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ABSTRACT

Extreme mass ratio bursts (EMRBs) have been proposed as a possible source for future space-borne gravitational
wave detectors, such as the Laser Interferometer Space Antenna (LISA). These events are characterized by long-period,
nearly radial orbits of compact objects around a central massive black hole. The gravitational radiation emitted during
such events consists of a short burst, corresponding to periapse passage, followed by a longer, silent interval. In this pa-
per we investigate the impact of including relativistic corrections to the description of the compact object’s trajectory
via a geodesic treatment, as well as including higher order multipole corrections in the waveform calculation. The
degree to which the relativistic corrections are important depends on the EMRB’s orbital parameters. We find that
relativistic EMRBs (vmax/c > 0:25) are not rare and actually account for approximately half of the events in our
astrophysical model. The relativistic corrections tend to significantly change the waveform amplitude and phase
relative to a Newtonian description, although some of this dephasing could be mimicked by parameter errors. The
dephasing over several bursts could be of particular importance not only to gravitational wave detection, but also to
parameter estimation, since it is highly correlated to the spin of the massive black hole. Consequently, we postulate
that if a relativistic EMRB is detected, such dephasing might be used to probe the relativistic character of the massive
black hole and obtain information about its spin.

Subject headinggs: black hole physics — Galaxy: nucleus — gravitational waves — stellar dynamics

Online material: color figures

1. INTRODUCTION

Low-frequency (10�5 HzP f P 0:1 Hz) gravitational wave
interferometers, such as the proposed Laser Interferometer Space
Antenna (LISA; Bender et al. 1998; Danzmann & Rüdiger 2003;
Sumner & Shaul 2004), will open a completely new window to
the universe. Through observations of low-frequency gravitational
radiation wewill be able to witness the inspiral andmerger of mas-
sive black hole binaries; the inspiral of compact objects into mas-
sive black holes; and millions of quasi-stationary compact galactic
binaries. Recently, a new source of low-frequency gravitational ra-
diation has been suggested: extreme mass ratio bursts (EMRBs;
Rubbo et al. 2006a, 2006b).

EMRBs consist of a stellar-mass compact object (SCO) orbit-
ing amassive black hole (MBH) of 104Y108 M� with orbital pe-
riods greater than Tcut ¼ 3 ; 104 s. The defining orbital period
cutoff is derived from LISA’s lower frequency limit of fcut ¼
3 ; 10�5 Hz. Systems with orbital periods less than Tcut will ra-
diate continuously inside the LISA band. Such continuous sys-
tems are more appropriately categorized as extreme mass ratio
inspirals (EMRIs) and have been studied extensively elsewhere:
recent estimations of the event rate are given by Gair et al. (2004)
and Hopman & Alexander (2006); a discussion on a possible
EMRI background is given by Barack & Cutler (2004a). Accounts
on the theoretical description of EMRIs can be found in the reviews
by Poisson (2004) and Glampedakis (2005), while the recent re-
view by Amaro-Seoane et al. (2007) describes the astrophysical
and detection applications.

Although EMRB events are distinct from EMRI events, their
evolutionary track could be connected. In the burst scenario, the
SCO orbits theMBH emitting a beamed burst of gravitational ra-
diation during pericenter passage. The emitted radiation carries
away energy and angular momentum from the system so that after
multiple pericenter passages the orbital period decreases, and pos-
sibly the system becomes an EMRI. However, this evolutionary
track is most likely disrupted by scattering interactions with other
stars and/or if the SCO plunges directly into the central MBH on
one of its passages.
The EMRB event rate has recently been investigated using

simplified galactic models and data analysis techniques (Rubbo
et al. 2006a, 2006b; Hopman et al. 2006). Using a density pro-
file described by an �-model (Tremaine et al. 1994), Rubbo et al.
(2006a, 2006b) suggested an event rate of �15 yr�1 for events
with signal-to-noise ratios (S/Ns) greater than 5 out to the Virgo
Cluster. When mass segregation and different inner cusp mod-
els are considered, the predicted rate decreases by an order
of magnitude (Hopman et al. 2006). These preliminary studies
were aimed at understanding if EMRB event rates are inter-
esting for low-frequency gravitational wave detectors such as
LISA. More work is still needed to improve the predicted event
rate in the context of realistic galaxies, where the role of non-
equilibrium dynamics, anisotropy, complex star formation his-
tories, substructure, and nonsphericity may act to change the
rate from these fiducial estimates by orders of magnitude
(Holley-Bockelmann & Sigurdsson 2006; Rubbo et al. 2006a,
2006b).
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In addition to the astrophysical uncertainties, there are no inves-
tigations of the impact of relativistic corrections to EMRB dynam-
ics. All EMRB studies have been carried out in a quasi-Newtonian
framework. In this framework, one uses the Newtonian equations
of motion and extracts the gravitationalwaveforms bymeans of the
quadrupole formula. This approximation ignores the black hole
nature of the central potential, including the black hole’s rotation
(spin), and is technically valid only for orbits with nonrelativistic
velocities. However, a considerable number of EMRBs are char-
acterized by large pericenter velocities (vpk 0:25c) and these
relativistic EMRBs should produce gravitational wave signals
with larger S/Ns, as we show later.

In this paper we do not consider the issue of EMRB event rates,
but instead we study the effects of relativistic corrections to such
events. For extreme mass ratio systems a simple way of introduc-
ing relativistic corrections is by using the so-called semirelativistic
approximation introduced by Ruffini & Sasaki (1981) and used
recently in the context of EMRIs by Gair et al. (2005, 2006). In
this approximation, the MBH and surrounding area are modeled
using the Kerr solution to Einstein’s field equations, which de-
scribes a stationary spinning black hole (the Schwarzschild solu-
tion corresponds to the nonspinning case). The SCO is considered
to be a pointlike object (neglecting its own self-gravity) whose tra-
jectory is described by a geodesic of the Kerr spacetime. In other
words, relative to previouswork, we have replaced the Newtonian
equations of motion by relativistic geodesic equations of motion.

The relativistic description introduces effects such as orbital
precession and frame dragging, but it does not account for effects
due to the gravitational field induced by the SCO. These effects,
for example, lead to changes in the (geodesic) constants of mo-
tion due to radiation reaction. Even though these effects introduce
errors that scale with the system’smass ratio (e.g., seeGlampedakis
2005), they cannot be neglected for EMRIs. This is because in the
late stages of the EMRI the SCO spends a substantial fraction of
cycles in the strong-field region of the MBH. On the other hand,
in the case of EMRBs, the SCO slingshots around the MBH and
its interaction time during pericenter passage is relatively small
(<105 s). Radiation reaction effects can then be neglected in
EMRBs, since the radiation reaction timescale is always much
larger than the period of pericenter passage.

In this paper we also improve on the semirelativistic approx-
imation by using amore precise gravitationalwave extraction pro-
cedure. The procedure employed is the multipole-moment wave
generation formalism for slow-motion objects with arbitrarily
strong internal gravity (Thorne 1980).We consider terms up to the
mass-octopole and current-quadrupole multipoles, thus improv-
ing on the mass-quadrupole analysis of Rubbo et al. (2006a,
2006b) and Hopman et al. (2006). Higher multipoles will become
important if the system becomes even more relativistic, but peri-
center velocities for EMRBs are typically small to moderate rela-
tive to the speed of light (typically 0:1P vp/cP 0:5). Such higher
multipolar corrections were taken into account for EMRIs by
Babak et al. (2007), but for those sources the phase evolutionmust
be tracked very accurately, requiring techniques from black hole
perturbation theory (Poisson 2004;Glampedakis 2005) thatwe do
not consider here.

The study of the relativistic corrections considered in this work
leads to the following conclusions. First, we find that relativistic
effects are significant for approximately 50% of the orbits con-
tained in the EMRB phase space considered by Rubbo et al.
(2006a, 2006b). These relativistic EMRB orbits differ from their
Newtonian counterparts in such a way that the associated wave-
forms present a noticeably different structure. In particular, we
find that there is a dephasing relative to Newtonian waveforms

that is due to precessional effects and depend strongly on theMBH
spin. These findings show that EMRBevents are relativistic enough
that they should be treated accordingly, as was previously found
for EMRIs (Glampedakis 2005).

Second, we find that the corrections to the trajectories affect
the waveforms much more than the corrections in the waveform
generation over several bursts. For example, for a given relativis-
tic trajectory,we find that the difference between the S/N of awave-
form obtain from the quadrupole formula to that obtained from the
quadrupole-octopole formula is of the order of 10% (depending on
the location of the observer.) On the other hand, using the same
waveformgeneration formula (quadrupole or quadrupole-octopole),
the difference between the S/N of a Newtonian waveform to that
of a Kerr waveform is of the order of 100%. These findings show
that modeling EMRB waveforms with a quasi-Newtonian treat-
ment might not be sufficient for certain data analysis applications.

Third, we find that the relativistic corrections accumulate with
multiple bursts and, thus, they may have an important impact in
improving the S/N. It is also conceivable that such corrections
might be important for parameter estimation studies and, perhaps,
may be used to determine or bound the spin of theMBH if a high-
S/N event is detected. Along this same lines, if parameters can be
determined accurately enough, it might also be possible to use
EMRB measurements to test deviations from general relativity.
We must note, however, that changing the orbital parameters in
Newtonian waveforms could somewhat mimic some of the rela-
tivistic corrections, but a detailed Fisher analysis of such effects is
beyond the scope of this paper.

The remainder of this paper is divided as follows: x 2 deals
with the dynamics of EMRBs in the semirelativistic approxima-
tion and justifies the use of this approximation for these systems;
x 3 reviews the inclusion of higher order multipolar corrections
to the waveform generation formalism; x 4 describes the numer-
ical implementation of the equations of motion and the initial data
used; x 5 compares the orbital trajectories and waveforms; and x 6
concludes and points to future research.

In this paper we denote the MBH mass by M� and its gravi-
tational radius by R� ¼ 2GM�/c

2, where c is the speed of light
and G the Newtonian gravitational constant. To simplify some
expressions we normalize masses with respect to MMW ¼ 4 ;
106 M�, which is of the samemagnitude as the mass of theMBH
at the center of the Milky Way (Ghez et al. 2005). The gravita-
tional radius can then be written as

R� ¼ (3:82 ; 10�7 pc)
M�
MMW

: ð1Þ

2. EMRB DYNAMICS

In this sectionwe discuss the description of the orbital motion.
Newtonian dynamics usually provides an adequate description
of many astrophysical sources of gravitationalwaves, at least from
a qualitative point of view.However, for certain gravitational wave
sources, such a description is insufficient and relativistic effects
have to be considered. For EMRB sources with pericenter dis-
tances rp > 4R� and velocities vp/c < 0:5, the semirelativistic
approximation to the equations of motion, in combination with
a multipolar description of the gravitational radiation, can ade-
quately model the dynamics and gravitational radiation, as we
argue below.

The semirelativistic approximation treats themotion of the SCO
in the point-particle limit as a geodesic of the MBH geometry,
which is justified based on the small mass ratios associated with
these systems. In this work, we adopt Cartesian Kerr-Schild
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coordinates, ft; x ig (i ¼ 1; 2; 3), in which the MBH geometry is
time-independent, reflecting its stationary character, and tends to a
flat-space geometry in Cartesian coordinates far from the MBH.
We denote the geodesic trajectory by zi(t), its spatial velocity by
v i(t) ¼ dzi/dt, and its spatial acceleration by ai(t) ¼ dv i/dt. The
latter, in such a coordinate system, and by virtue of the geodesic
equations of motion, has the following form (e.g., see Marck
1996):

ai ¼ Fi½v j; g��; @jg���; ð2Þ

where g�� (�; � ¼ 0; 1; 2; 3) are the spacetime components of
the MBH metric. These equations describe the influence of the
spacetime curvature produced by the MBH and approach the
Newtonian equations of motion in the regime where v/c ¼
jv ij/cT1 and GM�/(c

2r)T1 (r ¼ jx ij).
The effects from the self-gravity of the SCO can be neglected.

To see this, consider the (Keplerian) orbital timescale, Torb, in
comparison to a characteristic radiation-reaction timescale, Trr.
For the latter, we can use the timescale associated with the rate of
change of the semilatus rectum, p, related to the pericenter dis-
tance by rp ¼ p/(1þ e), namely, Trr � p/jdp/dtj. The radiation-
reaction timescales of the other orbital elements are comparable
or larger (see, e.g., Glampedakis 2005). The ratio of these time-
scales is

Torb

Trr
� 2��

R�
2p

� �5=2
; ð3Þ

where � ¼ m/M� is the mass ratio of the system and m the SCO
mass. It is evident that the radiation-reaction timescale is much
greater than the orbital timescale due to the extreme mass ratio,
�T1, and because EMRBs have p3�5/2R�. In the unlikely
case that more accuracy is required, one could improve the anal-
ysis through the use of ‘‘Kludge’’ waveforms (Babak et al. 2007),
which have been shown to reproduce numerical results in the adi-
abatic approximation accurately for EMRIs.

Formally, the orbital timescale used is not really the exact time-
scale of orbital motion. This is because the mass distribution of a
MBH-embedded galaxy possesses a non-Keplerian potential that
leads to non-Keplerian orbits. However, most EMRBs (by rate)
have apocenters that do not extend far into the stellar population,
implying that the contribution from the galaxy potential is mini-
mal. The orbits we study in later sections have a contamination
from the galactic potential that is less than 2% of the MBHmass.
Moreover, Hopman et al. (2006) rightly argue that the inner region
is statistically empty of stars, which is due to finite effects realized
at the small scales observed near the MBH.

Certain constraints may be derived on the size of p and rp for
EMRB events. Themost important constraint is derived from the
definition of EMRBs: orbits with sufficiently large orbital period
Torb > Tcut. Assuming aKeplerian orbit (which is a rough assump-
tion), this constraint translates to pericenter distances as follows:

rp > (7:98 ; 10�7 pc)
(1� e)

0:1

M�

MMW

� �1=3
T

Tcut

� �2=3
; ð4Þ

where we have rescaled quantities assuming a typical eccentric-
ity of e ¼ 0:9 (Rubbo et al. 2006a, 2006b) and a typical MBH
mass of M� ¼ MMW. In terms of geometrized units, such a con-
straint translates roughly to rp > 2R�.

This constraint can be compared with the requirement that the
SCO does not get captured. Any object that enters the black hole

event horizon is captured, where the horizon is located (in Boyer-
Lindquist coordinates) at

rcap ¼ (1:91 ; 10�7 pc)
M�

MMW

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

�
M 2

�

s" #
; ð5Þ

where a� is the (Kerr) MBH spin parameter, related to its in-
trinsic angular momentum by S� ¼ GM�(a�/c), and bounded by
a�/M� � 1. Thus, for a maximally spinning Kerr MBH (a� ¼
M�), rcap ¼ 0:5R�, while for a Schwarzschild (nonspinning)MBH
it is just R�. This condition tell us simply that rp > rcap, which is
a condition superseded by the constraint on the orbital period
given in equation (4).One could explore other possible constraints
(Rubbo et al. 2006a, 2006b), but they are in general superseded by
equation (4).
These constraints clearly exclude the ergosphere of the MBH

(rcap < rP R�) where frame dragging effects aremost pronounced.
However, for EMRIs it has been argued (Glampedakis 2005) that
orbits with rp < 10R� cannot be considered Keplerian anymore,
mainly due to precessional effects. This statement can be made
more quantitative by looking at the ratio of first-order post-
Newtonian (1 PN) predictions (Blanchet 2006) to Newtonian
ones (0 PN). For example, for the energy of a circular orbit, this
ratio scales as 7R�/(8rp), while for the perihelion precession angle,
the ratio scales as 3R�/(2rp), for extreme mass ratios. Therefore,
for orbits with pericenter passage rp � 5R�, the 1 PN correction to
the energy and the perihelion precession angle is approximately
20% and 30%, respectively, relative to the Newtonian value. This
indicates that, even for orbits outside the ergosphere, relativistic
effects are not necessarily negligible.
The relativistic geodesic equations of motion introduce cor-

rections to the Newtonian motion that can be interpreted in terms
of a black hole effective potential. By comparing the Newtonian
and relativistic potentials one can see that the relativistic correc-
tions dominate over the centrifugal barrier at small distances from
the black hole center. In this work we show that these relativistic
corrections can be sampled by EMRBs and hence, one should
model these systems accordingly. Nevertheless, as we argued
above, the relativistic treatment of EMRBs does not need to be
as sophisticated as in the case of EMRIs, since radiation reaction
can be neglected.

3. EMRB WAVEFORMS

In this section we describe howwe extract gravitational wave-
forms once we have integrated the geodesic equations of motion.
We use amultipole-moment wave generation formalism for slowly
moving objects with arbitrarily strong internal gravity (Thorne
1980; Flanagan & Hughes 2005; Glampedakis 2005). In quasi-
Newtonian and semirelativistic treatments, the radiation is mod-
eled by the lowest nonvanishing multipole moment: the mass
quadrupole. To that order, and for the case of a pointlike object
orbiting a MBH at a fixed coordinate location, the plus and cross
polarizations are given by (Misner et al. 1973; Thorne 1980)

hþ;; ¼ 2Gm

rc4
�ijþ;; (aizj þ vivj); ð6Þ

where r is the (flat space) distance to the observer and �ijþ;; are
polarization tensors. This expression assumes, based on the
slow-motion approximation, that the change in the acceleration
with respect to time, the jerk, ji ¼ dai/dt, is a small quantity.More
precisely, we are neglecting terms of order (v/c) 3, or, in other
words, since the (quadrupole) leading order terms are of order
(v/c)2, this implies a relative error of order v/c.
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One can improve on this description for the gravitational radia-
tion by accounting for higher order multipole moments. In this
paperwe consider themass-octopole and current-quadrupolemul-
tipoles, which require the knowledge of one more time derivative
of the trajectory, the jerk. Adding these contributions to equa-
tion (6), the gravitational waveforms are given by (Thorne 1980)

hþ;; ¼ 2Gm

rc4
�ijþ;;

�
aizj þ vivj

þ 1

c

h
n = zð Þ zi jj þ 3aivj

� �
þ n = vð Þ aizj þ vivj

� �
� n = að Þvizj �

1

2
n = jð Þzizj

i�
; ð7Þ

where ni ¼ x i/r is a unit vector that points to the observer and
the vector product is the flat-space scalar product. In this case,
we are neglecting terms of order (v/c)4 and hence we are making
a relative error of order (v/c)2 with respect to the leading order
quadrupole term.

The waveforms of equation (7) are a truncated multipole ex-
pansion, where we are neglecting the current-octopole, mass-
hexadecapole, and higher multipole moments. This expansion
is based on a slow-motion approximation which is valid for orbits
whose pericenter velocity is small relative to the speed of light.
For closed circular orbits, we can use the virial theorem to argue
that this is equivalent to requiring rp > M�. For a relativistic
EMRB event with vp/c ¼ 0:4, the maximum relative contribution
of the octopole to the quadrupole is of the order of 40%, since the
octopolar term is of order v/c smaller than the quadrupolar one. In
this paper we study EMRBs from the sample of Milky Way
sources studied in Rubbo et al. (2006a). These sources have ini-
tial pericenter distances of rp > 8M�, thus justifying the use of
a low-multipolar expansion in the wave generation formalism
and the neglect of radiation reaction effects in the orbital motion.

4. NUMERICAL SIMULATIONS

In this section we describe the EMRB simulations that were
carried out, including the choice of initial conditions. The simula-
tions involve integrating the equations for geodesic motion around
a Kerr black hole, equation (2), forward in time. (For a detailed
exposition of Kerr geodesics, see Chandrasekhar 1992.) Since
Cartesian Kerr-Schild coordinates are used, the initial conditions
can be denoted by (z i0; v

i
0). The numerical implementation does

not use the Kerr geodesic constants of motion (energy, angular
momentum, and Carter constant) in order to reduce the number
of variables of the resulting system of ordinary differential equa-
tions. Instead, we have used the constants of motion to monitor
the accuracy of the time integration. The integration accuracy is
set so that we obtain fractional errors for the constants of motion
smaller than one part in 1010. The code uses a Bulirsh-Stoer ex-
trapolation method as the evolution algorithm (see, e.g., Press
et al. 1992; Stoer & Bulirsch 1993). We have also introduced in
the code the possibility of switching between Kerr geodesics and
Newtonian equations of motion. The gravitational waveforms are
then obtained directly by applying expressions (6) and (7) to the
numerically obtained trajectory z i(t).

Comparisons are carried out by choosing a representative rela-
tivistic orbit within the allowed phase space for EMRBs.Wemade
the following choices for the test case:

1. The central MBHmass isM� ¼ MMW and the SCOmass is
m ¼ 1 M�, such that the mass ratio is � ¼ m/M� ¼ 2:5 ;
10�7T1.

2. The MBH spin parameter is either a� ¼ 0 (Schwarzschild)
or a� ¼ 0:998M� (Kerr). The angularmomentum is aligned along
the z-axis and equal to either Sz ¼ 0 or Sz ¼ 0:998GM 2

� /c.
3. The observer is located at robs ¼ 8 kpc along the z-axis,

which corresponds to the approximate distance from Earth to the
center of the Milky Way (Eisenhauer et al. 2005).

Furthermore, we make the following choices for the orbital ini-
tial conditions:

z i0 ¼ �1:59; 1:05;�0:185ð Þ ; 10�5 pc;

v i0 ¼ 1:70;�2:89; 0:510ð Þ ; 104 km s�1: ð8Þ

The initial conditions are such that r0 ¼ jz i0j ¼ 50R� ¼ 1:91 ;
10�5 pc, and jv i0j ¼ 0:11c ¼ 3:39 ; 104 km s�1. The orbital
plane is inclined by 10� with respect to the x-y plane to demon-
strate the effects of orbital plane precession, which only occurs
for spinning MBHs. Since this paper is concerned with the ef-
fect of relativistic corrections to EMRB events, we choose to give
all orbits the same initial conditions. The possibility of relaxing
this choice and its effect on the conclusions derived in this paper
are discussed in a later section.

Although the test orbit is in the phase space of EMRB events
studied in Rubbo et al. (2006a), one might worry that it is too
relativistic to actually have a significant probability to occur in
nature. In particular, one can think that the SCO may be tidally
disrupted. To address this question, let us consider a Newtonian
description of the central potential, which leads to the following
values of the pericenter distance and velocity:

rp ¼ 6:45R� ¼ 2:48 ; 10�6 pc;

jvpj¼ 0:384c ¼ 1:15 ; 105 km s�1: ð9Þ

One might worry that stars might be tidally disrupted with such
small pericenters. However, as shown by Hopman et al. (2006)
most SCOs in EMRB scenarios consist of stellar-mass black
holes, which cannot be tidally disrupted.

Such relativistic orbits are actually naturally occurring in the
phase space of possible EMRBs studied in Rubbo et al. (2006a).
Of all orbits in the allowed EMRB phase space considered in
Rubbo et al. (2006a, 2006b) 6% are contained within a small six-
dimensional phase-space volume centered on the test orbit.1 Fur-
thermore, the test case shown possesses a short orbital timescale,
bursting approximately 150 times per year. Such eventswith small
orbital timescale were shown to dominate the EMRB event rate in
Rubbo et al. (2006a). It is in this sense that the test orbit studied
here is typical or representative of EMRBs.

The relative location of the test orbit in the pericenter distanceY
eccentricity plane of the phase space of allowed EMRBs (Rubbo
et al. 2006a) is presented in Figure 1 (triangle). The eccentricity
was here calculated assuming a Newtonian orbit, and the peri-
center separation is given in gravitational radii, R�. Although the
test orbit has a large eccentricity, its apocenter is small enough
(ra P 150R� � 6 ; 10�5 pc) that the contribution from the sur-
rounding stellar population to the potential can be neglected. In
general, the left side of the figure corresponds to highly relativ-
istic orbits with large pericenter velocities and small pericenter

1 In other words, 6% of the test orbits considered to be EMRBs in Rubbo et al.
(2006a) are close in phase space to our test orbit. This does not imply that the prob-
ability of such a test orbit actually occurring in nature is 6%, since any element of
phase space may have small overall probabilities, even down to 10�7%.

GRAVITATIONAL WAVE BURSTS 607No. 1, 2008



distances. Orbits with pericenter velocities jvpj> 0:25c ¼ 3 ;
104 km s�1 account for approximately 50% of the possible orbits
within the phase space studied in Rubbo et al. (2006a).

Although the test orbit is a good source to demonstrate the
differences between the Newtonian and relativistic treatments,
we could have chosen an evenmore relativistic one. Such an event
would still be classified as an EMRB in a Newtonian treatment,
but it would border with the definition of a continuous source. An
example of such an extreme orbit is shownwith a circle in Figure 1,
to the left of the test orbit (triangle). This extreme orbit possesses
the following initial conditions:

z i0 ¼ �1:81; 0:6;�1:06ð Þ ; 10�6 pc;

vi0 ¼ 1:72;�1:78; 0:31ð Þ ; 105 km s�1; ð10Þ

where rp ¼ 4R� ¼ 1:53 ; 10�6 pc and jvpj ¼ 0:49c ¼ 1:46 ;
105 km s�1 for a Newtonian potential. We study such an extreme
orbit at the end of the next section as an example of a limiting rela-
tivistic case.

5. COMPARISON OF TRAJECTORIES AND WAVEFORMS

In this section we compare the results obtained for both the or-
bital motion and the gravitational radiation emitted by an EMRB
event using both the Newtonian and relativistic description. Since
the plus and cross polarization waveforms present similar features,
we only plot the plus polarization waveforms. In the remainder
of this section we use the following nomenclature: a quadrupolar
(octopolar) Newtonian waveform is one that was calculated using
the quadrupole (octopole) formula and Newtonian equations of
motion; a quadrupole (octopole) Schwarzschild waveform is one
that was calculated using the quadrupole (octopole) formula and
the geodesic equations of motion with no spin (a� ¼ 0); a quad-
rupole (octopole) Kerr waveform is one that was calculated using
the quadrupole (octopole) formula and the geodesic equations of
motion with spin a� ¼ 0:998M�.

5.1. Orbital Trajectories

Let us begin by comparing the trajectories obtained in our
simulations. In Figure 2 we plot the test orbit corresponding to a

Newtonian treatment (solid line) and the one corresponding to a
relativistic treatment without spin (dashed line) and with spin
(dotted line). The dot and arrow indicate the initial location and
velocity projected onto the x-y plane. The MBH is located at the
origin of the coordinates, and the vectors denoted by L and S de-
scribe the direction of the initial orbital angular momentum and
theMBH spin, respectively. In the relativistic description there are
precessional effects in the SCO orbit that can be clearly observed
in Figure 2. These precessional effects are pericenter precession
about the orbital angular momentum axis, which acts in the initial
orbital plane; and frame-dragging precession about the total an-
gular momentum axis, which acts out of the initial orbital plane.
While the former always occurs in a relativistic treatment, the lat-
ter is present only in the spinning case.
Different relativistic precessional effects are generally of dif-

ferent magnitude. These effects are usually inversely proportional
to the pericenter distance, or equivalently proportional to the peri-
center velocity of the SCO. Precession out of the initial orbital
plane, however, is smaller than precession in the orbital plane by
a relative factor of order vp/c, and it is directly proportional to the
spin of the MBH. In terms of post-Newtonian theory (see, e.g.,
Blanchet 2006), the pericenter advance is described by first-order
post-Newtonian corrections to the equations of motion [order
(v/c)2 relative to the Newtonian acceleration], while precession
off the orbital plane is due to spin-orbit and spin-spin couplings
that correspond to 1.5 and second-order corrections [order (v/c) 3

and (v/c)4 relative to the Newtonian acceleration]. Therefore, since
EMRBs are characterized as events with small to moderate peri-
center velocities, precession out of the initial orbital plane is small
to moderate relative to pericenter advance, even for maximally
spinning MBHs.
We can estimate the precession rate by comparing theNewtonian

and relativistic trajectories. For the test orbit considered, we find
that the rate in the orbital plane is roughly �/3 rad per orbit for the
nonspinning case and 2�/3 rad per orbit for the spinning one. These
precessional effects have been studied extensively in the context of
EMRIs (see, e.g., Schmidt 2002) and also specifically for S stars
in the central region of our Galaxy in Kraniotis (2007). None-
theless, these effects have not been previously analyzed in the con-
text of EMRBs, since previous studies employed a quasi-Newtonian
treatment.

Fig. 1.—Set of possible EMRB orbits as computed in Rubbo et al. (2006a) in
the pericenter distanceYeccentricity plane. The pericenter distance is given in units
of the gravitational radius R�. The initial conditions for the test (eq. [8]) and the ex-
treme (eq. [10]) orbits are indicated by a triangle and a circle, respectively.

Fig. 2.—Trajectories for the SCO, with initial conditions given by eq. (8),
corresponding to aNewtonian description (solid line) and relativistic descriptions
with no spin (dashed line) and with spin (dotted line). The MBH is located at the
origin, and the vectors L and S denote the initial orbital angular momentum and
the MBH spin, respectively.
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5.2. Waveforms

Let us now analyze how the differences in the SCO trajectories
translate into different signatures in thewaveforms. In Figure 3 we
plot the quadrupole Newtonian and Schwarzschild waveforms
(solid and dashed lines, respectively), while in Figure 4 we plot
the quadrupole Schwarzschild and Kerr waveforms (dashed and
double-dot-dashed lines, respectively). There are three main dif-
ferences between the Newtonian and the relativistic waveforms:
a modulated phase change, an amplitude change, and a time of ar-
rival change. The changes in amplitude and time of arrival are due
to the test particle experiencing a larger ‘‘force’’ of attraction as it
approaches the black hole. Quantitatively, this increase in force is
due to the presence of (r�n

p )-contributions to the relativistic correc-
tions to the central potential (with n a real positive number).

Gravitational wave interferometers are most sensitive to the
phase, which is clearly different for Newtonian and relativistic
waveforms. The dephasing present in Figures 3 and 4 parallels
the orbital dephasing discussed earlier (the gravitational wave and
orbital frequencies are intimately related) and leads to an ampli-

tude modulation. In terms of the gravitational wave phase, both
Figures 3 and 4 show a dephasing of �/6 rad per cycle. This can be
seen after the third burst where the waveforms are back in phase.
In fact, there is a significant dephasing even between the relativ-
istic waveforms due to the effect of theMBH spin. If a cursory ex-
amination by eye can detect the difference in thewaveforms due to
differences in the nature of the central potential, it stands to reason
that strong-field EMRBwaveformsmight allow us to probe of the
spacetime near a MBH. We should note, however, that no work
has yet been done to find best-fit parameters for Newtonian wave-
forms that maximize the correlation with relativistic ones. In other
words, it might be possible to mimic some of the relativistic cor-
rections by choosing different initial data for the Newtonianwave-
forms, but such a study is beyond the scope of this paper.

The difference in dephasing can be better studied by calculat-
ing the signal overlap,

(h1jh2)¼
R T

0
h1(t)h2(t) dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR T

0
h2
1 (t) dt

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR T

0
h2
2 (t) dt

q : ð11Þ

The overlap indicates how well a signal h1 can be extracted via
matched filtering with a template h2.2 In Figures 5 and 6 we plot
the normalized integrand as a function of time, with h1 given by
the quadrupole Kerr waveform and h2 given by either the quad-
rupole Newtonian or Schwarzschild waveforms. Observe that
neither the Newtonian nor the Schwarzschild waveforms match
well with the Kerr waveform. Moreover, note that the correla-
tion with the Newtonian waveform deteriorates greatly after only
the first cycle. The integral of equation (11) gives the correlation
between different waveforms over 9 days (four bursts): for the
Newtonian and Kerr plus-polarized waveforms it is 9:6%; for the
Schwarzschild and Kerr plus-polarized waveforms it is �6.3%.
As a point of comparison, a substantial signal overlap should be
k95%. As already mentioned, the same initial conditions were
chosen for both the Newtonian and relativistic orbits, such that
their waveforms would be both initially in-phase and any de-
phasing due to relativistic effects could be clearly studied. How-
ever, such a choice forces the SCO to pass through periapsis at
slightly different times, because in the relativistic case this object

Fig. 3.—EMRB waveforms (plus polarization): the Newtonian waveform
corresponds to the solid line and the Schwarzschild one to the dashed line. [See
the electronic edition of the Journal for a color version of this figure.]

Fig. 4.—EMRBwaveforms (plus polarization): the Schwarzschild waveform
corresponds to the dashed line and the Kerr one to the double-dot-dashed line.
The dephasing of the waveforms can be best observed during the silent transitions
between bursts. For example, in the first silent transition thewaveforms are roughly
� radians out of phase, while in the third one they are in phase. [See the electronic
edition of the Journal for a color version of this figure.]

Fig. 5.—Overlap integrand of eq. (11) with h1 given by the quadrupole Kerr
waveform and h2 by the quadrupole Newtonian one. The inset zooms to a region
near the small peaks.

2 The overlap is given here in the time domain, but an analogous representa-
tion in the frequency domain could also be used. Such an expression in the fre-
quency domain can be derived through Parseval’s theorem.

GRAVITATIONAL WAVE BURSTS 609No. 1, 2008



experiences a ‘‘deeper’’ potential. Such a difference in timing de-
grades the overlap somewhat and could, in principle, be amelio-
rated by choosing different initial conditions for the Newtonian
evolution, i.e., by maximizing the overlap over all orbital param-
eters, but such a study is beyond the scope of this paper.

Figures 5 and 6 provide some evidence that the use of a rela-
tivistic waveform might be required for the data analysis problem
of extracting EMRB signals. Such expectations are somewhat
confirmed in Table 1, where we present the correlation between
Newtonian and Kerr plus-polarized waveforms integrated over
both a single day (one burst) and 9 days of data (several bursts)
for a sample of different EMRB orbits.3 Both a single and sev-
eral bursts should be studied because, in principle, parameter
adjustments might mitigate the between-burst dephasing, but
probably not the in-burst dephasing. The orbits chosenwere taken

directly from the allowed EMRB phase space of Rubbo et al.
(2006a) and possess different initial positions and velocities, lead-
ing to different eccentricities, initial inclination, and orbital periods.
The orbital period can be used to classify the orbits into highly
bursting (burst more than once per week) and slowly bursting
(burst less than once per week.) For highly bursting EMRBs, the
average correlation is �27% when all 9 days of data (several
bursts) are used, while it is�93%when only 1 day of data (single
burst) is used. For the slowly bursting EMRBs we considered
here, there is actually only one burst per week, and its correlation
is�85%. These results indicate that accumulating precession ef-
fects lead to a significant loss of correlation between Newtonian
and Kerr waveforms if bursts are to be connected. Moreover, we
see that even for a single burst the shape of the relativistic wave-
forms is sufficiently different from its Newtonian counterpart to
lead to a significant mismatch (in-phase dephasing). If one max-
imizes the correlation over intrinsic orbital parameters it might be
possible to increase the correlation somewhat, but again that is to
be studied elsewhere.
Let us now focus on the differences in the waveforms when

they are calculatedwith the quadrupolar approximation versus the
quadrupolar-octopolar one. In Figure 7 we plot the absolute value
of the difference between the octopole and quadrupolewaveforms
as a function of time for a Schwarzschild (top) and aKerr (bottom)
central potential. The difference is normalized to the maximum of
the first peak of the quadrupole waveform, since other peaks have
approximately the same maximum.
Observe that the inclusion of higher order multipoles does not

affect the phasing of thewaveforms, but only the amplitude, which
is in general different by roughly 4% relative to the quadrupole
waveform for the Kerr test case. At first sight, this result is in dis-
agreement with the expectation that the octopolar correction is at
mostP40% of the quadrupolar one. Note, however, that the 40%
estimate is an order-of-magnitude upper limit, since the octopole
correction is dependent on the location of the observer relative to
the trajectory, velocity, acceleration, and jerk vectors. For the test
case, where the observer is located on the ẑ-axis and the orbit
is initially inclined by 10

�
, the octopolar change is reduced by

Fig. 6.—Overlap integrand of eq. (11) with h1 given by the quadrupole Kerr
waveform and h2 by the quadrupole Schwarzschild one.

TABLE 1

S/N and Overlap for Different EMRB Orbits

rp
(�pc)

(1)

vp/c

(2)

P

(yr)

(3)

e

(4)

No. Bursts

(5)

j��j/�
(6)

j��(1)j/�(1)
(7)

(h1jh2)
(8)

(h1jh2)(1)
(9)

Highly Bursting

7.8............................... 0.196 0.0042 0.603 6 0.38 0.049 0.27 0.98

7.5............................... 0.207 0.0055 0.684 5 0.13 0.0007 0.20 0.88

7.2............................... 0.217 0.0074 0.749 4 0.22 0.057 0.31 0.90

7.1............................... 0.220 0.0086 0.777 3 0.49 0.061 0.33 0.99

Slowly Bursting

13................................ 0.163 0.0450 0.859 1 . . . 0.002 . . . 0.90

8.0............................... 0.217 0.1953 0.968 1 . . . 0.033 . . . 0.97

10................................ 0.193 0.7683 0.984 1 . . . 0.009 . . . 0.72

12................................ 0.173 3.0407 0.992 1 . . . 0.015 . . . 0.80

Notes.—In this table we present the S/N and correlation computed in the frequency domain betweenKerr quadrupole and octopole waveforms for
different EMRBorbits. The orbits are separated into two groups: highly bursting and slowly bursting. The first five columns present information about
the different orbits, including howmany times they burst, their eccentricities and periods, which were chosen directly from the allowed EMRB phase
space of Rubbo et al. (2006a) and thus represent Milky Way sources. The sixth and seventh columns present the difference in S/N between a
Newtonian and Kerr quadrupole waveform relative to the former using the entire data set and only one burst, respectively. Similarly, the eighth and
ninth columns show the correlation between the plus polarizations using the entire data set and one burst, respectively. Since the slowly bursting
sources burst only once, the sixth and eighth columns are not redundant for these sources. All calculations assume the observer is located on the z-axis
and random initial inclination angles.

3 Here we use the frequency representation of the correlation calculation, em-
ploying the Fourier transform of the waveforms.
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approximately an order of magnitude, since initially (n = z) �
(n = v) � (n = a) � (n = j) � 0:1. In Table 2 we present the approx-
imate maximum difference between octopolar and quadrupolar
waveforms as a function of observer location, focusing only on
the first burst of radiation. The location of the observer is rotated
about the ŷ-axis on the x̂-ẑ plane, always at a fixed radial distance
of 8 kpc. Note that for some observers the difference is larger
and, in fact, of the order of 40%, since the dot products are closer
to unity. These results are thus consistent with the expectation
that the nth multipolar contribution cannot in general be larger
than order (v/c)n relative to the quadrupolar leading term.

5.3. Data Analysis

In order to quantify some of our statements about the change
in phase and amplitude, we calculated the S/N for the relativistic
waveforms via the standard formula

�2 ¼ 4

Z 1

0

jh̃( f )j2

Sn( f )
df ; ð12Þ

where the tilde denotes the Fourier transform and Sn( f ) is the
one-sided power spectral noise density. Here we employ the On-
line Sensitivity Curve Generator (Larson et al. 2000) with the
standard LISA settings and the inclusion of the white dwarf back-
ground contribution. When calculating S/Ns, we set the observa-
tion time to roughly 9 days, so as to include multiple bursts in our
single S/N value.

The inclusion of relativistic corrections in the trajectories has
a dramatic impact in the S/N. We find that the Schwarzschild
waveform increases the S/N by a factor of approximately 59%,
while the Kerr waveform increases it by 162%, relative to the
Newtonian S/N. The difference in S/N is because the relativistic
orbits experience a deeper effective potential and, thus, the inter-
action timescale is smaller. Therefore, the inverse of the interaction
time, f? ¼ vp/rp, is larger for the Schwarzschild and Kerr wave-
forms relative to theNewtonian one. As a result, the Fourier power
is shifted to higher frequencies, where LISA is more sensitive.

The S/N behaves similarly for other EMRB orbits with differ-
ent orbital periods, eccentricities, and pericenter parameters. This
can be observed in Table 1, where we present the S/N difference
between Newtonian and Kerr waveforms for different EMRB or-
bits for a single and several bursts. Highly bursting EMRBs lead
to a large change in the S/N over a weak of data, since they ex-

perience the depths of the effective potential several times. Per
burst, the change in S/N can range from 1% to 10% or even 90%,
depending on the inclination angle of the orbit, the pericenter dis-
tance, and other orbital parameters. Also note that the orbits pre-
sented in the table are not as relativistic as the test case, which is
why the S/N difference is smaller. This study seems to indicate
that the S/N is in general somewhat larger for relativistic wave-
forms, especially when several burst are taken into account.4 Con-
sequently, the event rate calculated inRubbo et al. (2006a, 2006b),
which in particular summed over all bursts in 1 yr of data, is an un-
derestimate for their galaxy model, because some of the systems
with a Newtonian S/N P5 should have been added to the detect-
able event rate. However, the uncertainty in the event rate is still
probably dominated by astrophysical uncertainties and not by the
dynamics modeling.

Conversely, the inclusion of higher multipole moments to the
wave generation formalism has little to no effect in the S/N. In the
previous section we showed that there was �4% difference be-
tween the octopole and quadrupole waveforms relative to the
maximum of the first peak of the quadrupole waveform. We fur-
ther showed that this difference depends on the location of the
observer (see Table 2), but for the test case it does not exceed a
maximum of 40%, which agrees with the multipole-ordering ar-
gument previously described. However, we also pointed out that
the amplitude difference is confined to sharp peaks in the time
domain. Such a confined change in the waveform amplitude leads
to a Fourier power being dispersed over a large frequency region,
including outside the LISA band. As a result, there is a correspond-
ingly small change in the S/N: of the order of�1% relative to the
quadrupolar formalism. Such a result is in agreement with the
analysis of Babak et al. (2007) which was carried out for EMRIs.
Therefore, we see that the change in S/N is primarily dominated
by the modifications introduced in the geodesic description of
the equations ofmotion, and not in the octopolar correction to the
waveform generation.

The analysis presented in this section, in particular Figure 5,
makes it clear that relativistic corrections to the waveforms ac-
cumulate with multiple bursts. In other words, over a single burst

TABLE 2

Comparison between Quadrupole and Octopole Waveforms

Angle

(deg)

xobs
( kpc)

yobs
( kpc)

zobs
(kpc)

Amp. Diff.

(%)

0.............................. 0 0 8 3.9

20............................ 2.73 0 7.51 3.3

40............................ 5.14 0 6.12 11.5

60............................ 6.93 0 4 15.2

80............................ 7.88 0 1.39 19.7

100.......................... 7.88 0 �1.39 21.6

120.......................... 6.93 0 �4 17.8

140.......................... 5.14 0 �6.13 43.3

160.......................... 2.74 0 �7.52 8.6

Notes.—Here we present an approximate measure of the amplitude difference
between the quadrupole and octopole waveforms. We concentrate only on the first
burst of radiation, andwe normalize the difference to themaximumof the first peak
of the quadrupole waveform. The difference is presented as a function of the ob-
server location, which is always at a fixed radial distance of robs ¼ 8 kpc, but ro-
tated about the ŷ-axis on the x̂-ẑ plane (� is here the usual Euler polar angle).

4 Naive intuition might suggest that the change in the S/N should scale like
the square root of the number of bursts, but this is not necessarily correct. This is
because these bursts start at frequencies very close to the limit of LISA’s sensitivity
band (10�5 Hz). As the orbits burst, precession somewhat increases the frequency
of the waveform, forcing different bursts to contribute different amounts to the S/N.

Fig. 7.—Absolute magnitude of the difference between the quadrupole and
octopole Schwarzschild (top) and Kerr (bottom) waveforms. The difference is nor-
malized to the maximum value of the first peak of the quadrupole waveform.
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(pericenter passage), a quadrupolar waveform calculation using
Newtonian dynamics might be sufficient. However, if one wants
to estimate parameters associated with the central MBH, then
multiple bursts might be necessary to associate the events to a sin-
gle SCO trajectory. In terms of data analysis, for a detection search
it is simpler to look for a single burst using techniques such as
excess power and wavelet decompositions (e.g., see Anderson
et al. 2001; Klimenko et al. 2004; Stuver & Finn 2006; Camarda
& Ortolan 2006). For estimating MBH parameters, the results of
this paper suggest that multiple bursts might have to be con-
nected. For this to occur, a single template may be used, but as
our results indicate, the template will need to incorporate the ef-
fects of general relativity.5

At this juncture, we should comment on some of the caveats in
the conclusions derived from the analysis presented here. First, in
this paper we have primarily concentrated on the question of char-
acterizing the gravitational waves through the study of the S/N
and overlap. In this study, however, we have not maximized these
data analysis measures with respect to (intrinsic or extrinsic) or-
bital parameters. Although it might be possible to improve the
S/N and overlap via parameter maximization, our study suggests
that the introduction of relativistic effects, such as precession, lead
to a clear imprint on the waveform that might be difficult to mimic
with a purely Newtonian waveform irrespective of its parameters.
Second, in this paper we have only touched the iceberg of the sig-
nal characterization and parameter estimation problem.A possible
route to study this problem is through a numerical Fisher analysis,
with the complications derived from the fact that the waveforms
are known only numerically. Furthermore, increasing the com-
plexity of the waveform will also increase the computational cost
of these studies and, thus, it might be interesting to investigate
whether it is possible or advantageous to search for individual
bursts with similar frequency and identify them as belonging to
the same physical system. These issues are beyond the scope of
this paper, but they should be addressed in future investigations.

Setting these caveats momentarily aside, let us conclude with
some discussion of the extreme relativistic case introduced ear-
lier. As we have seen, relativistic corrections can introduce strong
modifications to EMRB waveforms, which depend on how rela-
tivistic the EMRB event is and, in particular, on the pericenter ve-
locity. The corrections are particularly strong for the class of
EMRBs that inhabit the boundary between EMRBs and EMRIs,
defined by the Tcut ¼ 3 ; 104 s value, corresponding to the period
between apocenter passages. An example of such an event is the
extreme orbit discussed in x 4, whose waveform is shown in Fig-
ure 8. Observe that a simplistic Newtonian description misses the
rich structure, in which the SCOwhirls twice about the black hole
before zooming out to apocenter again. This behavior is missed
entirelywhenwe evolve the orbit with theNewtonian equations of
motion, even though the same initial conditions were used. Even
though in the previous cases aNewtonianwaveformmight be able
to extract relativistic events by adjusting intrinsic parameters, such
is definitely not the case for the highly relativistic event of Fig-
ure 8, since no choice of parameters in the Newtonian waveform
can reproduce its multiple-peak structure.

Due to their whirling behavior, the extreme orbit waveform
resembles the zoom-whirl events often mentioned in the EMRI
literature (Hughes 2001a, 2001b; Glampedakis & Kennefick

2002). However, the event is still an EMRB and not an EMRI be-
cause the period between apocenter passages is too long. For our
galactic model, we find the probability of a small region of phase
space around this orbit to be rather high, 10%. If this EMRB is
detected with sufficiently high S/N, it seems plausible that a pa-
rameter estimation analysis would allow for a determination of
the background parameters, such as the black hole spin. Barack
& Cutler (2004b) have already investigated LISA’s ability to mea-
sure MBH properties using approximate EMRI signals. They
found that, depending on the actual orbital parameters, it will be
possible to measure the MBH spin with fractional errors of 10�3

to 10�5. This high-precisionmeasurement is the result of observ-
ing up to �106 complete orbits. Conversely, it is very unlikely
that EMRBmeasurements will be able to match the measurement
capabilities of EMRI signals, since only a few bursts will probably
be available. Whether accurate parameter extraction is possible
can only be determined with a more detailed data analysis inves-
tigation of EMRBs.

6. CONCLUSIONS

We have studied the effects of relativistic corrections on the
gravitational waves produced by EMRBs. These events originate
from long-period orbits of a SCO around aMBH, leading to large-
amplitude, quasi-periodic gravitational wave bursts. Using a more
accurate relativistic treatment of the phenomenon, we have im-
proved on the waveforms and trajectories relative to previous
work. The orbital trajectories were corrected by accounting for
the spacetime curvature of the system for Schwarzschild and Kerr
MBHs. The waveform generation was corrected by accounting
for the next-order term in themultipolar expansion of gravitational
radiation.
We found that relativistic corrections change the waveform

shape relative to its Newtonian counterpart. One of the most sig-
nificant changes was found to be an amplitude-modulated dephas-
ing, produced by the relativistic corrections to the orbital trajectory
and, in particular, by relativistic precessional effects. Other effects
included a change in the amplitude of the waveform, partially pro-
duced by the inclusion of higher order terms in the gravitational
wave generation scheme.
The magnitude of the relativistic corrections was found to be

directly proportional to the pericenter velocity of the orbit, as ex-
pected. Surprisingly, we estimated that at least 50% of the orbits
analyzed in Rubbo et al. (2006a, 2006b) acquire relativistic

5 A note of caution should be added here, since a detailed study of the max-
imization of the overlap with respect to orbital parameters in the Newtonian wave-
form has not yet been carried out. Indeed, it might be possible tomimic some of the
relativistic effects with Newtonian waveforms with varying parameters, but such
mimicking is most probably not possible for highly relativistic EMRBs.

Fig. 8.—Plot of the quadrupole Newtonian (solid line) and Schwarzschild
(dashed line) gravitational waveform as a function of time. [See the electronic
edition of the Journal for a color version of this figure.]
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velocities and, thus, nonnegligible relativistic corrections. We
investigated these corrections in detail by choosing a test orbit
that is representative of the kind that dominated the event rate
calculation of Rubbo et al. (2006a). We also studied a limiting
case of a highly relativistic EMRB and found that it whirls more
than once around the MBH before zooming back to apocenter
and becoming silent again.

We have also discussed the possible consequences that rela-
tivistic effects might have on the detection and parameter esti-
mation of gravitational waves from EMRBs by LISA, namely, a
change in the S/N and loss of overlap. These changes are mainly
due to the relativistic treatment of the equations of motion, while
a quadrupolar wave generation formalism seems to suffice. This
finding is relevant particularly to match filtering searches, where
a Newtonian treatment of the orbit might lead to a deterioration
of confidence limits. Furthermore, our study suggests that, given
an EMRB gravitational wave detection, it might be plausible to
extract or bound the spin of the central potential with a template
that takes into account theKerr character of theMBH.Other astro-
physical consequences include a possible increase in the event rate,
which implies that the rates of Rubbo et al. (2006a, 2006b) and
Hopman et al. (2006) might be lower limits, although these esti-
mates are still dominated by uncertainties in the astrophysical
modeling for the host galaxy.

In addition to the astrophysical modeling, future research should
tackle the details of the EMRB data analysis and signal extraction
issues put forward above. Based on the results of this paper, one
may explore the possibility of testing alternative theories of gravity
with EMRBs by performingmatched filtering with templates from
alternative theories (Will 1998; Scharre & Will 2002; Will &

Yunes 2004; Berti et al. 2005a, 2005b). Another possible avenue
for future research is the study of the confidence limits with which
the spin of the central MBH can be measured.

This research could then be used to examine whether EMRB
events can distinguish between a pure KerrMBH and some other
spacetime. Such studies have already began with the analyses of
Collins & Hughes (2004), Glampedakis & Babak (2006), and
Barausse et al. (2007), where comparisons between a Kerr and
other non-Kerr spacetimes were performed. Such studies could
be extended to the perturbed Kerr solution found by Yunes &
Gonzalez (2006), where the perturbation is parameterized by the
Weyl tensor of the external universe and could represent some
external accretion disk, planetary system, or some other compact
object. Ultimately, these investigations will decide whether EMRB
events are worth studying in further detail by future gravitational
wave observatories.
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