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ABSTRACT

We study scaling relations of compressible and strongly magnetized turbulence using isothermal numerical
simulations with resolution 5123. We find a good correspondence of our results with the Fleck model of com-
pressible hydrodynamic turbulence. In particular, we find that the density-weighted velocity, i.e., ,1/3v { r u
proposed by Kritsuk and coworkers obeys the Kolmogorov scaling, i.e., , for the high Mach number�5/3E (k) ∼ kv

turbulence. Similarly, we find that the exponents of the third-order structure functions for stay equal to unityv
for all Mach numbers studied. The higher order correlations obey the She-Le´vêque scalings corresponding to the
two-dimensional dissipative structures, and this result does not change with the Mach number either. In contrast
to velocity , which exhibits different scaling parallel and perpendicular to the local magnetic field, the scalingu
of is similar in both directions. In addition, we find that the peaks of density create a hierarchy in which bothv
physical and column densities decrease with the scale in accordance to the Fleck predictions. This hierarchy can
be related to ubiquitous small ionized and neutral structures (SINS) in the interstellar gas. We believe that studies
of statistics of the column density peaks can provide both a consistency check for the turbulence velocity studies
and insight into supersonic turbulence, when the velocity information is not available.

Subject headings: ISM: structure — MHD — turbulence

Online material: color figures

1. INTRODUCTION

The interstellar medium (ISM) is a highly compressible tur-
bulent, magnetized fluid, exhibiting density fluctuations on all
observable scales. It has been long realized by many researchers
that an incompressible hydrodynamic (HD) description is in-
adequate for such a medium (see Elmegreen & Scalo 2004 for
review).

Attempts to include effects of compressibility into the in-
terstellar turbulence description can be dated as far back as the
work by von Weizsa¨cker (1951). There a simple model based
on a hierarchy of clouds was presented, in which every large
cloud consists of smaller clouds, which contain even smaller
clouds. For such a model von Weizsa¨cker (1951) proposed a
relation between subsequent levels of hierarchy:

�3a( )r /r p l /l , (1)n n�1 n n�1

where is the average density inside a cloud at leveln, isr ln n

the mean size of that cloud, 3 is the number of dimensions,
anda is a constant that reflects the degree of compression at
each leveln.

The Kolmogorov energy spectrum (∼ ) follows from the�5/3k
assumption of a constant specific energy transfer ratee ∼

. Lighthill (1955) pointed out that in a compressible2u /(l/u)
fluid, the volume energy transfer rate is constant in a statistical
steady state:

2 3e p re ∼ ru /(l/u) p ru /l. (2)V

In an important but not sufficiently appreciated work, Fleck
(1996, hereafter F96) incorporated the above hierarchical model
with energy transfer in compressible fluid. By combining equa-
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tions (1) and (2) F96 presented the following set of scaling
relations in terms of the degree of compressiona:

�3a 1�3a 3�3a 1/3�ar ∼ l , N ∼ l , M ∼ l , u ∼ l , (3)l l l l

where and are, respectively, the column density of theN Ml l

fluctuation with the scalel and the mass of the cloud of size
l. This entails the spectrum of velocities .�5/3�2aE(k) ∼ k

In the spirit of the F96 model, Kritsuk et al. (2007, hereafter
KNPW07) proposed to use the density-weighted velocity

as a new quantity, for which the Kolmogorov scaling1/3v { r u
for second-order structure functions (SFs) can be restored in
compressible HD turbulence. Their HD simulations provided
the spectrum for close to�5/3, and they showed that inv
supersonic HD turbulence the SFs of scale linearly withv
separation.

Will the F96 model be valid for compressiblestrongly mag-
netized turbulence? This is the major question that we address
in this Letter.

2. NUMERICAL MODELING

We used a second-order-accurate essentially nonoscillatory
(ENO) scheme (see Cho & Lazarian 2002; Kowal et al. 2007
for details) to solve the ideal isothermal magnetohydrodynamic
(MHD) equations in a periodic box maintaining the� · B p

constraint. The rms velocity is approximately unity, so0 du
that and are expressed in units of . The timet1/2u B/ (4pr) du
is in units of the large eddy turnover time (∼ ) and theL/du
length in units ofL, the size of the box. The magnetic field
consists of the uniform background and fluctuating parts:

. Initially . We use units in which theB p B � b b p u p 0ext

Alfvén speed and initially. We1/2v p B / (4pr) p 1 r p 1extA

assume that and . Then, the sound speed isdB ∼ B v ∼ duext A

the controlling parameter. We consider two regimes: supersonic
(low b, where ) and subsonic (highb).b { p /pgas mag

We drove the turbulence at wave scale (the injectionk � 2.5f

scale) using a random solenoidal large-scale driving acceler-
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Fig. 1.—Spectra of and (dashed and solid lines, respectively) for super-u v
and subsonic models (big and small plots, respectively). Here . Spec-M ∼ 0.7A

tra are compensated by .5/3k

Fig. 2.—SFs of the third order for (dashed line) and (solid line) com-u v
pensated by for supersonic model. Here . Dotted lines show the�1l M ∼ 0.7A

best fit within the inertial range. Two dotted vertical lines bound the inertial
range. The inset shows the dependence of scaling exponents for (crosses)z u3

and (diamonds) on . [See the electronic edition of the Journal for a colorv Ms

version of this figure.]

Fig. 3.—Scaling exponents for (crosses) and (diamonds) for supersonicu v
and subsonic (inset) models. Here . The plots show unnormalizedM ∼ 0.7A

values of the scaling exponents obtained directly from SFs by fitting the relation
within the inertial range, i.e., without using the extended self-(p) zpS (l) p al

similarity (Benzi et al. 1993).

ation. The scale at which the dissipation starts to act is aboutkn

30 (for resolution 5123). The limited inertial range between
and produces the bottleneck effect, resulting in flattenedk kf n

spectra of velocity (see KNPW07).
We present results for 3D numerical experiments of com-

pressible MHD turbulence with a strong magnetic field for
sonic Mach numbers between 0.6 and 7. TheM { AFuF/c Ss s

Alfvénic Mach number . To study effectsM { AFuF/c S ∼ 0.7A A

of magnetization we also performed experiments withM ∼A

. All models were calculated with the resolution 5123 for six2
dynamical times.

3. RESULTS

3.1. Kolmogorov Scalings for Supersonic Flows

In Figure 1 we present spectra for velocity and density-u
weighted velocity for two strongly magnetized mod-1/3v { r u
els: subsonic ( ) and supersonic ( ). Naturally, forb ∼ 2 b ∼ 0.02
the subsonic model the differences between spectra for andu

are marginal and both spectra correspond to Kolmogorov’sv
(see Fig. 1,inset). However, for the supersonic case the�5/3k

velocity spectrum is steeper. The steepening corresponds to
(from ). At the same time, the spectrum�5/3�2aa ≈ 0.23 E ∼ ku

of matches well the Kolmogorov slope.v
In the original Kolmogorov theory (Kolmogorov 1941) it was

shown that the spectral index of the third-order SF, e.g., the SF
of , , should be equal to(3) 3 z3u S (l) { AFu (r � l) � u (r) F S ∼ lu

1, i.e., . In Figure 2 we show SFs of the third order forz p 13

velocity and the density-weighted velocity for supersonic model.
We checked that for the subsonic case for both and the indexu v

is indeed close to unity. For the supersonic case, growsz z3 3

with for , but remains unity for (see Fig. 2). This suggestsM u vs

that the Kolmogorov universality is preserved for supersonic
MHD turbulence when the density weighting is applied.

3.2. She-Lévêque Intermittency Model

A proper description of turbulence requires higher moments
(see Lazarian 2006 for review). Those characterize intermit-
tency, which in the original model of Kolmogorov (1941) is
not accounted for. Substantial progress in understanding tur-
bulence intermittency is related to a discovery by She & Le´-
vêque (1994), who found a simple form for the scaling of
exponents of higher order longitudinal correlationszp

. While in the model(p) p zˆ pS (l) { AF [u (r � l) � u (r)] · lF S ∼ l
of Kolmogorov (1941) , She & Le´vêque (1994) pro-z { p/3p

vide (after modifications to more general form by Mu¨ller &
Biskamp 2000)

p p/gz p (1 � x) � C[1 � (1 � x/C) ], (4)p g

whereg is related to the scaling of the velocity ,x is1/gu ∼ ll

related to the energy cascade rate , andC is the co-�1 �xt ∼ ll

dimension of the very high intensity structures. In HD incom-
pressible turbulence and . Mu¨ller & Biskampg p 3 x p 2/3
(2000) introduced the dimension of the most singular dissi-
pative structures, . For MHD turbulence the dis-D p 3 � C
sipation happens in two-dimensional dissipative structures such
as current sheets, corresponding to (Mu¨ller & BiskampD p 2
2000). Thus, for subsonic MHD turbulence we expectz pp

for both and . This is what we actuallyp/3p/9 � 1 � (1/3) u v
observe in Figure 3 (inset). The same scaling, however, is
preserved for forsupersonic magnetized turbulence.v

3.3. Anisotropies Induced by Magnetic Field

Magnetic field is known to induce anisotropies in compress-
ible MHD turbulence (see Higdon 1984). Anisotropy increasing
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Fig. 4.—SFs of the second order for and in the local reference frameu v
for supersonic experiment. Here . SFs for scale as∼ and1.22M ∼ 0.7 u lA

∼ for and directions, respectively. SFs for scale as∼ and0.87 0.88l k ⊥ v l
∼ for and directions, respectively. [See the electronic edition of the0.74l k ⊥
Journal for a color version of this figure.]

Fig. 5.—Scaling relations for the column densityN for three models: sub-
sonic ( ) and supersonic ( and 7). Here .M ∼ 0.7 M ∼ 2 M ∼ 0.7s s A

with the decrease of scale was predicted for Alfve´nic motions
by Goldreich & Sidhar (1995; see also Lithwick & Goldreich
2001) and confirmed numerically for compressible MHD in
Cho & Lazarian (2002, 2003).

For supersonic motions Figure 4 shows that the SFs for areu
much steeper in both directions than those predicted by the model
of Goldreich & Sidhar (1995; 1.22 and 0.87 for and direc-k ⊥
tions to the local magnetic field, respectively). However, the
anisotropy is still close to the predictions of Goldreich & Sidhar
(1995; ), which is indicative of the dominance of the0.72l ∼ lk �

Alfvénic (“incompressible”) motions. Note that in Figure 4 the
SFs are obtained in the system of reference of thelocal magnetic
field, i.e., the field on scales of the fluctuations under study. The
terms and denote the second-order SFs parallel and(2) (2)S Sk �

perpendicular to the local magnetic field, respectively.
The SFs for are significantly shallower (0.88 and 0.74 forv
and directions to the local magnetic field, respectively).k ⊥

The SF of in the direction scales more like in incom-v ⊥
pressible motions, i.e., . The slope of for is(2) 2/3 (2)S ∼ l S (l) v� � k

smaller than the corresponding one for , resulting in the re-u
duced degree of anisotropy ( ). Intuitively, this can be0.84l ∼ lk �

understood in terms of dense clumps strongly distorting mag-
netic field as they move with respect to magnetized fluid.

3.4. Statistics of Column Density Peaks

Results for velocity from our simulations of strongly mag-
netized turbulence provide for . The spectruma � 0.23 M ∼ 7s

of density fluctuations follows from the scaling re-�1�6aE ∼ kr

lation of density (see eq. [3]) according to the F96 model. This
suggests the existence of a rising spectrum of density fluctu-
ations within the hierarchy of density clumps when .a 1 1/6
We try to make our study more related toobservations, which
usually measure densities integrated along the line of sight, i.e.,
column densities, or alternatively study the hierarchy of ob-
served clump masses (see eq. [3]).

The F96 model assumes the existence of an infinitely ex-
tended hierarchy. In our computations the structures are gen-
erated by turbulence at scales smaller than the scale of the
computational box. Therefore the F96 scaling relations (see
eq. [3]) should be modified as follows:

�3a �3a 2�3a 2�3aN ∼ L # l ∼ l and M ∼ L # l ∼ l . (5)l l

Our procedure of obtaining the scaling relation from column

density maps is similar to that in KNPW07, with the difference
that they dealt with 3D data, while we deal with 2D data. First,
we seek for a local maximum of column density. Then we
calculate the average column density within concentric boxes
with gradually increasing sizel. In the case of determining the
relation for , instead of averaging we apply the integrationMl

over the boxes. Naturally, the results correspond to each other.
In Figure 5 we present an example of the scaling relation

for column density for three models of turbulence with
, 2, and 7. One can note that the relation becomesM ∼ 0.7s

steeper with the sonic Mach number within the inertial range.
The fractal dimensions can be calculated from the relation

(see KNPW07), where is a slope es-D p 3 � g g { �3am

timated from the plot within the inertial range. For our models
the fractal dimension ranges from for the highly su-D � 2.5m

personic models to for the subsonic model. Respec-D � 2.9m

tively, the compressibility coefficients for the presented models
range from for to for .a � 0.04 M ∼ 0.7 a � 0.19 M ∼ 7s s

The latter is roughly consistent with thea-value obtained from
the SF of velocity in § 3.1. The differences are probably due
to insufficient statistics of rather rare high-density peaks. In
general, the filling factor of a peak decreases with the maximum
density of this peak, which means that the higher maximum
density that peak has, the smaller the space it occupies.

3.5. Variations of Scalings Induced by Fluid Magnetization

What is the effect of magnetic field on the -scaling? Thev
spectra, the third and higher moments of correlations obtained
for our super-Alfvénic simulations with , happen to beM ∼ 2A

very similar to the case of strongly magnetized turbulence. Our
results indicate that unlike velocity, is much less affected byv
magnetic field. Naturally, in super-Alfve´nic turbulence the an-
isotropies induced by magnetic field are not observed at larger
scales within the inertial range (see the last paragraph of § 4).

4. ASTROPHYSICAL IMPLICATIONS

Dependence of a on the extend of inertial range.—If we
combine several facts together, namely, (1) thata is a function
of , (2) that the maximum of density corresponds to theMs

dissipation scale, e.g., shock thickness scale , (3) that theldiss

amplitude of density in peaks scales as the mean density times
, then we have to conclude that as the inertial range from2Ms

the injection scale to increases, for a given Mach number,l linj diss

a should decrease. Connecting these facts we get the relation
, which results in a dependence ofa2 3ar ∼ M ∼ (l /l )peak s inj diss
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on and , namely, . An in-l /l M a ∼ logM / log (l /l )inj diss s s inj diss

teresting consequence of this would be a prediction of Kol-
mogorov scaling for supersonicvelocities when the injection
and dissipation ranges are infinitely separated. Consequently,
the steeper velocity spectra reported in Padoan et al. (2007)
can be interpreted as an indication of a limited inertial range.
Further research justifying such conclusions is required. In
KNPW07 the authors have noticed that the scaling in equation
(3) could have a break at the sonic scale if the inertial range
is wide enough. This feature we plan to study elsewhere.

SINS of supersonic turbulence.—Ubiquitous small ionized
and neutral structures (SINS) are observed in the ISM (see
Heiles & Stinebring 2007). Their nature is extremely puzzling
if one thinks in terms of Kolmogorov scalings for density fluc-
tuations. The fact that the spectrum of fluctuations of density
in supersonic turbulence is shallower that the Kolmogorov one
is well known (see Kowal et al. 2007 and references therein).
However, just the difference in slope cannot explain the really
dramatic variations in observed column densities. The present
Letter provides a different outlook at the problem of SINS. We
see that while the low-amplitude density fluctuations exhibit
Kolmogorov scaling (Beresnyak et al. 2005; Kowal et al. 2007),
high peaks of density correspond to a rising spectrum of fluc-
tuations. Thus, observing supersonic turbulence at small scales,
we shall most frequently observe small-amplitude fluctuations
corresponding to a Kolmogorov-like spectrum of density fluc-
tuations. Occasionally, but inevitably, one will encounter iso-
lated high-density peaks. An alternative mechanism for getting
infrequent large density fluctuations over small scales is pre-
sented in Lazarian (2007) and related to current sheets in the
viscosity-damped regime of MHD turbulence.

Clumps and star formation.—The ISM is known to be
clumpy. Frequently the clumps in molecular clouds are asso-
ciated with the action of gravity. Our study shows that super-
sonic turbulence tends to produce small and very dense clumps.
If such clumps happen to attain the Jean’s mass, they can form

stars. Therefore, star formation is inevitable in supersonic tur-
bulence. However, the efficiency of star formation is expected
to be low, as the filling factor of peaks decreases with the
increase of the peak height. Inhibition of star formation via
shearing may dominate in terms of influencing star formation
efficiencies. We consider a strongly magnetized case, where
the magnetic field is dynamically important and dominant. We
see some analogy with the weakly magnetized cases discussed
in Padoan et al. (2007).

5. SUMMARY

In this Letter we have studied the scaling of supersonic MHD
turbulence. We found the following:

1. The Fleck (1996) model is applicable to strongly mag-
netized compressible turbulence.

2. The spectra and structure functions of density-weighted
velocities are consistent with predictions of the Kolmogorov
theory.

3. Intermittency of density-weighted velocity can be well
described by the She-Le´vêque model with the dimension of
dissipative structures equal to 2 (Mu¨ller & Biskamp 2000).

4. Strongly magnetized supersonic turbulence demonstrates
a lower degree of anisotropy if described using the density-
weighted velocity.

5. The high peaks of column densities exhibit the increase
of the mean values of column densities with the decrease of
scale, which may be relevant to the explanation of SINS.
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