
AN IMPROVED SEMIANALYTICAL SPHERICAL COLLAPSE MODEL
FOR NONLINEAR DENSITY EVOLUTION

Douglas J. Shaw
1
and David F. Mota

2

Received 2007 May 17; accepted 2007 August 6

ABSTRACT

We derive a semianalytical extension of the spherical collapse model of structure formation that takes account of
the effects of deviations from spherical symmetry and shell crossing, which are important in the nonlinear regime.
Our model is designed so that it predicts a relation between the peculiar velocity and density contrast that agrees with
the results of N-body simulations in the region where such a comparison can sensibly be made. Prior to turnaround,
when the unmodified spherical collapse model is expected to be a good approximation, the predictions of the two
models coincide almost exactly. The effects of a late time dominating dark energy component are also taken into account.
The improved spherical collapsemodel is a useful toolwhen one requires a good approximation not just to the evolution of
the density contrast but also its trajectory. Moreover, the analytical fitting formulae presented is simple enough to be
used anywhere where the standard spherical collapse might be used but with the advantage that it includes a realistic
model of the effects of virialisation.
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1. INTRODUCTION

The spherical collapse model (SCM) developed by Gunn &
Gott (1972) is perhaps the simplest model for the evolution of
nonlinear structure, and yet it has been shown to be remarkably
successful when correctly interpreted. However, despite the SCM’s
many success, it is ultimately flawed since it predicts that any
overdensity of matter collapses to a singularity in a finite time. In
addition, making the assumption of spherical symmetry, while
simplifying, means abandoning the many interesting and im-
portant aspects of structure formation that result from deviations
from spherical symmetry. Indeed, these deviations play a crucial
role in ultimately halting the collapse of the overdensity and the
formation of virialized structures.

The usual approach to virialisation in the SCM is to put it in by
hand; the collapse is simply halted once the virial radius has been
reached. This procedure, within an EinsteinYde Sitter universe,
leads to the result that bound structures are formedwhen the non-
linear overdensity is about 178 or, equivalently, the linear over-
density is approximately 1.68.3 Despite the fact that these figures
are not too far away from what is actually observed in N-body
simulations, the ad hoc nature of this approach means the SCM
cannot be used to predict the precise manner in which the over-
density evolves; moreover, the SCM’s prediction for the peculiar
velocity becomes virtually useless shortly after turnaround.

Engineer et al. (2000) proposed a different and better motivated
way in which the SCM could be extended to include virialisation.
Their idea was to alter the standard SCM evolution equation for
the mean density contrast, �̄, in such a way that stable structures
would form. Their modified evolution equation was constructed
by adding a Taylor series in 1/�̄ to the standard equation: the idea
being that these additional terms would encode all the effects due

to shell-crossing and deviations from spherical symmetry that oc-
cur for large �̄. The coefficients of the terms in Taylor series were
chosen so as to provide a good approximation to the statistical
density-contrast found fromN-body simulations.While their im-
proved SCMwas found to agree fairlywellwith data fromN-body
simulations for �̄k15, their solution for �̄ is inaccurate in the
linear regime, where spherical symmetry and hence also the un-
modified SCM are expected to be good approximations.

In this article we take a similar approach to Engineer et al.
(2000) and add terms to the standard SCM evolution equation so
that for large �̄ the evolution of the density contrast and the pe-
culiar velocity agrees with the data from N-body simulations.
Importantly, however, the analytical solutions that we find remain
valid as �̄ ! 0 and agree almost exactly with the unmodified SCM
prior to turnaround.

2. MODELING NONLINEAR STRUCTURES

We consider a spherical overdensity embedded in a background
universe described by a Friedman-Robertson-Walker (FRW) met-
ric. In a spherically symmetric system and in the absence of shell-
crossing, themass,M, inside each comoving spherical shell, with
physical radius R(t), remains constant. The mean density con-
trast inside shell therefore scales as

1þ �̄ ¼ k
a3(t)

R(t)3
; ð1Þ

where a(t) is the scale factor of the background FRW universe
and k is constant on each shell. Equation (1) can also be used to
define R(t) for shells of constantM when deviations from spher-
ical symmetry occur. In these cases, however, the physical mean-
ing of R(t) is less clear. Following Engineer et al. (2000) we
continue to think of R(t), as defined by equation (1), as the ef-
fective ‘‘radius’’ of each shell of constant M.

The peculiar velocity, hSC, is defined by

hSC � 1

3

d ln (1þ �̄)

d ln a
¼ 1� Ṙ

HR

� �
; ð2Þ
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where H ¼ ȧ/a is the Hubble parameter. In a matter-dominated
universe the unmodified SCM predicts hSC ¼ hSC(�̄). Our key
assumption in what follows is that this remains the case even
when deviations from spherical symmetry are taken into account.
This assumption is supported by numerical studies of structure
formation such as that conducted byHamilton et al. (1991), which
we discuss below.

For the moment we take the background universe to be matter
dominated; however, in x 5we generalize our results to nonlinear
overdensities in more realistic universes, which have recently
transitioned to an epoch of dark energy domination. We define
a new coordinate �(�̄ ) by

1þ �̄ ¼ 9

2

T (� )2

(1� cos � )3
; ð3Þ

for some function T (� ). NowM is constant on each shell and so,
taking t ¼ ti, R ¼ Ri, and �̄ ¼ �i at some instance, we have

M ¼ 2R3
i (1þ �i)

9t 2i
¼ 2R3(1þ �̄ )

9t 2
:

By considering this relation together with equation (3) we see that

R ¼ Ri(1þ �i)

2�i j(�; Ri)
1� cos (� )½ �;

t ¼ 3ti(1þ �i)

4�
3=2
i j3=2(�; Ri)

T (� );

where j(�; �i) is some function of � and �i. If hSC ¼ hSC(�̄ ), then
j(�; Ri) ¼ j(� ), andwithout loss of generality we can set j(� ) ¼ 1.
This gives

hSC ¼ 1�

ffiffiffiffiffiffiffiffiffiffiffi
1þ �̄

2

s
sin �

(1� cos � )1=2
d�

Td
; ð4Þ

where �(� ) ¼ � � sin �, and

R ¼ R(� ) ¼ Ri(1þ �i)

2�i
(1� cos � ); ð5Þ

t ¼ t(� ) ¼ 3ti(1þ �i)

4�
3=2
i

T (� ): ð6Þ

We reduce to the standard SCM in the limit where T ¼ �(� )¼
� � sin � (Padmanabhan 2002), and it is clear that hSC ¼ hSC(�̄ ) in
the unmodified SCM. It is important to stress that if hSC ¼ hSC(�̄ ),
then equations (5) and (6) are the most general solutions for R and t.

The radial acceleration of each shell is found to be

d 2R

dt 2
¼ � GM

R2
T 0�2 þ sin �(1� cos � )

T 00

T 03

� �
; ð7Þ

where T 0 ¼ dT /d� and T 00 ¼ d 2T /d� 2. As should be expected,
when T 0 ¼ 1, we reduce to the standard SCM equation for R;tt.

When deviations from spherical symmetry and the leading
order effects of a gradient in the velocity dispersion are taken
into account, Engineer et al. (2000) showed that one should have

d 2R

dt 2
¼� GM

R2
� H 2R

3
S

¼� GM

R2
1þ 2

3(1þ �̄ )
S

� �
; ð8Þ

whereS(a; x) ¼ a2(�2 � 2�2)þ f (a; x);�2 and�2, respectively,
quantify the shear and rotation of the fluid; f (a; x) contains the
lowest order contribution from velocity dispersion terms. Im-
portantly, nomatter what form S(a; x) takes, if, aswe have assumed
hSC ¼ hSC(�̄ ), then we must have S ¼ S(�̄) and by comparing
equations (7) and (8) we can clearly see that

S(�̄ ) ¼ 3(1þ �̄)

2
T 0�2 � 1þ sin � (1� cos � )

T 00

T 03

� �
:

In principle, the form of both S(�̄) and hence T (� ) can be found
using the results of N-body simulations. Unfortunately, how-
ever, making the required comparison with simulations is not as
straightforward as one might expect it to be. This is because the
results of such simulations are given in terms of the statistical
properties of the matter distribution rather than in terms of the
mean density contrast, �̄, and peculiar velocity, hSC. The statistical
properties in question are the averaged two-point correlation func-
tion, �̄, and the averaged pair velocity, h(a; x), which are given as
defined by

�̄ ¼ 3

r3

Z r

0

�(x; a)x2 dx; h(a; x) ¼ � hv(a; x)i
ȧx

; ð9Þ

where � is the two-point correlation function and is defined to
be the Fourier transform of the power spectrum,P(k). The assump-
tion that h(a; x) depends on a and x only through �̄, i.e., h(a; x) ¼
h �̄(a; x)
� �

is common in the literature (see Engineer et al. 2000; Jain
et al. 1995), and it appears to have been confirmed by numerical
simulations (see Hamilton et al. 1991; Peacock & Dodds 1996).
The results of, for example, Hamilton et al. (1991) can be used

to construct the fitting formula for h(�̄) (Engineer et al. 2000).
However, before we can make use of such a formula, we must
relate the statistical quantities �̄ and h(�̄) to �̄ and hSC(�̄). It is well
known that (Padmanabhan 1996, 2002; Peebles 1980; Padma-
nabhan & Engineer 1998; Del Popolo et al. 2001;Padmanabhan
& Ray 2006), on scales smaller than the size of the collapsing
objects and around high density peaks,

� ’ �b(1þ �): ð10Þ

It follows that, in the nonlinear regime, we have �̄ � �̄. This re-
lationship between �̄ and �̄ was also used by Engineer et al. (2000),
although it was, as it is here, the weakest part of the whole anal-
ysis. We only require that �̄ � �̄ hold where it is expected to be a
good approximation i.e., �̄k 15. As �̄ ! 1we assume that �̄ � �̄.
Peebles (1980) showed that h(�̄) satisfies

h ¼ 1

3

1

1þ �̄

d�̄

d ln a
; ð11Þ

thus, if �̄ � �̄, then by comparing equations (2) and (11), we see
that h � hSC. It must be stressed that this second relation be-
tween hSC and h is only valid if �̄ � �̄; however, whenever it does
hold it implies that hSC, is given by a function of �̄ alone, i.e.,
hSC ¼ hSC(�̄ ).
The assumption that �̄ � �̄ breaks down for small �̄. Fortunately,

when �̄ is small, the unmodified SCM provides an accurate model.
For times t3 ti, the unmodified SCM predicts that hSC ¼ hSC(�̄).
Our key assumption that hSC ¼ hSC(�̄ ) is therefore expected
to hold for almost all �̄. The assumption does break down for t � ti;
however, this is entirely due to the decaying mode in �̄, which is
negligible for t3 ti.
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3. CONSTRUCTING AN IMPROVED SCM

If hSC ¼ hSC(�̄ ), then all properties of a modified SCM are en-
coded in a single function T (� ). Our aim is to combine the un-
modified SCM and data fromN-body simulations to find a fitting
formula for T (� ) that results in accurate predictions for hSC(�̄) in
all regimes.

Prior to turnaroundwe expect the standard SCM to be accurate
and hence T (� ) � � � sin �. Furthermore, for the unmodified
SCM to be accurate, at leading order, in the linear regimewemust
have T (�) � � � sin � þo(� 5) for small �. When �̄k 15, we ex-
pect hSC(�̄ )� h(�̄ ) and �̄ � �̄, and we may use h(�) to extract the
large �̄ form of T (� ). We describe how this is done below. In a
matter-dominated universe, the linearly extrapolated mean two-
point correlation function, �̄lin, scales as �̄lin / a2 / T 4/3, there-
fore as �̄ !1,

(1þ �̄ ) � (1þ �̄ ) ¼ 9

2

T (� )2

1� cos (� )½ �3
; ð12Þ

and so

(1� cos � ) � (1� cos �sim) �
A�̄

1=2
lin

(1þ �̄)1=3
; ð13Þ

where A is a constant and we treat it as a parameter to be fitted.
Hamilton et al. (1991) found the following fitting formula for
�̄lin(�̄):

�̄lin ¼ �̄
1þ 0:0158�̄ 2 þ 0:000115�̄ 3

1þ 0:926�̄ 2 � 0:0743�̄ 3 þ 0:0156�̄4

� �1=3

: ð14Þ

We define �1 ¼ lim�̄!1�. By taking �̄ ! 1 we find that

A ¼ 2:2668(1� cos �1) ¼ 2:2668
2Rvir

Rta

� �
; ð15Þ

where we have used cos �1 ¼ 1� 2Rvir/Rta, which follows from
equation (5);Rvir is the radius of the shell at virialisation, andRta is
its radius at turnaround. If spherical symmetry is assumed, then
the virial theorem in an EinsteinYde Sitter universe gives Rvir ¼
Rta /2. This relation is generally used when virialisation is placed
by hand into the SCM. For comparsion, Hamilton et al. (1991)
found thatRta/Rvir � 1:8 from their simulations.We treat Rvir /Rta

as a fitting parameter. Equation (13) provides � ¼ � (�̄ � �̄), and
T (� ) may now be found using equation (12):

T �(�̄)
� �

� Tsim � 2

9

� �1=2

A3=2�̄
3=4
lin (�̄); ð16Þ

with � � �sim ¼ �sim � sin �sim; �sim is defined by equation (13).
We fit for the parameter A (or equivalently, Rta/Rvir) by con-

sidering some important physical constraints on the behavior of
T (� ). Since the effect of deviations from spherical symmetry is
to slow down the collapse of the overdensity, it follows from equa-
tion (7) that

T 02 � sin �(1� cos � )
T 00

T 0 � 1: ð17Þ

Furthermore, the unaltered SCM should be a good approxima-
tion up to around turnaround (when � ¼ �) and so we must have

that T 0 � 1, T 00TT 0 for �P�. As � ! �1 � sin �1, we must
have T ! 1 and so T 0 > 0 as � ! �1. Equation (17) implies
that, for � > �, we cannot have 0 < T 0 < 1 and T 00 < 0, and so
it follows that T 0 � 1 for � > �. It follows that T � � every-
where. This condition implies that we should choose Rvir/Rta, and
hence A, so that Tsim is always greater than �sim � �sim � sin �sim
for �̄k 15, which roughly corresponds to �simk 3:8, �simk 4:4.
Moreover, since we want T ! � as � ! 0, we choose Rvir/Rta

so that, at the minimum of Tsim, Tsim ¼ �sim. This requirement
gives

Rvir

Rta

¼ 0:5896:

We now use Tsim to find a fitting formula for T (� ) that agrees
with the unmodified SCM at early times (i.e., T � � � sin � for
small �).

4. RESULTS

We find that the fitting formula,

T � (�)½ � ¼ � þ
3:468(�f � �)�1=2 exp � 15(�f � �)

� �
=�

� 	
1þ 0:8(�f � �)1=2 � 0:4(�f � �)
h i ;

ð18Þ

where �f ¼ 5:516, provides an excellent fit to the form of T �(�)½ �
derived from the simulations of Hamilton et al. (1991) i.e., T �
Tsim, in the range �k 15. It also provides an evolution of �̄ that
matches up smoothly to the one predicted by the standard SCM
in the region where we expect it to provide an accurate approx-
imation, i.e., prior to turnaround �P5.

In Figure 1 we plot Tsim against � sim, and our fitting formula
for T �(�)½ � against � . We see that, in the range �̄k 15, � k 4:4,
where we expect �̄ � �̄ and hence Tsim � T , the fit is indeed very
good. The parameters in the formula for T �(�)½ � have been chosen

Fig. 1.—Plot of T /� vs. � . The solid line is T /� ¼ Tsim/�sim against � ¼ �sim,
whereas the dashed line shows T (�)/� in our improved SCM and uses the fitting
formula for T (�), eq. (18), to evaluate T /� . As required, we see that in the region
� k4:4j �̄k15, our improved SCM is a very good approximation to the
simulation data. For small values of � , we see that T /� ! 1, as is required, in our
improved SCM. [See the electronic edition of the Supplement for a color version
of this figure.]
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so that as � ! �f , the leading order terms in the asymptotic ex-
pansions of both T �(�)½ � and Tsim �sim(�)½ � match.

In Figure 2 we use equations (3) and (4) to plot hSC(�̄ ) and the
fitting formula found by Hamilton et al. (1991) to plot h(�̄ ). We
also plot the unmodified SCM prediction for hSC(�̄ ). It is clear
from this plot that our fitting formula for T gives an hSC(�̄ ) that is
an excellent approximation to h(�̄ ) (provided �̄� �̄ ) in the re-
gion �̄k 20. As �̄; �̄ ! 1, the curves hSC(�̄ ) and h(�̄) have the
same leading order asymptotic behavior. In the region �̄k 15,
our model gives an hSC(�̄ ) that is always within 3% of the fitting
formula for h(�̄ ) derived from simulations (Hamilton et al.1991).
In addition, our fitting formula for hSC(�̄ ) agrees almost exactly
with the predictions of the unmodified SCM prior to turnaround
�̄ < 5:6.

We found a best-fit value of Rvir/Rta ¼ 0:5896, which is fairly
close to the value of 0.5 that is generally used in the spherical
collapse model, despite the fact that we did not constrain it to be
so. For comparison, the improved spherical collapse developed
by Engineer et al. (2000) gave Rvir /Rta � 0:65, and N-body sim-
ulations have been found to support Rvir/Rta � 0:56 (Hamilton
et al. 1991). Our value of Rvir /Rta is therefore a better approxi-
mation to the value found from simulations than that generally
used in the unmodified SCM and that found in the model de-
veloped by Engineer et al. (2000).

In our improved SCM the linear density contrast is given by

� lin ¼
3

5
�i

t

ti

� �2=3

¼ 3

5

3

4

� �2=3

T (� )2=3:

When �lin ¼ 1:6865, which corresponds to the instant of collapse
in the unmodified SCM, we find �̄ ¼ 54:65 rather than the SCM’s
value of 178. We find that �̄ ¼ 200 corresponds to �lin ¼ 2:286.
We compare the form of �̄(�̄lin) found in our model to that pre-
dicted by the unmodified SCMmodel, with virialisation put in by
hand, in Figure 3. We also show the divergent behavior of �̄(�̄lin)

in the standard SCM without virialisation, and the asymptotic
behavior of �̄(�̄lin) if Rta ¼ 1:8Rvir as suggested by simulations
(Hamilton et al. 1991). The two major advantages of our im-
proved SCM over the unmodified version are clearly visible in
this plot:

1. At late times the improved SCM provides a better approx-
imation to the behavior seen in N-body simulations than the
unmodified SCM does.
2. �̄(�̄lin) is smooth in the improved SCM. This is not the case

in the unmodified SCMwhen virialisation is put in by hand. The
improved SCM therefore provides not only a good approximation
to the evolution of density contrast, �̄, but also to that of d�̄/dt and
hence to that of the peculiar velocity.

5. INCLUDING DARK ENERGY

We have constructed an improved, semianalytical SCMwhose
prediction for the dependence of peculiar velocity on the mean
density contrast concurs with that extrapolated from simulations
in the nonlinear regime. However, as mentioned above, we have
done this for a matter-dominated universe. It is well known,
however, that the universe today is not matter dominated and a
significant fraction of its total content is believed to be in the
form of dark energy. Fortunately, however, the effects of this dark
energy on the background universe are generally believed to only
have become non-negligible relatively recently at zP 1:8. This
means the local evolution of overdensities with �̄k100 today has
been matter dominated, to a very good approximation, right up
until the epoch of matter-radiation equality. Therefore, the evo-
lution of the density, �, and radial velocity, v, of a shell of matter
that is well into the nonlinear regime today is, to a good ap-
proximation, the same in a matter-dominated background as it is
in a backgroundwhere today�m � 0:27 and�de � 0:73 forwhich
the equation of state parameter for the dark energy, w, satisfies
the current astronomical bound of w ¼ �1 � 0:1 for z < 1 (Riess
et al. 2007). It is therefore a fairly straightforward task to generalize
our formulae for �̄ and hSC to includ background universes where

Fig. 2.—Relationship between h and �̄ in different models. The solid line shows
hSC(�̄ ) in our improved spherical collapse model. The dotted line is hSC(�̄ ) in the
standard SCM, and the dashed line shows h(�̄ ) as seen in simulations (Hamilton
et al. 1991). As required, our improvedSCMgives an hSC that agreeswith h(�̄ ) very
well in the region where we expect �̄ � �̄ i.e., �̄k15. We also note that hSC(�̄ ),
in the improved SCM, has the same asymptotic behavior, to leading order, as
h(�̄ � �̄ ) in the limit �̄ ! 1. Importantly, our improved SCMmodel also agrees
with the standard SCM in the region where it is expected to provide a very good
approximation i.e., prior to the epoch of turnaround, �̄P5:6. [See the electronic
edition of the Supplement for a color version of this figure.]

Fig. 3.—Plot of how the nonlinear mean density contrast, �̄, depends on the
linear one, �̄lin. The solid line is the improved SCM developed here, the thick
dashed line is the standard SCM with virialisation put in by hand, and the thin
dashed line is the standard SCM without virialisation. The dotted line shows the
asymptotic behavior of �̄(�̄lin) that we would expect if Rta /Rvir ¼ 1:8 as seen in
the simulations of Hamilton et al. (1991). [See the electronic edition of the Sup-
plement for a color version of this figure.]
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�m � 0:27, provided that these are only applied to overdensities
that are large today. We then find that

1þ �̄(�m; t) ¼
9f (a)T (� )2

2(1� cos � )3
; ð19Þ

hSC(�m; t) ¼ 1� �0:5
m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �̄

2(1� cos � )

s
sin �

d�

dT
; ð20Þ

where � ¼ � � sin � as before, T (� ) is still given by equation (18),
and

f (a) ¼ 4

9t 2�mH 2
:

The equations for R(� ) and t(� ) remain unchanged.
If dark energy has behaved similarly to a cosmological con-

stant in the recent past (z < 1:8), then

f (a) � 1� �m

�m sinh�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1� �m)=�m

ph in o2
� ��0:4

m :

Equations (19) and (20) combined with the fitting formula equa-
tion (18) provide a very good approximation to the evolution
of overdensities of matter in a realistic universe provided that
�̄k 100 today. For smaller values of �̄ our results are only ac-
curate for �m � 1. However, for �̄P 15 the effects of deviations
from spherical symmetry, which have been our primary concern
in this article, are small enough to be ignored and the results de-
rived using the unmodified SCM can be used with confidence.
Notice also that such fitting formulae and assumptions are strictly
speaking only applicable to dark energy models that are not cou-
pled tomatter. If such amatter coupling is allowed, then the whole

process of structure formation, both in the linear and nonlinear
regimes,may change (see, e.g., Brookfield et al. 2006; Lahav et al.
1991; Mota & van de Bruck 2004; Maor & Lahav 2005; Nunes &
Mota 2006; Mota & Shaw 2006, 2007). This said, in many dark
energy models, the matter coupling is constrained by experiments
to be very small (relative to the coupling betweenmatter and grav-
ity), and as a result any alterations to the process of structure for-
mation are similarly small.

6. CONCLUSIONS

In this article we have extended the spherical collapse model
so that it takes account of the effects of deviations from spherical
symmetry and shell crossing, which are important in the non-
linear regime. The key assumptions that we usedwhen constructing
our model was that hSC ¼ hSC(�̄) and that for �̄k 15, �̄ � �̄. The
latter assumption is probably the weakest link in the whole anal-
ysis, although both assumptions are found commonly in the lit-
erature (see Engineer et al. 2000; Jain et al. 1995; Peebles1980).
Our improved SCM predicts a form for hSC(�̄) that is consistent
with the results of N-body simulations in the regime where a
comparison can sensibly be made (�̄k15) and with the un-
modified SCMprior to turnaround. Analytical formulae for �̄ and
hSC in the improved model have been presented, and they essen-
tially differ from the comparable formulae in the unmodified
SCMonly by the replacement of � ¼ � � sin �with T (� ), which
is given by equation (18). The improved SCM is therefore simple
enough to be used anywhere where the unmodified SCM might
be used but with the advantage that it includes a realistic model
of the effects of virialisation.
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edges support from the A. Humboldt Foundation and the Research
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