ADDENDUM: "HEATING IN THE ACCRETED NEUTRON STAR OCEAN: IMPLICATIONS FOR SUPERBURST IGNITION" (ApJ, 662, 1188 [2007])

SANJIB GUPTA, EDWARD F. BROWN, HENDRIK SCHATZ, PETER MÖLLER, AND KARL-LUDWIG KRATZ

For convenience in constructing numerical models, we here append Table A1, giving the data used to generate Figure 7. We give the value of the heat deposition, Q, for a given mass chain A as a function of the electron chemical potential μ_e for $\mu_e < 20$ MeV ($\rho Y_e \approx 6 \times 10^{10}$ g cm⁻³, where Y_e is the electron abundance). Note that μ_e does not include the electron rest mass. We calculate Q according to the approximate model described in § 3.3. Table A1 lists for each mass chain A (col. [1]) the charge number Z_i of the nucleus entering each transition (col. [2]), the charge number Z_f of the nucleus after all allowed captures have occurred (col. [3]), the electron chemical potential μ_e of the transition (col. [4]), and the net heat deposited per nucleon Q by these captures into the neutron star crust (col. [5]). Note that in many cases the first capture onto nucleus ${}^{A}Z_i$ is immediately followed by a second capture, which is why there are numerous entries with $Z_i - Z_f = 2$. For a multicomponent plasma, one should multiply the heat deposition Q of a particular transition by the mass fraction for that A.

Online material: machine-readable table

<i>A</i> (1)	<i>Z_i</i> (2)	Z _f (3)	(MeV) (4)	Q (keV) (5)
23	11	10	4.81	0.0
23	10	9	9.41	7.0
64	30	28	0.65	12.6
64	28	26	7.50	16.2
64	26	24	13.02	19.6
64	24	22	18.51	72.7
104	46	45	2.43	2.1
104	45	44	4.18	51.2
104	44	42	5.24	29.4
104	42	40	8.18	6.3
104	40	38	12.05	6.7
104	38	36	15.97	8.4
105	46	45	0.59	0.0
105	45	43	4.43	30.0
105	43	41	7.45	27.9
105	41	40	8.27	0.0
105	40	39	10.60	0.0
105	39	38	11.87	0.2
105	38	37	14.45	0.6
105	37	36	15.76	1.4

TABLE A1

Note.—Table A1 is published in its entirety in the electronic edition of the *Astrophysical Journal*. A portion is shown here for guidance regarding its form and content.