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ABSTRACT

We examine the impact of non-Gaussian photometry errors on photometric redshift performance. We find that
they greatly increase the scatter, but this can be mitigated to some extent by incorporating the correct noise model
into the photometric redshift estimation process. However, the remaining scatter is still equivalent to that of a
much shallower survey with Gaussian photometry errors. We also estimate the impact of non-Gaussian errors
on the spectroscopic sample size required to verify the photometric redshift rms scatter to a given precision.
Even with Gaussianphotometry errors, photometric redshift errors are sufficiently non-Gaussian to require an
order of magnitude larger sample than simple Gaussian statistics would indicate. The requirements increase from
this baseline if non-Gaussian photometry errors are included. Again the impact can be mitigated by incorporating
the correct noise model, but only to the equivalent of a survey with much larger Gaussian photometry errors.
However, these requirements may well be overestimates because they are based on a need to know the rms,
which is particularly sensitive to tails. Other parameterizations of the distribution may require smaller samples.
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1. INTRODUCTION

Photometric redshifts (Connolly et al. 1995; Hogg et al.
1998; Benı´tez 2000) are of increasing importance in obser-
vational tests of cosmology. Predicting photometric redshift
performance has therefore become an important part of plan-
ning large optical surveys. There are two distinct aspects of
performance to consider. First, there are straightforward goals
of accuracy and precision. Second, to control systematic errors
in the downstream science, one must be able toknow, in some
cases rather stringently, the accuracy and precision of the pho-
tometric redshifts in the actual survey (Ma et al. 2006; Huterer
et al. 2006). Knowing the actual photometric redshift precision
can be more important than maximizing the precision. For ex-
ample, cosmic shear tomography calls for relatively wide red-
shift bins ( ). Leakage between bins, to the extent thatdz ∼ 0.2
it is known, can be precisely incorporated into comparisons
between models and data. This by itself is not very demanding
in terms of photometric redshift precision. However, in a large
survey with very small statistical errors, the leakage must be
known very precisely to avoid nontrivial systematic errors. Ma
et al. (2006) estimate that for cosmic shear tomography with
next-generation surveys, the bias and rms scatter in each red-
shift bin must be known to∼0.003 to avoid degrading the shot-
noise-limited constraints on dark energy.

To first order, photometric redshift performance depends on
filter set, signal-to-noise ratio (S/N), and the desired range of
redshifts and galaxy types. Here we wish to call attention to
an often overlooked aspect: photometry errors. Photometric
redshift simulations and real-life implementations typically as-
sume Gaussian photometry errors. Real data are more com-
plicated. As one anecdote, Cameron & Driver (2007) note that
in one catalog of 42 galaxies with both photometric and spec-
troscopic redshifts, there were six outliers, all of which had
questionable photometry due to saturation, neighbors, or mul-
tiple nuclei. In this Letter we show that knowing the true dis-
tribution of errors is important for optimizing photometric red-
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shift precision. We also discuss how that in turn affects the
size of the spectroscopic sample required to characterize the
photometric redshift errors in a survey.

2. METHODS

We conduct four sets of simulations built around the follow-
ing basic setup. We use the Bayesian Photometric Redshift
(BPZ; Benı´tez 2000) code, which uses a set of template galaxy
spectral energy distributions (SEDs) and a set of priors to help
break degeneracies in color space. We chose the six SED tem-
plates and the HDF-N prior detailed in Benı´tez (2000). BPZ
is representative of one of two types of methods in the pho-
tometric redshift community. We discuss possible impacts on
the other type, training-set methods, in § 5. The choice of filter
set is not important for this demonstration. We use the same
filter set (F300W, F450W, F606W, F814W,J, H, K) used for
the Hubble Deep Field–North (HDF-N) photometric redshifts
discussed in Hogg et al. (1998), Benı´tez (2000), and Ferna´ndez-
Soto et al. (1999, 2001).

Each simulation generates a synthetic catalog of 6000 gal-
axies evenly spread throughout the F814W magnitude range
20–26. This and other aspects of the simulations are not re-
alistic, but are adopted to facilitate analysis by covering pa-
rameter space evenly. The results presented here therefore do
not apply quantitatively to any real survey, but they demon-
strate the issues. The simulator uses each galaxy’s magnitude
to choose a random type and redshift following the distributions
described by the priors. The functional form of the priors is
(adapting Benı´tez 2000 eqs. [22]–[24])

p(tFm) p f exp [�k (m � 20)],t t

atz
atp(zFt, m) ∝ z exp � ,[ ]{ }z � k (m � 20)0t mt

wheret is the type, is the fraction of bright galaxies consistingft

of that type, describes the type mix evolution with magnitude,kt
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TABLE 1
Simulation Parameters

Input Noise
Parameters

Name j (%) A B dzrms

SIM1 . . . . . . . . . . . 5 0 … 0.026
SIM2 . . . . . . . . . . . 10 0 … 0.070
SIM3 . . . . . . . . . . . 5 0.1 (0a) 0.15 0.092
SIM4 . . . . . . . . . . . 5 0.1 0.15 0.072
SDSS-like. . . . . . 5 0.1 0.06 0.031

a In SIM3, the input noise was purposely modeled
incorrectly, with .A p 0

Fig. 1.—Photometry error distributions. SIM1, 5% Gaussian (solid curve);
SIM2, 10% Gaussian (short-dashed curve); SIM3 and SIM4, 5% Gaussian
with exponential tails (long-dashed curve). [See the electronic edition of the
Journal for a color version of this figure.]

Fig. 2.—Distributions of . Colors and line types are as in Fig. 1, with thedz
addition of SIM4 (dot-dashed curve), which uses the non-Gaussian noise model
in the photometric redshift estimation. [See the electronic edition of the Journal
for a color version of this figure.]

parameterizes the high-redshift cutoff for that type, and thea t

denominator inside the square brackets corresponds roughly to
the median redshift for that type as a function of magnitude.
The values of the parameters are given in Table 1 of Benı´tez
(2000), except that the values of for ellipticals and spiralskt

were inadvertently switched in that table (Margoniner et al.
2007). As in Benı´tez (2000), for this purpose spirals are con-
sidered a single type ( ), and their numbers are evenlyt p 2
split between the Sbc and Scd SEDs. Similarly, galaxies chosen
to be “irregular” ( ) are randomly assigned (with equalt p 3
probability) the Im, SB2, or SB3 SED.

Having assigned a redshift and SED template, the galaxy is
then assigned “observed” fluxes in the seven filters by adding
noise (the character of which varies with the simulation) to the
synthetic observer-frame fluxes of that template at that redshift:

f p f � df,obs,i templ,i

wherei indexes the filters. An unrealistic aspect of the noise
in all simulations is that it is a fixed percentage of the model
flux. That is, every galaxy is observed at the same S/N, re-
gardless of magnitude, redshift, or filter. This is another analysis
convenience. The effect of varying S/N was explored in one
specific case by Margoniner & Wittman (2007), and will have
to be customized to each survey.

We then run the catalogs through BPZ, with the HDF-N
prior turned on, and analyze the performance in terms of

, specifically the bias and the¯dz { (z � z )/(1 � z ) dzphot spec spec

scatter .dz rms

3. REALIZATIONS

As baselines, we do two simulations with Gaussian noise:
SIM1 with 5% noise (S/Np 20) and SIM2 with 10% noise
(S/Np 10). Table 1 lists input parameters and summary output
statistics for the different simulation sets. These photometry
error distributions are shown in Figure 1. The resulting dis-dz
tributions are shown in Figure 2. In both cases, the bias is small
(0.003 or less in absolute value) and not inconsistent with zero.
The scatter depends strongly on S/N: for S/Ndz p 0.026rms

of 20, increasing to 0.070 for S/N of 10. We also did a run
with S/N p 100, not shown in the figures: . Thisdz p 0.004rms

is extremely tight because the quoted S/N is achieved ineach
band foreach galaxy.

Next, we add non-Gaussian tails to the photometry error
distribution. We adopt a functional form

21 (df ) FdfF
p(df ) p exp � � A exp � ,[ ] ( ){ }2� 2j Bj 2p � AB

where is the flux error,j describes the width of the Gaussiandf
core, and the parametersA andB describe the tails. For a given
j, the fraction of galaxies in the tails is sensitive to changes
in the productAB but relatively insensitive to changes inA
and B as long as the product is held constant. There is little
published data on realistic values ofA and B. Margoniner &
Wittman (2007) briefly describe photometry simulations in
which synthetic galaxies are added to real images from the
Deep Lens Survey (DLS; Wittman et al. 2002). We roughly
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match the fraction of objects in that tail, but with two symmetric
tails and as in SIM1, by setting andj p 0.05 A p 0.1 B p

or 3 j. For this choice ofA and B, used in SIM3 and0.15
SIM4 and shown as the long-dashed curve in Figure 1, the
tails begin to dominate over the Gaussian core at 2.51 times
the rms of the Gaussian core, and 9.4% of the galaxies are “in”
the tails, compared to 1.2% falling outside 2.51j for a pure
Gaussian. The rms of the distribution is 0.103, very close to
that of SIM2.

As a comparison, the photometry error distribution for
bright, unresolved objects in the Sloan Digital Sky Survey
(SDSS) is published in Figure 3 of Ivezic´ et al. (2003), who
state that 0.9% of objects lie outside of�3 j (where j p

), versus 0.3% for a pure Gaussian. This observation, and0.02
the figure, are reasonably approximated by andA p 0.1

or 1.2 j. These tails are much smaller than usedB p 0.0235
in SIM3 and SIM4, which have 7.3% of their galaxies outside
�3 j. However, the available SDSS data are forbright (g !

) point sources. Photometry is notably more difficult for20.5
extended sources and for faint sources. In the DLS simulations,
A is consistent with zero for bright ( ) galaxies, and20 ! R ! 22
grows steadily with magnitude. Of course, most of the galaxies
in a deep survey are at the faint end. Therefore, while noting
the near-Gaussianity of the SDSS bright point-source photom-
etry, we believe that heavier tails are currently more appropriate
for faint galaxies in deep ground-based surveys.

We attribute the Gaussian cores of these distributions to pho-
ton statistics, which is the nominal error reported by most pho-
tometry packages, and the tails to other effects such as crowd-
ing (photometry biased by the presence of neighboring
galaxies). For space-based data, crowding is less important, but
there may be different sources of non-Gaussianity, as Figure
10 of Benı´tez et al. (2004) certainly appears to be non-Gaussian.
The tails in this Letter are meant to emulate ground-based
surveys as described above. We quantify their impact by es-
timating redshifts in SIM3 using the nominal Gaussian pho-
tometry error as input to BPZ. Averaged over 100 realizations,

remained small (0.0038), but increased to 0.092. Thed̄z dz rms

distribution is shown as the long-dashed curve in Figure 2.
Clearly, these tails are very harmful. Adding them to the

S/N p 20 distribution more than doubled . In fact,dou-dz rms

bling the Gaussian photometry noise had less impact on
than did adding these tails. Surveys will have to controldz rms

the tails of their photometry error distributions if they are to
reach the photometric redshift performance expected based on
their filter set and S/N. Modern surveys do recognize this and
work to reduce the tails, but tails will always be present at
some level. Legacy surveys may have non-Gaussian errors fro-
zen into their data, and new surveys will find it expensive to
eliminate all non-Gaussian sources of error. Therefore, we in-
vestigate the extent to which knowledge of these errors can
render them less damaging to photometric redshifts.

4. LIVING WITH NON-GAUSSIAN ERRORS

Accounting for these errors is straightforward. In the BPZ
code, the probability of observing colorsC given a model SED
type T and redshiftz, , is simply a Gaussian of widthp(CFT, z)
set by the nominal photometry errors for that galaxy. In SIM4,
we use the same input photometry as in SIM3 but replace that
noise model with the full heavy-tailed distribution used to the
generate the catalog. The resulting distribution is shown indz
Figure 2 as the dot-dashed curve. The outliers in whichdz
appeared in SIM3 have now largely disappeared, and isdz rms

down to 0.072. This is comparable to in SIM2, whichdz rms

had twice the simulated sky noise, but no tails.
The scatter in increases to 0.082 if one uses the unmodifieddz

BPZ code assuming Gaussian errors, but with an rms of 0.1
instead of 0.05, to roughly approximate the wider distribution
of photometry errors. As another comparison case for incorrect
noise models, we estimated redshifts from a SIM2 realization
using the SIM1 noise model. In this case, changed bydz rms

only 0.003, which was not quite significant given the sample
size. Thus, it appears that if the photometry errors are Gaussian,
knowing the width of that Gaussian is not very critical. We
see from Figure 2 that it is the 1 in∼500 outlier that is re-
sponsible for the poor performance of SIM3. SIM2 lacks ex-
treme outliers, so qualitatively, its better performance makes
sense despite its broader core. Yet this degree of insensitivity
to the Gaussian width is somewhat surprising.

For comparison, we perform a version of SIM4 in which
the tails are much less prominent, as in the SDSS bright point-
source photometry: , , and (1.2j).j p 0.05 A p 0.1 B p 0.06
We find that , with the noise model affecting onlydz p 0.031rms

the fourth decimal place. The photometry tails are apparently
small enough that including them in the noise model is not
very helpful, but overall performance is still significantly worse
than with no tails at all. (SIM1 had , while thedz p 0.026rms

variation from realization to realization is∼0.001 and these
numbers are quoted after averaging over 100 realizations.) This
indicates that even small photometry tails can have a significant
impact on photometric redshift performance.

5. DISCUSSION

It is not surprising that tails in the photometry error distri-
bution can cause outliers in the distribution. However, adz
number of points are worth remarking:

1. Adding heavy tails (comprising≤10% of the galaxies)
caused more increase in than diddoubling the Gaussiandz rms

photometry error. In other words, the photometric redshift per-
formance of a survey with large tails could be worse than that
of a survey withhalf the S/N but with no tails. Surveys should
therefore pay close attention to reducing the tails of the color
errors. This is not the same as reducing the tails of the flux
errors. As an extreme example, if an equal fraction of light is
lost in all filters, the colors are unaffected.

2. Assuming that non-Gaussian errors can never be entirely
eliminated, the effect of the tails on photometric redshift per-
formance can be mitigated by including an accurate noise
model in the photometric redshift process. This will in turn
require extensive Monte Carlo simulations which include all
important sources of non-Gaussian errors, such as crowding
and complex galaxy morphology. In addition, the importance
of the tails is likely to vary with magnitude, seeing, etc.

3. No clear rule is evident for required accuracy of the
noise model. Photometric redshift precision was not signifi-
cantly affected when errors and model were both Gaussian but
the rms was wrong by a factor of 2. When errors were heavy-
tailed, approximating them with a Gaussian of the same rms
won back about half of the precision that could be won back
with the fully correct noise model.

4. Even very small tails have a measurable impact on
, but in this case the noise model made no measurabledz rms

difference.

The tails also have a disproportionate impact on the problem
of knowing precisely for each redshift bin, whereas pre-dz rms
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cision on did not suffer substantially. If the distributiond̄z dz
is Gaussian, the spectroscopic sample size required to calibrate

to a desired accuracyjcal is ∼ (this of course2 2dz (dz ) /2jrms rms

assumes that the spectroscopic sample is representative of the
photometric sample). For and a class of sourcesj p 0.003cal

with as in SIM1, only∼40 galaxies per redshiftdz p 0.026rms

bin would be required. However, bootstrap resampling of SIM1
shows that 7 times more galaxies are required to knowdz rms

to the same accuracy, due to its non-Gaussian tails (which stem
from the properties of galaxies in color space, not from the
photometry). For SIM2, the factor is 13, presumably because
the greater noise in SIM2, although still Gaussian, allows more
near-degeneracies in color space to come into play. For SIM3
with its heavy photometry tails, the factor is∼50. However,
this can be much reduced simply by incorporating the correct
noise model into the photometric redshift estimation. SIM4
requires “only” ∼25 times as many galaxies as the Gaussian
prediction would suggest, and the Gaussian prediction is itself
∼2 times smaller than for SIM4, because of the smaller .dz rms

Of course, it would be preferable to reduce non-Gaussian tails
in the underlying photometry as much as possible, as dramat-
ically illustrated by the large remaining differences between
SIM4 and either SIM1 or the simulation with SDSS-like tails.

We caution that this procedure may substantially overesti-
mate spectroscopic sample requirements. They are based on
the Gaussian model of photometric redshift errors employed
by Ma et al. (2006), who derived a prescription for precision
of our knowledge of . But the rms of a distribution isdz rms

driven by its tails, so that the tails seem to be all-important
here. If the photometric redshift error model used in the cos-
mological parameter estimation were modeled differently, the
tails could assume a more proportional influence, and fewer
spectroscopic redshifts would be required to characterize their
effect. Mandelbaum et al. (2007) discuss some related aspects
in the context of galaxy-galaxy lensing.

The applicability of this work to training-set methods de-
pends on the details of the method. An advantage of training-
set methods is that they may “learn” the correct noise model
automatically, and therefore should not require any modifica-
tion to reach optimum performance (which is presumably still
much reduced compared to the no-tails case). But for this to
happen, the training set must be sufficiently large to encompass
the non-Gaussian features of the photometry. This may require
a rather larger training set than would otherwise be required,
and it also requires a training set that is not cleaner than the
full data set. However, it may be possible to build a hybrid
approach in which detailed knowledge of photometry error
distributions from large sets of Monte Carlos is combined with
a modest spectroscopic sample to train the algorithm.

Non-Gaussian photometry errors may not be a substantial
source of catastrophic outliers in current surveys. The SIM3/
SIM4 tails may be unrealistically heavy, as there is scant pub-
lished data on the size of the non-Gaussian tails for faint galaxy
photometry. Furthermore, catastrophic outliers exist even with
purely Gaussian photometry errors, due to color-space degen-
eracies. However, real-world experience such as that of Cam-
eron & Driver (2007) and, in a different context, Bolton et al.
(2004), suggests that non-Gaussian errors are often not neg-
ligible. Color-space degeneracies are usuallynear-degenera-
cies, and galaxies become much more likely to scatter across
a near-degeneracy if the photometry has non-Gaussian tails.

Our example started from an unrealistically good baseline
of S/N p 20 in each of seven filters and , so thedz p 0.026rms

effect of the tails was particularly dramatic. Surveys starting
from a more realistic performance baseline will not see such
a large fractional increase in scatter, but may still see the effect
of tails in the overall error budget. Limiting the tails of the
photometry error distribution and using an accurate error model
will reduce photometric redshift scatter and greatly reduce the
size of the spectroscopic sample required to calibrate the scatter.
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Ivezić, Ž., et al. 2003, Mem. Soc. Astron. Italiana, 74, 978
Ma, Z., Hu, W., & Huterer, D. 2006, ApJ, 636, 21
Mandelbaum, R., et al. 2007, MNRAS, submitted (arXiv:0709.1692)
Margoniner, V. E., & Wittman, D. M. 2007, ApJ, submitted (arXiv:0707.2403)
Wittman, D. M., et al. 2002, Proc. SPIE, 4836, 73


