale by a factor of 2 if the satel-
lite’s total mass at its first crossing of the host virial radius is used
for mgy. Of these two forms the former does slightly better in ac-
counting for the mass dependence;

3. With In (1 4 mpi/mg,) taken for the Coulomb logarithm,
we find that the dependence on the circularity parameter € is
much weaker than 7% and can be accurately represented by
0.94¢%6% + 0.60;

4. Combining our findings on the mass and circularity depen-
dencies, we present an accurate fitting formula (eq. [5]) for the
merger timescale. Together with the distribution functions (egs. [6]
and [7]), one can use this equation to predict mergers of galaxies
in LCDM models.

Our results do not necessarily mean that Chandrasekar’s
theory is not applicable for mergers of galaxies. Instead, our re-
sults do indicate that many previous applications of this theory
led to incorrect results because some simplified assumptions
were adopted. We believe that the mass loss of satellites and the
steep density gradient of host halos are two of the key reasons
that make the problem complicated. In a future paper we in-
vestigate whether our simulation results can be reproduced with
the Chandrasekhar theory by properly taking into account these
two factors.

In the following we discuss how potential shortcomings in the
treatment of the baryonic physics at the core of the primary halo
may affect our results. It is well known that current hydrodynamic
simulations suffer from the so-called overcooling problem, i.e.,

2.5 [ T 1T I T T T T T T T T T T I T I i
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Fic. 14.—Ratio Timu/Th; as a function of the mass ratio mgeiiar/mpri (leff), the growth rate of the primary halo (middle), and r./ryi; (right) for the complete sample.
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the gas at the core of massive dark matter halos cools too rapidly,
resulting in excessively massive central galaxies compared to ob-
servations (e.g., Borgani et al. 2004; Saro et al. 2006; Naab et al.
2007). In turn, adiabatic contraction (e.g., Gnedin et al. 2004)
may also change the dark matter properties at the central parts of
the halo in an unphysical manner.

However, we think that this process does not substantially alter
our results for two reasons: (1) With exception of very radial
orbits, which are rare, the satellite galaxies spend most of their
time during the merging process at the outer parts of the primary
halo, where dynamical friction is moderate. If, however, the sat-
ellite is once migrated toward the central parts of the primary halo,
dynamical friction becomes very efficient and the remaining life-
time of the satellite galaxy is short. Consequently, the merger
timescale is set by the conditions at the outer parts of the primary
halo (cf. Navarro et al. 1995). (2) The findings of Springel et al.
(2001b) and Kang et al. (2005) are in qualitative agreement with
our results. Since both of these studies are based on pure N-body
simulations, they obviously do not suffer from the overcooling
problem. This is a further indication that our results are accurate
and are not affected by the potential shortcomings in the treat-
ment of the baryonic physics in the simulations. These argu-
ments are supported by the left panel of Figure 14, which shows
that there is no dependence of Tgimu/T e ON M tellar/M pri, the Tatio
of the central galaxy’s stellar mass to the dark matter mass of the
surrounding primary halo.

We have also checked whether our result is affected by the
growth of the primary halo during the course of the merger. The
middle panel of Figure 14 shows the ratio Tsim, /T as a function
of the mass growth rate of the primary halo, which is defined as
the ratio of its dark matter mass at the time of merger to its mass
at the time of the first crossing. The result indicates that the
merger timescale is not affected by the growth of the primary
halo. A possible explanation is that the internal density structure
does not change significantly during this course. Of course, vi-
olent major mergers may change the internal structures and bring
about large fluctuations in the merger time.

To keep the fitting formula simple to use, we prefer not to in-
clude the dependence on the energy of the satellite’s orbit, that is,
on r.. We have examined this dependence in the right panel of
Figure 14, which shows that there is a weak dependence on r . /r ;.
We can include this dependence in our fitting formula by re-
placing r.;; with (r;;7.) 2. Thus, the fitting formula with the .-
dependence included reads

090 4 0.60 mys 1 Vit g
ft 2C M sat ln(l + mpri/msat> Ve

and Figure 14 shows that the . dependence is fully accommo-
dated by this simple heuristic correction. We have checked the
dependence on the mass ratio m;/mg,, as well as the scatter
in Tmy/Tse, and found that they are nearly the same as when
equation (5) is used. The better performance of equation (8) is
achieved at the expense of computing the energy of the indi-
vidual satellite orbits. Since the accuracy of the fitting formula is
improved only slightly by including the ». dependence compared
with the scatter in T, /g, the simpler formula (5) is preferred for
most applications.

As a concluding remark, we once again focus our attention on
equation (5), which can be considered the distillate of our analysis.
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This fitting formula allows the prediction of the merger timescale
T4 for the two central galaxies within a satellite and a primary
halo. The merger timescale for the satellite galaxy is defined as the
time that elapses between its first crossing of the primary’s virial
radius and its final coalescence with the central galaxy. The com-
putation of accurate merger timescales is a crucial ingredient for
semi-analytical modeling of galaxy formation.

Equation (5) requires two input values: 71 y/m s, the mass ra-
tio of primary and satellite halo (before they start merging), and
e = J/J(E), the satellite’s initial circularity, which is defined as
the ratio of the satellite’s actual angular momentum J and the
angular momentum of a circular orbit with the same energy J(E).
The term r; is the virial radius of the primary halo just before the
satellite merges with it. The factors C and r;/V . are constants
and do not depend on the specific constellation. If e is not known,
it can be randomly drawn from the distribution provided by equa-
tion (7), which we have derived directly from the simulation data
(see Fig. 12). This random process can be applied for arbitrary
mass ratios (mpi/my), since the distributions of ¢ are nearly in-
dependent of mass as shown in Figure 13.

Finally, it remains to be mentioned that due to stochastic pro-
cesses during a merger event, such as close encounters with other
substructures or the occurrence of multiple mergers at the same
time, there arises substantial scatter among the merger timescales
with equivalent initial conditions. This can be taken into account
if the values for T’ obtained from equation (5) are spread accord-
ing to the log-normal distribution given in equation (6), which is
also displayed in Figure 11. With the fitting formula (5) we pro-
vide a robust estimate of the merger timescale pivotal for all kinds
of analytical modeling of galaxy evolution within dark matter
halos.

After we submitted our paper both to the Journal and to the
astro-ph electronic library an independent work by Boylan-
Kolchin et al. (2008) on the same subject appeared the electronic
library. Their paper is qualitatively consistent with ours in that
the timescale given by equation (1) is underestimated. But quan-
titatively their results are rather different from ours. Both the
dependencies on the mass ratio and the circularity parameters
are much stronger in their paper. In particular, the strong depen-
dence on the circularity that they found, which is even stronger
than %78 at e = 0.5—1, is not consistent with our data. The de-
pendence on the mass ratio is also stronger than ours. This
discrepancy may mainly come from the difference between the
simulations: they present a series of pure N-body simulations
of two halo mergers, whereas our results are based on a cosmo-
logical hydro/N-body simulation with star formation. While our
fitting formula is accurate for mergers in the cosmological frame,
future work is still needed to discover the specific causes of this
discrepancy.
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