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ABSTRACT

A rare coincidence of scales in standard particle physics is needed to explain whyL or the negative pressure
of cosmological dark energy (DE) coincides with the positive pressure of random motion of dark matter (DM)P0

in bright galaxies. Recently Zlosnik and coworkers proposed to modify the Einstein curvature by adding nonlinear
pressure from a medium flowing with a four-velocity vector field . We propose to check whether a smoothmU
extension of general relativity with a simple kinetic Lagrangian of can be constructed, and whether the pressuremU
can bend spacetime sufficiently to replace the roles of DE, cold DM, and heavy neutrinos in explaining anomalous
accelerations at all scales. As a specific proof of concept we find a vector-for-L model (VL model) and its
variants. With essentiallyno free parameters, these appear broadly consistent with the solar system, gravitational
potentials in dwarf spiral galaxies and the Bullet Cluster of galaxies, the early universe with inflation, structure
formation, and big bang nucleosynthesis, and late acceleration with a 1 : 3 ratio of DM : DE.

Subject headings: cosmology: theory — dark matter — gravitation

The incompleteness of standard physics and Einstein’s gen-
eral relativity (GR) is evident from the smallness of the cos-
mological constant L or the vacuum energy density

, compared to the expected quantum2 4Lc /8pG ∼ (0.001 eV)
pressure at scales of the Planck mass5 4 3 28 4c m /� ∼ (10 eV)P

. Current speculations about the new physics of1/2m p (�c/G)P

L are as free as analogous speculations about thePioneer anom-
aly (Turyshev et al. 2006); both represent acceleration dis-
crepancies of order∼7a0, driven by unidentified (likely unre-
lated) pressures∼72P0, where s�2 and˚a { 1.2 A P {0 0

are scales of acceleration and pressure. On intermediate2a /8pG0

scales, galaxy clusters and spiral galaxies often reveal a dis-
crepant acceleration of order (0.1–2)a0. GR, if sourced pri-
marily by baryons and photons with negligible mass density
of neutrinos and other particles in the standard model or var-
iations, appears to be an adequate and beautiful theory in the
inner solar system, but it appears increasingly inadequate in
accounting for astronomical observations as we move up in
scale from 100 AU to 1 kpc to 1 Gpc. The universe made of
known material of positive pressure should show a decelerating
expansion as an open universe, but instead it is turning into
an accelerating one now, evidenced by much dimmer super-
novae detected at redshift unity. A standard remedy to restore
harmony with GR and fit successfully larger scale observations
(Spergel et al. 2007 and references therein) is to introduce a
“dark sector,” in which two exotic components dominate the
matter-energy budget of the universe at redshiftz with a split
of approximately: dark energy (DE)3Q : Q p 3 : (1� z)DE DM

as a negative-pressure and nearly homogeneous field described
by unknown physics, and cold dark matter (DM) as a colli-
sionless and pressureless fluid motivated by perhaps MSSM
(minimal supersymmetric extension of the standard model)
physics. However, anticipating several new particles from the
Large Hadron Collider, the success of this concordance model
still gives little clue to the physics governing the present

ratio of its constituents. This ratio is widely considered1 : 3
improbable, because standard particle physics expects a ratio

. Here we speculate whether the ratio could120 31 : 10 3 : (1� z)
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come from a coincidence of scales of s�2 with a˚a { 1.2 A0

cosmological baryon energy density .2 3r c ∼ 3.5# (1 � z) Pb 0

A deeper link of DM and DE.—It is curious that the distri-
bution of DM in dwarf galaxies is extremely ordered, some-
thing that the cuspyLCDM halos are still struggling to explain
even with maximum baryonic feedback (Gnedin & Zhao 2002).
For example, on galactic scales the Newtonian gravity of DM

and the Newtonian gravity of baryons2g p V /R � gDM c B

have a tight correlation:2g p GM /RB B

2 n n n(g /g ) � g ≈ a , g { g � g , (1)B 0 DM B

where (Zhao & Famaey 2006). This rule holds approx-n ≥ 1
imately at all radiiR of all spiral galaxies of baryonic mass

and circular velocity within the uncertainty of theM (R) V (R)B c

stellar mass-to-light ratio and object distance. For low surface
brightness galaxies or at the very outer edge of bright spirals,
the gravity is weaker than , and our empirical formulag a0

predicts , which2 2 2 2 4g /g p (V /R) /(GM /R ) p V /(GM ) ∼ aB c B c B 0

is essentially the normalization of the (baryonic) Tully-Fisher
relation (McGaugh 2005). Bulges and the central parts of el-
liptical galaxies are dominated by baryons inside a transition
radius where the baryons and DM contribute about equally to
the rotation curve; equation (1) predicts . Weg p g p a /2DM B 0

can define a DM pressure at the transitionP { a (a /8pG)0 0 0

by multiplying the local gravity with the DM(g � g ) p aDM B 0

column density above this radius . Thisg /4pG p a /8pGDM 0

scale appears on larger scales too. All X-ray clusters haveP0

gas pressure and DM random energy density comparable to
. The amplitude of the scale appears in the cusp of�1P a r0 0

CDM halos too (Xu et al. 2007; Kaplinghat & Turner 2002).
These can be understood since the last scattering shell at

has a thickness Mpc and contains typicalz p 1000 2L ∼ 10
potential wells of depth due to inflation,2 �1 2c /N ∼ (1000 km s )
where ; hence the typical internal acceleration is5N { 10

. Also, a DM sphere of radius 5 Mpc becoming2c /N/L ∼ 0.2a0

nonlinear now would fall in with an acceleration∼200#
. While correlations of baryons and DM can2H # 5 Mpc ∼ a0 0

generally be understood in a galaxy formation theory where
DM and baryons interact, the unlimited freedom of dark par-
ticles means a good spread in DM concentration, and hence
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the correlation would have substantial history-dependent var-
iance from galaxies to galaxies and radii to radii. For example,
DM is unexpected in tidal dwarf galaxies, but is observed
because of its acceleration (Gentile et al. 2007). The tightnessa0

of such hidden regulations on DM at all radii for all galaxies
is anomalous, at least challenging in the standard framework.

It is even more curious that DM in various systems and DE
are tuned toa common scale , hence requiring a coincidenceP0

in two dark sectors. These empirical facts are unlikely random
coincidences of the fundamental parameters of the dark sectors.
Since all these anomalies are based on the gravitational ac-
celeration of ordinary matter in GR, one wonders whether the
dark sectors are not just a sign of an overlooked possible field
in the gravitational sector.

Continuing along the lines of Zhao (2007), here we propose
to investigate whether the roles of both DM and DE could be
replaced by a vector field in a modified metric theory. This
follows from two long lines of investigations pursued by Kos-
telecky & Samuel (1989), Jacobson & Mattingly (2001), Car-
roll & Lim (2004), and others on the consequences of sym-
metry-breaking in string theory, and by Milgrom (1983),
Bekenstein (2004), Sanders (2005), Skordis et al. (2006), Zhao
& Famaey (2006), and others driven by astronomical needs.
These two independent lines were first merged by the pio-
neering work of Zlosnik et al. (2007).The existence of an
explicit Lagrangian satisfying the main constraints for the solar
system, galaxy rotation curves, and cosmological concordance
ratio remains to be demonstrated.

Leading up to the vector field.—In Einstein’s theory of gravity,
the slightly bent metrics for a galaxy in a uniformly expanding
background set by the flat FRW cosmology is given by

2F 2W
m n 2 2 2g dx dx p � 1 � d(ct) � 1 � a(t) dl , (2)mn ( ) ( )2 2c c

where is the Euclidian distance in Car-2 2 2 2dl p dx � dy � dz
tesian coordinates. In the collapsed region of galaxies, the metric
is quasi-static with the potential dueF(t, x, y, z) p W(t, x, y, z)
to DM plus baryons, which all follow the geodesics of .gmn

Modified gravity theories are often inspired to preserve the
weak equivalence principle; i.e., particles or small objects con-
tinue on the geodesics of the above physical metric indepen-
dently of their chemical composition. Unlike in Einstein’s the-
ory, the strong equivalence principle and CPT can be violated
by, e.g., creating a preferred frame using a vector field. The
Einstein-Aether theory of Jacobson & Mattingly (2001) is such
a simple construction, where a unit vector field is designedmU
to couple only to the metric but not to matter directly. It has
a kinetic Lagrangian with linear superposition of quadratic co-
variant derivatives , where is constrained2 2 2 m∇(c U)∇(c U) c U
to be a timelike four-momentum vector per unit mass by
� . The norm condition means the vector fieldm ng U U p 1mn

introduces up to 3 new degrees of freedom; e.g., a perturbation
in the FRW metric (eq. [2]) has 2 2 n 2c U { g c U ≈ (c � F,m mn

, containing a four-vector made of an electric-A /c, A /c, A /c)x y z

like potential F and three new magnetic-like potentials. But
for spin-0 mode perturbations with a wavenumber vectork, we
can approximate , which contains just2U � (1, 0)≈ (F/c , kV/c)m

one degree of freedom, i.e., the flow potential . WeV(t, x, y, z)
expect that an initial fluctuation of 2 �1cFkFV ∼ FFF ∼ c N {

can be sourced by a standard inflaton; the vector field�5 210 c
tracks the spectrum of metric perturbation (Lim 2005).

Most recently, Zlosnik et al. (2007) suggested replacing the

linear with a nonlinear kinetic Lagrangianl∇U∇U
to extend Jacobson’s framework. They showed thatF(l∇U∇U)

this class of nonlinear models is promising for producing the
DE effect in cosmology and the DM-like effect in the weak-
field limit. Here we continue along the lines of the pioneering
authors, but aim for a single Lagrangian with parameters in a
good match with basic observations of a range of scales.

A simple Lagrangian for L.—The difficulty of writing down
a specific Lagrangian is that there are infinite ways to form
pressure-like terms quadratic to covariant derivatives of the
vector field. Simplicity is the guide when choosing gravity since
GR plusLCDM largely works. Let us start with forming two
pressure terms for any four-momentum-like field with amA
positive norm by2 a b 1/2mc { (�g A A )ab

a 2 a1 ∇ A ∇ A ∇ Aa k k a8pGJ(A) { , 8pGK(A) { , (3)( )3 m m m

where the right-hand sides are covariant with dimension of
acceleration squared, and or stands for the co-a∇ p A ∇ ∇k a a

variant derivative with spacetime coordinates along the direc-
tion of the vectorA or the dummy indexa, respectively. From
these we can generate two simpler pressure termsK andJ of
the unit vector field byaU

2F∇FF
J { J(U) ∼ 0, K { K(U) ∼ in galaxies,

8pG
2 23c H

J { J(U) ∼ , K { K(U) ∼ 0 in a f lat universe,
8pG

(4)

where the approximations hold for with negligible spatialaU
components and a nearly flat metric (eq. [2]). Note theJ and
K are constructed so that we can control timelike Hubble ex-
pansion and spacelike galaxy dynamicsseparately.2 The K-
term, with a characteristic pressure scale in gal-2a /8pG p P0 0

axies, is the key for our model. TheJ-term, meaning critical
density, has a characteristic scale : at the epoch2 10N P ∼ 10 P0 0

of recombination when baryons, neutrinos, and pho-z p 1000
tons contribute∼ , respectively, to the term9(8, 3, 5)# 10 P0

, the epochs of equality and recombination2 2J p 3c H /8pG
nearly coincide.

Now we are ready to construct our total actionS p
in physical coordinates, where the Langrangian4 1/2d xF � gF L∫

density

R
n mL p � L � L � L � (U U � 1)L , (5)m J K n16pG

where R is the Ricci scalar, and is the ordinary matterLm

Lagrangian. For the vector field part, is the LagrangianmL
multiplier for the unit norm and we propose the new Lagrangian

J K
FJF FKF� �L p l dJ, L p l dK, (6)( ) ( )J � N K � nP P0 0 � 0

2 A full study should include spacelike terms 8pGK {12

and2ab 2 g 2 2 a 2 ab 2 g 22g (c ∇ U )(c ∇ U ) � (c ∇ U ) 8pGK { 2g (c ∇ U )(c ∇ U ) �3a b g a 13 a b g

that change the details of structure formation, PPN param-2 b 2 a2(c ∇ U )(c ∇ U )a b

eters, and gravitational waves, which are beyond our goal here.
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where the nonnegative continuous functionsl (x) pi

, where the subscript�n[0, l(x) � l(N)] , l(x) p (1 � x/i)max

i p eithern or N. Incidentally, gives GR. The cutoffsn p 0
(e.g., with ) guarantee a bounded Hamiltonian withn p �1
kinetic terms and always bounded between� [e.g.,2L L N PK J 0

in a lab near Earth , so ]. The13 22 2K ∼ (10 –10 )P 1 N P L p 00 0 K

condition at the tidal boundary is well behavedK p J p 0
too (see eqs. [44]–[48] of Famaey et al. 2007 on the Cauchy
problem). Note that �n1 � dL /dK 1 m { (1 � N/n) ∼K min

and .�15 �n �310 1� dL /dJ 1 m { (1 � N/N) ∼ 2J B

Taking variations of the action with respect to the metric and
the vector field, we can derive the modified Einstein’s equation
(EE) and the dynamical equation for the vector field. The ex-
pressions are generally tedious (A. Halle 2007, in preparation),
but the result simplifies in the perturbation- and matter-domi-
nated regime that is of interest to us. As anticipated in Lim
(2005) theij–cross term of the EE yields for allW � F p 0
our models, which means incidentally twice as much deflection
for light rays as in the Newtonian regime. As anticipated in
Dodelson & Liguori (2006), theti-term of the EE can be cast
into that of an unstable harmonic oscillator equation with a
negative string constant 2¨ ˙V � b HV � (1 � m )b H V p S(F,1 B 2

if , so we expect that tracksF. Thett-termẆ) (1 � m ) 1 0 HVB

of the EE takes the form

2 ˙ ˙8pGr p 3m H � 2� · [(1 � l )∇F] � L � Q(F, V, V ),B n 0

(7)

where we approximated as a constant�n1 � l (x) ∼ 2 p mN B

in the matter-dominated regime where and theQ-term2J ! N P0

is zero for static galaxies and a uniform FRW flat cosmology.
So thett-term of the EE reduces to the simple form

F∇FF24pGr p ∇ F � � · l ∇F in galaxies, (8)n ( )[ ]a0

¯8pGr L02p H � in matter-dominated FRW. (9)
3m 3mB B

Here the pressure from the vector field creates new sources for
the curvature. The term in the Poisson equa-∇[l (x)∇F]/4pGn

tion acts as if one were adding DM for quasi-static galaxies.
A cosmological constant in the Hubble equation is created by

02 2L c 2(nP )0 02p � l (x)d(P x ) ≈ . (10)� n 08pG (n � 1)(n � 2)�

For binary stars and the solar system, is24pGr � ∇ F ≈ 0
true because the gravity at distances 0.3–30 AU from a Sun-
like star is much greater than the maximum vector field gradient
strength , so ; in fact, 2Na dL /dK p 0 F∇FF ≈ GM /r ∼0 K ,

, and the typical anomalous acceleration is9 5(10 –10 )a0

, well below the current detection limit of�10Na m ∼ 10 a0 min 0

(Soreno & Jezter 2006). This might explain why most�410 a0

tests of non-GR effects around binary pulsars and black holes
and in the solar system yield negative results; Pluto at 40 AU
and thePioneer satellites at 100 AU might show interesting
effects. Extrapolating the analysis of Foster & Jacobson (2006),
we expect GR-like PPN (parameterized post-Newtonian) pa-
rameters and gravitational wave speeds in the inner solar
system.

Near the edges of galaxies, we recover the nonrelativistic
theory of Bekenstein & Milgrom (1984) with a function

F∇FF
m(x) { 1 � l (x) ∼ m � x, if x p K 1. (11)n min a0

Note that ; hence rotation curves are asymptoticallym(x) r x
flat except for a negligible correction . In the in-�15m ∼ 10min

termediate regime our function withx p 1 1� l (x) ∼n

for . Equation (1) argues that galaxy rotation0.55–0.6 n p 2–5
curves prefer a relatively sharper transition thanm(x) p

at (Famaey et al. 2007), where we canx/(1 � x) p 0.5 x p 1
identify . So our model should fit ob-g /(g � g ) p m(x)B DM B

served rotation curves.
For the Hubble expansion, the vector field creates a cos-

mological-constant-like term below the zero2L c /8pG ≈ 9P0 0

point of the energy density in the solar system because the zero
point of our Lagrangian (eq. [6]) is chosen at2N P ≤ K ! �0

. During matter domination, the contribution of matter�
and to the Hubble expansion (eq. [9]) is further28pGr L H0

scaled up because the effective gravitational constantG peff

, with GR being the special case.3nG/m p 2 G ≥ G n p 0B

Coming back to the original issue of the ratio of matter3 : 1
density to our cosmological constant, equation (9) predicts that

, which2 2 3¯(L c /8pGm ) : (r c /m ) ∼ (9P /m ) : [4(1 � z) P /m ]0 B b B 0 B 0 B

is close to the desired ratio. Adding neutrinos makes33 : (1� z)
the explanation slightly poorer. So the DE scale is traced back
to a separate coincidence of scale, i.e., the present baryon en-
ergy density , where contains a scale for the2r̄ c ∼ 4P P ab 0 0 0

anomalous accelerations on galactic scales. Our model predicts
that DE is due to a constant of vacuum, preset by the modi-
fication parametern of the gravity; gives GR.n p 0

In our model, the effective DM (the dog) follows the baryons
(the tail) throughout the universal expansion with a ratio3(1 � z)
set byn. To fit theLCDM-like expansion exactly, we note the
Hubble equation for a flat FRW cosmology with the vector field
and standard mix of baryons, neutrinos, and photonsQbh

2/0.02
≈ (Qnh

2/0.002)(0.07 eV/mn) ≈ Qphh
2/0.000025∼ 1 yields at the

present epoch

Q � Q � Q Lb n ph 0 LCDMp 1 � p Q . (12)m2m 3m HB B 0

The second equality fixes if we adopt�1 nm p 2 p 8–8.4B

km s�1 Mpc�1 and . TheLCDMa /c ≈ H /6 ≈ 12 Q p 0.25–0.30 0 m

first equality would predict an uncertain but very small neutrino
mass eV.m ∼ �0.3n

Big bang nucleosynthesis (BBN) also anchors any modifi-
cation to GR. In the radiation-dominated eraFJF p

, the dynamics are driven by2 2 23c H /8pG k N P0

28pGr ≈ 3H � L � L in radiation-dominated FRW,0 N

(13)

where for�2 2 2 2L c /8pG p � l (x)d(P N x ) p �N P /8∫0N N 0 0

is a finite negative number, much smaller than the ra-n p 3
diation pressure∼ . So the early universe is GR-3 2(z/1000) N P0

3 While Carroll & Lim (2004) found a scaling down ofG because they were
interested in stable spin-0 modes with for a restricted class(1 � m ) ! 0B

( ) of Jacobson’s models, Dodelson & Liguori (2006) argue thatc p 0 ( c4 1

an unstable growth of the vector field is helpful to structure growth in many
gravity theories.
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like, especially the Hubble parameter at BBN, insensitive to
the precise value of .2N P0

Note a more general version of our vector-for-L model has
a Lagrangian

1/N 1/NL � L p l K(Ul ) � l J(Ul ) � PV(l , l ), (14)K J K K J J 0 K J

with 4 vector degrees in and 1 scalar degree of freedom1/NUlJ

in . Our simple model is equivalent to the special case ofl /lK J

two nondynamical scalar fields and withl l 1/N ∼ 1/N rK J

, hence and (eq. [3]). The0 K p K(U) p K J p J(U) p J
potential is smooth with 1PV(l , l ) p [H(m � l �∫m0 K J min Kmin

, where2 2 �n �1/nl) � (N /n )H(l � l � 2 )]P dl P { (l �J n n

and is the Heaviside function ofy. A vector field2 21) n P H(y)0

with a mass scalem has a quantum2A ≈ (mc � mF, mcA)m

degeneracy pressure limit∼ . It is intriguing that our5 3 4(c /� )m
model suggests the existence of a zero-point vacuum energy

. And the (positive)2 4L c /8pG ∼ PV(1, 1)∼ 9P ∼ (0.001 eV)0 0 0

radiation pressure at the epoch of baryon-radiation equality
coincides with the cutoff energy density 2PV(0, 0)∼ �N P ∼0 0

, and the vacuum-to-cutoff energy density ratio4�(0.3 eV) ∼
coincides with the cosmic baryon-to-photon or2 �99/N ∼ 10

baryon-to-neutrino number ratio , due to a tiny�10h ∼ 3 # 10
asymmetry with antibaryons. Can theories such as quantum
gravity and inflation explainthese coincidences? Understanding
these might give clues to how the four-vector potential of pho-
tons decouples from the baryon current vector, and decouples
from our E&M-like vector field in spontaneous symmetrymA
breaking in string theory (Kostelecky & Samuel 1989; Carroll
& Shu 2006; Ferreira et al. 2007).

Massive neutrinos are optional for our model because the
term creates a massive-neutrino-like effect in cosmologyLJ

without affecting galaxy rotation curves. There are a few ways
to create the impression of a fluid of 2 eV neutrinos in clusters
of galaxies as well (Angus et al. 2007; Sanders 2005; Zlosnik
et al. 2007). For example, a general Lagrangian withN ∼ n
would have new dynamical freedoms and ,m { 1 � l 1 � lK J

which satisfy second-order differential equations in time in

galaxies, reminiscent of fluid equations for DM. Then the Be-
kenstein-Milgromm-function would acquire a history-depen-
dent nonlocal relativistic correction of order if thec/Na t ∼ 10

temporal variation (relaxation) timescalet of the scalar field
is comparable to the Hubble time. This dynamical correctionlK

is hard to simulate, but is most important at the tidal boundary
of (merging) systems where a condensate of the dynamical
freedoms and oscillates rapidly and could in principlel lK J

act as an extra DM source for explaining some outliers to the
Bekenstein-Milgrom theory, e.g., the merging Bullet Cluster
with its efficient lensing and high speed (Angus & McGaugh
2007). A dynamical field is desirable as an inflaton to seedlJ

perturbations (Kanno & Soda 2006).
In summary, we demonstrate as a proof of concept thatat

least one alternative Lagrangian for gravity (eqs. [5] and [14])
can be sketched out to resemble GR plusLCDM on large scales
and in the Hubble expansion, and to make an excellent fit to
the rotation curve data of dwarf galaxies. The keys are a zero-
point pressure scale at the edge of galaxies, and a universalP0

convergence source term below the2 a 2[(1 � m )/8pG](c ∇ U )B a

cutoff pressure , which is near the epoch of equality and2N P0

the last scattering. However, the CMB should be sensitive to
the modification parameter.4 It should be feasible to�nm { 2B

falsify the present model and variations by simultaneous fits
to supernova distances and the CMB.
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4 In the radiation-dominated era, the perturbed Poisson equation for radiation
is approximately , at very short wavelength (hence large216pGdr ≈ 2FkF F

), where . But after recombination, 2x ∼ FkFF/a k 1 F p W Q ∼ 2qFkF F ∝0

, resembling a dissipationless DM term to make the22(1� m )FkF F 4pGdrB DM

matter perturbation grow as .24pGdr ≈ (1 � q) FkF F
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