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ABSTRACT

We investigate the dynamics in the logarithmic galactic potential with an analytical approach. The phase-space struc-
ture of the real system is approximated with resonant detuned normal forms constructed with the method based on the
Lie transform. Attention is focused on the properties of the axial periodic orbits and of low-order ‘‘boxlets’’ that play an
important role in galactic models. Using energy and ellipticity as parameters, we find analytical expressions of several
useful indicators, such as stability-instability thresholds, bifurcations, and phase-space fractions of some orbit families,
and compare them with numerical results available in the literature.

Subject headinggs: galaxies: kinematics and dynamics — methods: analytical

1. INTRODUCTION

To determine salient features of the orbital structure of non-
integrable potentials is a fundamental topic in galactic dynamics.
Knowledge of the existence and stability of periodic orbits of low
commensurability is, for example, very important for clarifying
the issue of triaxiality in elliptical galaxies, and a general under-
standing of the phase-space structure is very useful in appli-
cations of self-consistent models. The numerical approach is
usually preferred due to the availability of reliable algorithms
and powerful machines (Schwarzschild 1979; Merritt & Valluri
1996; Papaphilippou & Laskar 1996, 1998). However, in several
circumstances it is useful to have some simple analytic clues
concerning the relation between the form of the gravitational
potential and the main families of orbits supported, as, for ex-
ample, in the studies by Zhao et al. (1999).

Although generically nonintegrable, realistic galactic potentials
show several properties of a regular behavior over wide energy
ranges, with invariant surfaces (‘‘tori’’) surrounding periodic or-
bits. Among these features, information about the stability prop-
erties of themain periodic orbits is of paramount importance, since
the bulk of density distribution is shaped by the stars in regular
phase-space domains around stable periodic orbits (Binney &
Tremaine 1987). In particular, for triaxial ellipsoids, periodic or-
bits along symmetry axes play a special role. An enormous effort
has therefore been devoted to investigate families and bifurca-
tions of periodic orbits, starting with the study of models based
on perturbed oscillators (Contopoulos 1970) and gradually ex-
ploringmore realistic galactic potentials with numerical (Miralda-
Escudé & Schwarzschild 1989; Fridman & Merritt 1997) and
semianalytical (de Zeeuw & Merritt 1983; Scuflaire 1995) ap-
proaches. A related important problem is that of torus construc-
tion in the regular domains (Binney & Spergel 1982; Gerhard
& Saha 1991; Kaasalainen & Binney 1994a, 1994b).

Techniques based on the various versions of perturbation the-
ory have been applied to several examples and with different de-

grees of approximation (for a review, see, e.g., Contopoulos 2002).
One of themost powerful analytic tools is the normal form approx-
imation of a nonintegrable system. Although the normal form ap-
proach is quite widespread in galactic dynamics, its use in studying
the stability of periodic orbits has not been as systematic as the
theory could allow (Sanders & Verhulst 1985). The aim of the
present paper is to apply the Lie transform normalization method
(Hori 1966; Deprit 1969; Dragt& Finn 1976; Finn 1986; Koseleff
1994) to approximate the dynamics of the Binney logarithmic
potential (Binney 1981). We compare the findings with that of
Miralda-Escudé & Schwarzschild (1989), who employ purely
numerical techniques to implement the Floquet method, and with
that of Scuflaire (1995), who studies the stability of axial orbits by
solving the Hill-like perturbation equation with the Lindstedt-
Poincaré approach. Another example that is briefly mentioned
is provided by the galactic Schwarzschild (1979) potential with
a comparison to the results of de Zeeuw & Merritt (1983). These
authors based their approach on the averaging procedure of nor-
malization; it is therefore interesting to make a comparison with
that method as well.
To study the structure of phase space with a truncated normal

form, one may proceed in essentially two ways; the most general
and exhaustive is that of determining the explicit form of periodic
orbits and invariant tori that give the ‘‘skeleton’’ of the phase
space of the system. A less general but easier approach in systems
with 2 degrees of freedom (dof ) is that of determining fixed points
and invariant curves on a surface of section. This is constructed
with the aid of the approximate integral ofmotion provided by the
normalization. Even in the case of linear orbital stability of the
main periodic orbits, the first method is in general quite cumber-
some and can be applied when the procedure of reduction to a
1 dof Hamiltonian system and the use of action-angle variables
lead to a reasonably simple system of equations. This reduction
is always possible with 2 dof, both in the resonant and nonres-
onant cases (Gustavson 1966), whereas it is in general not pos-
sible in resonant systems with 3 dof. The secondmethod is clearly
less general but relies on straightforward geometric arguments re-
lated to the Hessian of a polynomial in its critical points and is, at1 Also at: INFN, Sezione di Roma Tor Vergata.
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least in principle, quite easy to implement. In this work we apply
both methods to perform the comparison mentioned in the para-
graph above. There is another motivation to linger on both visions
of the approximate dynamics: the normal form Hamiltonian is, in
many respects, the ‘‘simplest’’ integrable relative of the noninte-
grable original one. However, this simplicity is attained at the
price of a set of coordinate transformations that deform the phase-
space variables; if one is interested in specific local properties or
wants to make comparison with numerical simulations, the inver-
sion to the original variables becomes mandatory. Therefore, we
want to deepen the relation between the ‘‘clean’’ but deformed dy-
namics provided by the normalizing variables and the dynamics in
the physical variables ‘‘dirtied’’ by the inverse transformation.

Even in realistic potentials, the periodic orbits along the axes of
symmetry (axial orbits) are easily identified both as normalmodes
of the reduced system and as ‘‘central’’ fixed points on the sur-
faces of section. Therefore, we limit the detailed evaluation of the
stability characteristics in the parameter space to these axial orbits.
However, both procedures we have followed are quite general and
can be directly applied to all periodic orbits of sufficiently low
commensurability. From the results obtained, we can state that
the predictive power of the normal form ranges well outside the
neighborhood in which the expansion of the original Hamiltonian
is performed. It is rather related to the extent of the asymptotic con-
vergence radius of the approximate integrals of motion, namely, the
extent towhich the remainder of the series truncated at a given order
is minimal (see, e.g., Efthymiopoulos et al. 2004). The results sug-
gest that there is still room for improvement up to a certain optimal
order of truncation. Therefore, at least in the cases we have exam-
ined, the regular dynamics of a nonintegrable system can be repro-
duced with very high accuracy. However, in concrete applications
the validity of the prediction has to be corroborated with an inde-
pendent evaluation of the best-suited resonant normal form for the
problem at hand, always bearing in mind that, after the onset of
chaos, these methods become ineffective.

The plan of the paper is as follows. In x 2 we recall the proce-
dure of normalization as applied to reflection symmetry poten-
tials and state a criterion for the choice of the best-suited resonant
normal form. In xx 3 and 4 we study the 1:1 and 1:2 resonances,
respectively. In x 5 we compare our analytical results with those
available in the literature. In x 6 we sketch the conclusions.

2. ANALYTICAL SETUP

The normal form approach to investigate Hamiltonian sys-
tems has a wide range of applications in the astrophysical con-
text. However, the method based on Lie transforms, which has
several computational virtues with respect to the original meth-
ods (Gustavson 1966; Contopoulos 2002), has seldom been em-
ployed in galactic dynamics. Notable exceptions are the papers
by Gerhard & Saha (1991) and Yanguas (2001) concerning per-
turbed isochrone models.

In this section we recall the most relevant mathematical tools,
with the aim of laying down the notations and the main formu-
lae. For a detailed account of the method, we refer to textbooks
(Sanders & Verhulst 1985; Meyer & Hall 1992; Boccaletti &
Pucacco 1999).

2.1. General

Suppose the systemunder investigation is given by aHamiltonian

H( p; q)¼ 1

2
p2
x þ p2

y

� �
þ V x2; y2

� �
; ð1Þ

where V is a smooth potential with an absolute minimum in the
origin and reflection symmetry with respect to both axes. We ex-
pand the potential in the form

V (x; y; ") ¼
X1
k¼0

" kVk (x; y) ð2Þ

and look for a new Hamiltonian given by

K(P;Q; ") ¼
X1
n¼0

"nKn(P;Q)¼ M �1
g H( p; q; "); ð3Þ

where P and Q result from the canonical transformation

(P;Q)¼ Mg( p; q): ð4Þ

In these and subsequent formulae we adopt the convention of
labeling the first term in the expansion with the index zero; in gen-
eral, the ‘‘zeroth-order’’ terms are quadratic homogeneous poly-
nomials, and terms of order n are polynomials of degree nþ 2.
The linear differential operator Mg is defined by

Mg� e�"Lg1 e�"
2Lg2 : : : e�"

nLgn : : : ¼
X1
n¼0

"nMn: ð5Þ

The functions gn are the coefficients in the expansion of the gen-
erating function of the canonical transformation, and the linear
differential operator Lg is defined through the Poisson bracket

Lg f �fg; f g� @g

@ x

@f

@ px
þ @g

@ y

@f

@ py
� @g

@ px

@f

@ x
� @g

@ py

@f

@ y
: ð6Þ

The exponentials in the definition of Mg are intended as the formal
sum of a power series so that it gives rise to a near-identity coor-
dinate transformation known as a Lie series. Therefore, in prac-
tice, in the algorithm implemented to compute theKn appearing in
equation (3), what are really used are the differential operators

Mn ¼
X

m1þ2m2þ : : : nmn¼n

Lm1
g1
Lm2
g2
: : : Lmn

gn

m1!m2! : : :mn!
: ð7Þ

By expanding also the right-hand side of equation (3) in power
series of " and equating the coefficients of the same order, one
has the recursive set of linear partial differential equations

K0 ¼ H0 ¼
1

2
p2
x þ p2

y

� �
þ V0;

K1 ¼ V1þM1H0;

..

.

Kn ¼ VnþMnH0þ
Xn�1

m¼1

Mn�mVm;

..

.
ð8Þ

It can be seen that each equation in the chain from equation (8)
depends only on quantities found in the previous line. ‘‘Solving’’

ORBIT STRUCTURE OF LOGARITHMIC POTENTIAL 203



the equation at the nth step consists of a twofold task: finding Kn

and gn. The unperturbed part of the Hamiltonian, H0, deter-
mines the specific form of the transformation. In fact, the new
Hamiltonian K is said to be in normal form if

fH0;Kg¼ 0: ð9Þ

This condition is used at each step of the procedure to determine
the functions gn in order to eliminate as many terms as possible
in the newHamiltonian. The only terms of whichK is made of are
those staying in the kernel of the operator LH0

associated with H0

through the definition from equation (6). The procedure is stopped
at some ‘‘optimal’’ order N, and therefore, in all ensuing discus-
sion we refer to a ‘‘truncated’’ normal form. H0 must be con-
sidered as a function of the new coordinates at each step in the
process: according to equation (9), it is therefore an integral of the
motion for the new Hamiltonian K. The function

I ¼ K � H0 ð10Þ

can be therefore used as a second integral of motion conveying
approximate information on the dynamics of the original system.

The normalizing transformation from equation (4) leads to new
coordinates which are continuous differentiable deformations of
the original ones. For practical applications (for example, to com-
pare results with numerical computations), it is useful to express
approximating functions in the original physical coordinates. In-
verting the coordinate transformation, the new integral of motion
can be expressed in terms of the original variables. Denoting it as
the power series

I ¼
X1
n¼0

"nIn; ð11Þ

its terms can be recovered by means of

In ¼ Vn� Knþ
Xn�1

m¼1

Mn�m Vm� Imð Þ; n � 1; ð12Þ

which is obtained from equation (10) by exploiting the nice prop-
erties of the Lie transformwith respect to inversions (Boccaletti &
Pucacco 1999).

It is important to remember in which respect the normal form
K and the integral I provide approximations to the dynamics of the
original system. The normal form is truncated at stepN: this means
that in the new Hamiltonian a ‘‘remainder’’ of order O("Nþ1) is
neglected and the two functions K and I provide an (exactly)
integrable system whose dynamics, in the new coordinates, is
withinO("N ) of the original system. On the other hand, inverting
the canonical normalizing transformation, the power series from
equation (11) is an approximate integral of motion of the original
system (in the original coordinates), since

fI ;Hg¼ O "Nþ1
� �

: ð13Þ

That is, I fails to commute with the original Hamiltonian for terms
of higher order. We see that in both cases the error made with the
perturbative method is of the same amount, since terms of the
same order are neglected. However, it is not clear if, in the case of
high orders and when a direct comparison is possible, both ap-
proaches lead exactly to the same predictions. Since in various
applications one or the other approaches have pros and cons, one
of the aims of the present work is just to examine and reconcile
possible discrepancies.

We remark that in all subsequent applications involving series
expansions, the role of the perturbation parameter can also be
played by the size of the neighborhood of the origin where the
Hamiltonian is considered. Therefore, the powers of the param-
eter " are left in all expansion formulae just to indicate their order
and are treated as unity in the computations.

2.2. Expanding ‘‘Cored’’ Galactic Potentials

Themodel potential we consider is the Binney logarithmic po-
tential (Binney & Tremaine 1987). The logarithmic potential has
played a fundamental role in the description of galactic models
displaying, with a very simple analytical expression,many realistic
features of elliptical galaxies, in particular employing its singular
scale-free form (Miralda-Escudé & Schwarzschild 1989)

V ¼ 1=2ð Þ log x2þ y2=q2
� �

: ð14Þ

We cannot apply the standard normalization procedure as it is to
a singular potential. In this way we are still not able to explore
the phase-space structure of cuspy models that nowadays seem
to be required by the observed properties of real galaxies (Merritt
1999). However, selected classes of power-law or other singular
potentials can be put in a form suitable to the normalization algo-
rithm by a proper coordinate transformation (Sridhar & Touma
1997). Moreover, it is important to remark that the class of ‘‘weak’’
cusps (Dehnen 1993) displaysmany features of cored potentials, as
can be seen in the numerical exploration performed by Fridman &
Merritt (1997). Therefore, the analysis presented here, even if re-
stricted to potentials that can be Taylor expanded around a homo-
geneous density core, is a useful starting point. Enforcing the
reflection symmetries of galactic potentials, we assume that each
term in the expansion from equation (2) can be written as a homo-
geneous polynomial of degree 2(k þ1) of the form

V2 k (x; y)¼
1

2(k þ1)

Xkþ1

j¼0

a
2( j;k�jþ1) x

2 jy2(k�jþ1);

k ¼ 0; 1; 2; : : : : ð15Þ

ATaylor expansion has a convergence radius that can be finite
and small if compared with the region of interesting dynamics.
One could conservatively deduce that the normal form is a good
approximation of the dynamics only within the convergence ra-
dius of the potential. However, things are not so simple, because
what reallymatters is the convergence of the normal form itself. In
fact, it may happen that a potential with infinite convergence ra-
dius, for example, a perturbed oscillator without escape, has a nor-
mal form with a finite convergence radius; usually, this is related
to the breakup of regular dynamics and the transition to stochas-
ticity. Clearly, in this case there is no hope to get reliable informa-
tion on the dynamics beyond the stochasticity threshold from the
normal form. On the opposite side, there is the possibility that the
system, even if nonintegrable, displays regular dynamics almost
everywhere, and in this case, the normal form can be used even
outside the convergence radius of the original potential. The log-
arithmic potential offers the opportunity to explore all these issues
(Kaasalainen & Binney 1994b).
The cored logarithmic potential can be written as

V ¼ 1=2ð Þ log 1þ x2þ y2=q2
� �

: ð16Þ

The form written here is simplified by the choice of fixing the
length scale (the ‘‘core radius’’ Rc) equal to one, but this is not
a limitation due to the invariance in both the length scale and the
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energy scale. With these units, the energy E may take any non-
negative value,

0 � E <1: ð17Þ

The parameter giving the ‘‘ellipticity’’ of the figure ranges in the
interval

0:6 � q � 1: ð18Þ

Lower values of q can in principle be considered, but correspond
to a nonphysical density distribution. Values greater than unity are
included in the treatment by reversing the role of the coordinate
axes, effectively extending the range to the upper limit 1/0:6 ¼
5/3. The series expansion of the logarithmic potential is

V ¼ 1

2

X1
k¼0

(�1) k

k þ1
x2þ y2

q2

� �kþ1

; ð19Þ

so that the coefficients appearing in equation (15) are

a
2( j; k�jþ1)¼

k þ1

j

� �
(�1) k

q2(k�jþ1)
: ð20Þ

Those of lowest order are

a(2;0) ¼ !2
1 ¼ 1; a(0;2) ¼ !2

2 ¼ 1=q2; ð21Þ
a(4;0) ¼ �1; a(2;2) ¼ �2=q2; a(0;4) ¼ �1=q4; ð22Þ

a(6;0) ¼ 1; a(4;2) ¼ 3=q2; a(2;4) ¼ 3=q4; a(0;6) ¼ 1=q6:

ð23Þ

The natural setting in which one performs a low-order normal-
ization according to the definition from equation (9) is therefore
that of a perturbed quadratic Hamiltonian with a potential start-
ing with the harmonic term and ‘‘frequencies’’ given by equa-
tion (21). For a generic value of q, the frequency ratio

!1=!2 � q ð24Þ

is a real number; the frequencies are rationally independent, and
the terms in the normal form, that is, those polynomials in the
canonical variables commuting with

H0 ¼ 1=2ð Þ p2
x þ p2

y þ !2
1 x

2 þ !2
2 y

2
� �

; ð25Þ

consist only of functions of the partial energies in the harmonic
potential. It is customary to refer to the normal form constructed
in this case as a ‘‘Birkhoff ’’ normal form (Birkhoff 1927). The
presence of terms with small denominators in the expansion for-
bids in general its convergence. It is therefore more effective to
work from the start with a resonant normal form (Sanders &
Verhulst 1985), which is still nonconvergent, but has the ad-
vantage of avoiding the small divisors associated with a partic-
ular resonance. To catch the main features of the orbital structure,
we therefore approximate the frequencies with a rational number
plus a small ‘‘detuning’’ that we assume to be of O("2),

!1=!2 ¼ q ¼ m=nð Þþ " 2�: ð26Þ

We speak of a detuned (m : n) resonance, with mþ n the order
of the resonance. The algorithm to perform a resonant normal-
ization generalizes that of the Birkhoff normalization in its abil-
ity to identify additional terms to be included in the normal form,
since they cannot be eliminated with the sequence of canonical
transformations. To this end, the systemmust be in a form suitable
to apply the resonant normalization procedure; we rescale varia-
bles according to

x �!
ffiffiffiffiffi
!1

p
x; y �!

ffiffiffiffiffi
!2

p
y; px �!

pxffiffiffiffiffi
!1

p ; py �!
pyffiffiffiffiffi
!2

p ;

ð27Þ

in order to put the Hamiltonian in the form

H¼ 1

2
mþ n" 2�
� �

p2
x þ x2

� �
þ n p2

y þ y2
� �h i

þ
X1
k¼1

"2k

2(k þ1)

Xkþ1

j¼0

b
2( j;k�jþ1)x

2jy2(k�jþ1); ð28Þ

where we have used the same notation for the rescaled variables
and

b
2( j;k�jþ1)¼

na
2( j;k�jþ1)

! j
1!

k�jþ2
2

: ð29Þ

Frequencies have been approximated as in equation (26), and
the Hamiltonian is redefined according to the rescaling

H� nH=!2 ¼ nqH : ð30Þ

As before, the new HamiltonianK is said to be in normal form if

fH0;Kg¼ 0; ð31Þ

where in agreement with equation (30), the unperturbed part of
the Hamiltonian from equation (25) has been replaced by

H0 ¼
1

2
m p2

x þ x2
� �

þ n p2
y þ y2

� �h i
ð32Þ

and the procedure is now that of an ordinary resonant ‘‘Birkhoff-
Gustavson’’ normalization (Gustavson 1966; Moser 1968) with
two variants: the coordinate transformations are performed through
the Lie series and the detuning quadratic term is treated as a term
of higher order and put in the perturbation.

2.3. Choice of the Resonance

The ‘‘skeleton’’ of the regular part of the phase space of a non-
integrable system is framed by periodic orbits and invariant tori.
In particular, knowing the location and stability of periodic orbits
allows one to gather a substantial piece of information concerning
thewhole dynamics.Moreover, determining the instability thresh-
olds in terms of physical parameters (e.g., the energy) also provides
clues on the extent to which stochasticity becomes important. The
change in stability of a periodic orbit is connected to frequency ra-
tios; commensurability of low orders between frequencies is the
main trigger to stability-instability transition, and the interaction
of resonances provides chaos. In harmonic oscillators, frequency
ratios are fixed; if their ratio is nonrational, there is no resonance.
For example, the quadratic part of the logarithmic potential is given
by the coefficients from equation (21); with q in the range from
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equation (18), there is no reason to assume it to be a rational num-
ber. However, coupling between the dof due to the perturbation
causes the frequency ratios to change. The system passes through
resonances of order given by the integer ratios closest to the ratio
of the unperturbed frequencies. Crossing the resonance, a stability
change may occur, and in general, a new sequence of periodic
orbits bifurcates (Merritt 1999; Contopoulos 2002). Given an
arbitrary pair of unperturbed frequencies, it could seem better
to approximate their ratio as close as possible with integers. How-
ever, there is an argument onwhich a more effective choice can be
based. A typical situation is that in which a family of periodic
orbits becomes unstable when a low-order resonance occurs be-
tween its fundamental frequency and that of a normal perturba-
tion; the simplest case is given by an axial orbit that, depending
on the specific form of the potential, can be unstable through bi-
furcation of loop orbits (1:1 resonance), ‘‘banana’’ orbits (1:2 res-
onance), ‘‘fish’’ orbits (2 :3 resonance), etc. Therefore, a detuned
low-order resonant normal form can be quite accurate in describ-
ing the corresponding bifurcations. The strategy can be either a
systematic exploration of the hierarchy of resonances or a specific
choice guided by some independent argument (energy range, el-
lipticity range, etc.). Clearly, since the frequency ratio from equa-
tion (26) is given by the parameter q that determines the shapes
of the isopotentials, fixing a specific value of q in the range from
equation (18) also indicates which resonance is expected to be
closer.

It must be emphasized that the structure of a resonant normal
form is also affected by the symmetries of the original system.
The normal formmust preserve these symmetries, and this in gen-
eral also leads to a criterion for truncation. In the present instance
of a double reflection symmetry, given a resonance ratio m/n, the
normal form must contain at least terms of degree 2(mþ n) (see,
e.g., Tuwankotta & Verhulst 2000). Therefore, the criterion we
have adopted in this paper has been that of startingwith the lowest
order truncated normal form incorporating the symmetries of a
typical galactic potential. A systematic investigation of the optimal
order of truncation has recently been performed by Contopoulos
et al. (2003) and Efthymiopoulos et al. (2004). Their results con-
firm the rapid decrease of the optimal order with the radius of the
phase-space domain in which expansions are computed; we may
conjecture that if we are interested in the global dynamics and
accept a moderate level of accuracy, with this very conservative
approach we can get reliable information up to the breakdown of
the regular dynamics. Once particular orbits (or other interesting
features) of the system are selected, more accurate details con-
cerning the location, stability thresholds, and so forth can be de-
rived with a higher order truncation.

3. 1:1 SYMMETRIC RESONANCE
AND SECOND-ORDER NORMALIZATION

We proceed by exploiting the normal form of the system with
the Hamiltonian from equation (28), the potential from equa-
tion (19), and the prescription from equation (29), starting with
the simplest possibility: a Lie transform normalization truncated
to the first nonnull term in the normal form. Recalling the symmet-
ries of the potential represented by equation (21), the first non-
trivial equation in the chain from equation (8) is

K2 ¼ V2þM2H 0; ð33Þ

so that we actually truncate at order 2. Applying standard meth-
ods (Meyer & Hall 1992; Boccaletti & Pucacco 1999) gives the

following expression of the second-order normal form (Belmonte
et al. 2006):

K
(1:1)
2 ¼ 1

2
� P 2

X þ X 2
� �

� 3

32
q P 2

X þ X 2
� �2þ 1

q
P 2
Y þ Y 2

� �2� 	

� 1

16
P 2
Y 3P 2

X þ X 2
� �

þ Y 2 P 2
X þ 3X 2

� �
þ 4PXPYXY


 �
; ð34Þ

K
(m:n)
2 ¼ n

2
� P 2

X þ X 2
� �

þ k1 q P 2
X þ X 2

� �2 þ 1

q
P 2
Y þ Y 2

� � 2� 	
þ k2 P 2

X þ X 2
� �

P 2
Y þ Y 2

� �
; ð35Þ

where the values of the coefficients in the expansion of the po-
tential come from equations (21) and (22), and k1 and k2 are ra-
tional numbers dependent on m and n. Equation (26) has been
used, and the canonical variables P andQ are as in equation (3).
We see that this case behaves in the sameway as in the first-orderY
averaging approach (de Zeeuw & Merritt 1983; Verhulst 1996):
the 1:1 resonance or all other resonances. This remark is another
clue to the strategy delineated in x 2.3, which is to limit the global
analysis to a normal form truncated to the first term incorporating
a meaningful resonance. Therefore, for a preliminary investiga-
tion of periodic orbits with the lowest commensurability, which
in the present instance is

!1=!2 ¼ 1þ " 2�; ð36Þ

we can just exploit a 1 :1 normal form truncated at K
(1:1)
2 .

In the following subsections we work out in detail this anal-
ysis to take it also as a record for the cases with higher order res-
onances. In fact, in these cases the procedure goes along the same
lines, but reporting computations in details is not so easy due to
huge expressions. In x 5.1 we get more accurate numerical results
going to sixth order. A detailed study of the orbits in the 1:1 reso-
nance case (including periodic and nonperiodic orbits) has been
provided by Contopoulos (1965).

3.1. Orbit Structure of the 1:1 Resonance

To investigate the phase-space structure of the system, it is con-
venient to write the normal form as

K (1:1) ¼ J1þ J2þ "2
�
�J1�

3

8

�
qJ 2

1 þ 1

q
J 2
2

þ 2

3
J1J2 2þ cos (2�1� 2�2)½ �


�
; ð37Þ

where the action-angle variables are introduced according to

X ¼
ffiffiffiffiffiffiffi
2J1

p
cos �1; ð38Þ

PX ¼
ffiffiffiffiffiffiffi
2J1

p
sin �1; ð39Þ

Y ¼
ffiffiffiffiffiffiffi
2J2

p
cos �2; ð40Þ

PY ¼
ffiffiffiffiffiffiffi
2J2

p
sin �2: ð41Þ

The structure of equation (37) displays the effect of the sym-
metries on the resonant part: angles appear only through the
combination 2�1 � 2�2, and this shows why the symmetric 1 :1
resonance can also be dubbed a ‘‘2 : 2’’ resonance. We now have
an integrable systemwith dynamics generated by the Hamiltonian
from equation (37) with a second independent integral of motion

H0 � E ¼ J1 þ J2: ð42Þ
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This system is the simplest integrable approximation of the non-
integrable dynamics in the logarithmic potential dominated by the
lowest order resonance. In the normal form of equation (37), the
perturbation parameter appears as a reminder to denote terms of
the same order and, according to the criterion stated above (see
x 2.1), is set equal to unity in the computations. To get a quick
overview of its structure, we can use equation (37) to identify the
main periodic orbits. The procedure is the following (Sanders &
Verhulst 1985, x 7.4): we perform the canonical transformation
to ‘‘adapted resonance coordinates’’

 ¼ 2(�1� �2); ð43Þ
� ¼ 2(�1þ �2); ð44Þ
J1 ¼ (E þR)=2; ð45Þ
J2 ¼ (E �R)=2; ð46Þ

where E is defined in equation (42) and

R ¼ J1� J2: ð47Þ

Since � is cyclic and its conjugate action E is the additional in-
tegral of motion, we introduce the ‘‘effective’’ Hamiltonian

K̃ ¼ K (1:1)(R;  ; E; q); ð48Þ

namely,

K̃ ¼ Eþ 1

2
(q�1)(E þR)þ A E 2 þR2

� �
þ BERþ C E 2 �R2

� �
(2þ cos  ); ð49Þ

with

A ¼� 3(q2 þ 1)

32q
; ð50Þ

B ¼� 3(q2 � 1)

16q
; ð51Þ

C ¼� 1

16
: ð52Þ

Considering the dynamics at a fixed value of E, we have that K̃
defines a 1 dof ( ;R) system with the equations of motion

 ̇ ¼ K̃R ¼ 1

2
(q� 1)þ BE þ 2 A� C(2þ cos  )½ �R; ð53Þ

Ṙ ¼ �K̃ ¼ C E 2 �R2
� �

sin  : ð54Þ

Let us determine the fixed points of this system; these in turn
give the periodic orbits of the original system. The right-hand
side of equation (54) vanishes in one of the following three
cases:

1. R ¼ �E,
2.  ¼ 0,
3.  ¼ ��.
In the first case, the right-hand side of equation (53) vanishes

when

1� q� 2 B � 2 A� C(2þ cos  )½ �f gE ¼ 0; ð55Þ

and the two periodic orbits

R ¼ E; J2 ¼ 0 (type Ia); ð56Þ
R ¼ �E; J1 ¼ 0 (type Ib) ð57Þ

ensue. The orbit of type Ia is the periodic orbit along the x-axis
( long axial orbit), whereas the orbit of type Ib is the periodic or-
bit along the y-axis (short axial orbit).

In the second case, the right-hand side of equation (53) vanishes
when

R ¼ q� 1þ 2BE
4(3C � A)

¼ 8q� 3(1þ q)E
3(q� 1)

;  ¼ 0; ð58Þ

where equations (50)Y(52) have been used. This fixed point de-
termines the ‘‘inclined’’ orbit

J1 ¼
4q� 3E
3(q� 1)

; J2 ¼
q(3E � 4)

3(q� 1)
( type II ): ð59Þ

Note that

0 � J1; J2 � E ð60Þ

and this range determines the condition for existence of the or-
bit of type II.

In the third case, the right-hand side of equation (53) vanishes
when

R¼ q�1þ 2BE
4(C � A)

¼ 8q(q� 1)þ 3 1� q2ð ÞE
3q2 � 2qþ 3

;  ¼ �: ð61Þ

The fixed point in equation (61) determines the elliptic (‘‘loop’’)
orbit

J1 ¼
(3� q)E þ 4q(q� 1)

3q2� 2qþ 3
;

J2 ¼
q(3q�1)E � 4q(q� 1)

3q2 � 2qþ 3
(type III ): ð62Þ

The range from equation (60) still determines the condition for
existence of the orbit of type III.

3.2. Stability Analysis of the 1:1 Resonance

Let us now consider the question of the stability of the periodic
orbits. As discussed in x 3.1, the 1 :1 resonant normal form essen-
tially captures those features of the system characterized by the
lowest order of commensurability between frequencies. In par-
ticular, it is able to describe the cases in which the nominal fre-
quency characterizing a periodic orbit happens to become equal to
that of a normal perturbation. The characteristic curve represent-
ing this equivalence in some suitable parameter space provides the
stability-instability transition looked for.

For orbits of types II and III, an ordinary investigation of the
equations of variations of the system from equations (53) and (54)
is enough to perform the linear stability analysis (Contopoulos
1978) in analogywith the Floquetmethod. However, in the case of
axial orbits of type I, action-angle variables have singularities on
them, and these also affect the adapted resonance coordinates.
However, the remedy is quite straightforward: use a mixed com-
bination of action-angle variables on the orbit itself and Cartesian
variables for the other dof.

Let us start with the orbits of type II and III that, due to their
nonsingularity, are usually referred to as periodic orbits in general
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position. The system of differential equations for the perturbations
(� ; �R) is given by

d

dt

� 

�R

� �
¼

K̃R K̃RR

�K̃  �K̃R 

 !
� 

�R

� �
: ð63Þ

The sign of the determinant of the Hessian matrix computed on
the periodic orbit, po,

� ¼ K̃ 2
R � K̃RR K̃  

� ����
po
; ð64Þ

determines the fate of a perturbation: if � is negative it gives
the frequency of bounded oscillating solutions

!p ¼
1

q

ffiffiffiffiffiffiffiffi
��

p
; ð65Þ

where the factor 1/q is due to the rescaling from equation (30).
If � is positive, it gives the characteristic exponent of the time
evolution of a growing perturbation

� ¼ � 1

q

ffiffiffiffi
�

p
: ð66Þ

Therefore, with our 1:1 resonant normal form from equation (49),
the condition for stability is

� ¼ 4C 2R 2 sin2 � 2C E 2 þR2
� �

; cos  A� C(2þ cos  )½ �jpo < 0: ð67Þ

Observing that each periodic orbit is identified by a fixed value
of the pair ( ;R) and using the values of the constants in equa-
tions (50) and (52), we see that the parameter space is spanned
by the ellipticity q and the second integral of motion E; usually,
characteristic curves in this space provide the instability thresh-
old. We remark that the choice of the integral E as one of the
coordinates in the parameter space is the simplest one and is
usually adopted for a qualitative analysis (Sanders & Verhulst
1985); however, for quantitative predictions and especially for
comparisons with other approaches, a more natural choice would
be the physical value of the energy E, of which E (but for a re-
scaling) is only a first-order approximation. In general, using E
in this framework is usually quite difficult for computational
problems; this is one of the problems we mentioned above with
exploiting the normal form in the normalizing coordinates. Using
Ewith the original Hamiltonian and an approximate integral of
motion is instead not only natural but also computationally easier.
At the end of this subsectionwe see how to overcome the problem
in the particular case of orbits of type I and how to express the
characteristic curves in terms of E.

An immediate application of the condition from equation (67)
concerns the inclined and loop orbits discussed above. In cases II
and III, we get, respectively,

�j ¼0 ¼ 2 E 2 �R2
� �

C(A� 3C ) type II; ð68Þ

�j ¼� ¼ 2 E 2 �R2
� �

C(C � A) type III: ð69Þ

From the obvious inequality E > R, �j ¼0 is always positive
and�j ¼� is always negative; therefore, the inclined (type II) or-
bit is unstable for all values of q and E, whereas the loop (type III)

orbit (when it exists, compare with the conditions from eqs. [62]
and [60]) is stable for all values of q and E.
Our major concern, however, is to analyze the stability prop-

erties of type I orbits, the axial orbits, also denoted as normal
modes because each of them is identified by only one of the actions.
Using action-angle variables on the normal mode and Cartesian
variables on the normal bundle to it, the ensuing procedure is
then first to determine the condition for the normal mode to be a
critical curve of the Hamiltonian in these coordinates. Second,
to assess its nature (Kummer 1979; Contopoulos 1978; Sanders&
Verhulst 1985, x 7.4.4) the condition is found by considering the
function

K (�) ¼ K þ �H0; ð70Þ

where � has to be considered as a Lagrange multiplier to take
into account that there is the constraint H0 ¼ E. The Lagrange
multiplier is found by imposing

dK (�) ¼ 0; ð71Þ

that is, the total differential of equation (70) vanishes on the nor-
mal mode. Its nature is assessed by computing the matrix of sec-
ond derivatives of K(�); if the Hessian determinant of the second
variation is positive definite, the mode is elliptic stable; if it is
negative definite, the mode is hyperbolic unstable. In the case
of the y-axis orbit of equation (57), good coordinates are X , PX ,
and

J ¼ J2; ð72Þ
� ¼ �2; ð73Þ

so that the periodic orbit is given by

X ¼ PX ¼ 0; J ¼ E: ð74Þ

The terms in the normal form are then

H0 ¼ 1=2ð Þ X 2 þ P 2
X

� �
þ J ; ð75Þ

K2 ¼
1

2
(q� 1) X 2 þ P 2

X

� �
� 3

32
q X 2 þ P 2

X

� �2þ 4

q
J 2

� 	

� 1

8
J 2 X 2þ P 2

X

� �
þ X 2� P 2

X

� �
cos 2�þ 2XPX sin 2�


 �
:

ð76Þ

It is straightforward to check that, in this case, equation (71) re-
duced to the periodic orbit defined by equation (74) gives

�þ 1� 3E
4q

¼ 0; ð77Þ

which allows us to find the required value of the Lagrange mul-
tiplier. With this result, the matrix of the second derivatives of
K (�) on the periodic orbit is

1

8

s11 �E sin 2�

�E sin 2� s22

� �
; ð78Þ

where

s11 ¼ 4(q�1)� E½(2þ cos 2�)� (3=q)�;

s22 ¼ 4(q�1)� E½(2� cos 2�)� (3=q)�:
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The equation det ½d 2K (�)(E )�¼ 0 gives

(q�1)(4q� 3E ) 4q2þ 3E � q(4þ E )

 �

¼ 0; ð79Þ

and according to the above recipe, for stability this polynomial
in (q; E ) must be positive. With q in the range from equation (18)
as the independent parameter, the instability condition is

4q(1� q)

3� q
< E < 4q

3
: ð80Þ

It is interesting to remark that the instability threshold correspond-
ing to the first inequality in equation (80) coincides with the con-
dition of existence of the loop orbit. In fact, from the obvious
condition from equation (60) and the values in equation (62), we
see that their validity is satisfied exactly by the first inequality in
equation (80); this is equivalent to stating that at the point in the
parameter space where the short-axis orbits become unstable, the
sequence of loop orbits bifurcates. The second inequality corre-
sponds to a return to stability that actually disappears with the
higher order treatment.

Proceeding in the same way in the case of the x-axis orbit of
equation (56), analogous expressions can be obtained using non-
singular coordinates J , �, Y , andPY , and it is quite straightforward
to check that, at this level of approximation, the type Ia orbit is al-
ways stable. The procedure above shows the amount of informa-
tion that can be extracted from the 1:1 resonant normal form. In this
respect, it is analogous to the first-orderYaveraging approach ap-
plied by deZeeuw&Merritt (1983) in studying the Schwarzschild
potential.

Before going forward, we want to discuss how to give a more
concrete meaning to the result embodied by equation (80); this is
possible if the physical energyE appears explicitly. According to
the rescaling from equation (30), we assume that

nE=!2 ð81Þ

is the constant ‘‘energy’’ value assumed by the truncated
Hamiltonian K. In the present instance, n ¼ 1 and !2 ¼ 1/q, so
that on the y-axis orbit given by equation (74), we have

K ¼ E � 3

8q
E 2 þ : : : ¼ qE: ð82Þ

The dots are present to recall that a remainder has been neglected.
The series from equation (82) can be inverted to give

E ¼ q E þ 3

8
E 2 þ : : :

� �
; ð83Þ

and this can be used in the treatment of stability to replace E with
E. With this substitution, the critical curve corresponding to the
first inequality in equation (80) is simply

E(q)¼ 2(1� q): ð84Þ

Equation (82) is also useful for finding the oscillation frequency
on the periodic orbit,

�2 ¼
1

q

@K

@E ¼ 1

q
1� 3

4q
E

� �
; ð85Þ

which is needed if one is interested in computing either the fre-
quency ratio

r2 ¼ !p=�2; ð86Þ

where the perturbation frequency !p is defined in equation (65),
or the e-folding rate

�2 ¼ �=�2; ð87Þ

where the timescale � is defined in equation (66).
The analysis with a normal form truncated at higher order would

provide more accurate predictions. However, for the time being,
wewant to firstmake the analogous analysis with the approximate
integral to better understand the relationship between the two
approaches.

3.3. Stability Analysis with the Approximate
Integral in the Original Variables

Recalling the generic expression of the terms in the integral of
motion from equation (12), if we truncate to second order, we have

I (1:1) ¼ H0 þ "2 V2� K
(1:1)
2

� �
: ð88Þ

This is the best approximate integral of motion of a symmetric
perturbed 1:1 oscillator to order "4 in the perturbation parameter;
in fact, due to the symmetries of the problem odd-degree terms are
absent both in the normal form and in the approximate integral. A
remark on how to interpret terms in equation (88) is necessary;
even if not explicitly indicated, all of them must be intended as
polynomials in the original variables ( px; py; x; y). In particular,
K (1:1)

2
is the same as in equation (34), where capital letter variables

are simply replaced by the corresponding lowercase letters.
To assess the stability of periodic orbits, we may proceed in

the following way. Starting for definiteness with the y-axis or-
bit, we use I (1:1) and the conserved energy E to construct an x-px
Poincaré section by means of the intersection of the function
I (1:1)(x; y; px;E ) with the y ¼ 0 hyperplane. The level curves of
the function

F ¼ I (1:1)(x; 0; px;E ) ð89Þ

allow us to determine the nature of critical points and invariant
curves. Critical points (cps) on the surface correspond to periodic
orbits in phase space (Contopoulos 2002), and their nature gives
the necessary information: they are either extrema (elliptic Bxed
point ¼ stableperiodicorbit) or saddles (hyperbolicBxedpoint ¼
unstable periodic orbit), and this can be assessed by using the
Hessian determinant

Fpx pxFxx� F 2
xpx

� ����
cp
: ð90Þ

Clearly, for a periodic orbit, even the location of the critical points
can be already quite difficult, and this limits the generality of the
approach. However, in the case of axial orbits, the approach is
straightforward; the y-axis orbit, for example, coincides with the
origin in this section. The second derivatives at the origin are

Fpx px jcp ¼ 4(q�1); ð91Þ
Fxxjcp ¼ 4(q�1)þ 2E; ð92Þ

Fxpx jcp ¼ 0: ð93Þ
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The range of instability (namely, the range where the two non-
vanishing second derivatives have different signs) is

E > 2(1� q); ð94Þ

in agreementwith equation (84).We remark that the results reported
in Belmonte et al. (2006, cf. Table 1) were obtained just by using
both equations (80) and (94) and pointing out the discrepancy
between the two predictions. An analogous procedure can be fol-
lowed for the x-axis orbit by constructing a y-py Poincaré section
and studying the level curves of the function

F ¼ I (1:1)(0; y; py;E ) ð95Þ

obtained by means of the intersection of the function I (1:1)

(x; y; py;E ) with the x ¼ 0 hyperplane. In agreement with the
results of x 3.2, the x-axis orbit is predicted to be stable using
the present critical point analysis.

4. 1:2 SYMMETRIC RESONANCE
AND FOURTH-ORDER NORMALIZATION

The loop orbit bifurcates from the y-axis orbit at its instability
threshold and is correctly described by the 1:1 (detuned) resonant
normal form, because its appearance coincides with the equality
of the frequencies of the axial orbit and that of a normal pertur-
bation. The ‘‘banana’’ orbits bifurcate from the x-axis when the
frequency of the axial orbit falls to one-half of that of a normal
perturbation. This is the reason why the 1:1 resonant normal form
does not detect any change of stability and we need the 1: 2 (de-
tuned) resonant normal form. A detailed study of the orbits in this
resonance has been provided by Contopoulos (1963).

4.1. Orbit Structure of the 1 : 2 Resonance

In the case of the m ¼ 1, n ¼ 2 resonance in the presence of
reflection symmetries about both axes, we know that the normal
form must be pushed at least to order 4, since it has to include
terms of degree 2(mþ n) ¼ 6. Therefore, we have to perform a
further step of normalization to include K4 in the normal form,
and the system to solve is now

K2 ¼ V2þM2H0; ð96Þ
K4 ¼ V4þM2V2þM 4H0: ð97Þ

The expression of the normal form is quite involved (cf. Belmonte
et al. 2006), but we can exploit the change of variables to action-
angle coordinates as defined in equation (38) to see its structure
more easily:

K (1:2) ¼ J1þ 2J2þ "2 2�J1� P2(J1; J2)½ �

þ "4 P3(J1; J2)þ
9

8
J 2
1 J2 cos (4�1� 2�2)

� 	
; ð98Þ

where the polynomials P2 and P3 are homogeneous of degree 2
and 3, respectively,

P2 ¼
3

4
qJ 2

1 þ 1

q
J 2
2

� �
þ J1J2;

P3 ¼ q
5

6
� 17

16
q

� �
J 3
1 þ 13

12
� 3

2
q

� �
J 2
1 J2

� 5

12
� 3

4q

� �
J1J

2
2 þ 29

96
q2J 3

2 ;

and the frequency ratio from equation (26) now is

!1=!2 ¼ 1=2ð Þþ " 2�: ð99Þ

The adapted resonance coordinates are now defined by

 ¼ 4�1� 2�2; ð100Þ
� ¼ 4�1þ 2�2; ð101Þ
J1 ¼ E þ 2R; ð102Þ
J2 ¼ 2E �R: ð103Þ

As before, knowledge of the orbit structure is obtained by inves-
tigating the fixed points of the one-dimensional dynamical system
associated with the effective Hamiltonian

K̃ (1:2) ¼ K (1:2)(R;  ; E; q); ð104Þ

where

R ¼ 1

5
(2J1� J2); ð105Þ

at fixed values of the integral of motion

E ¼ 1

5
(J1þ 2J2): ð106Þ

The study of existence and stability of periodic orbits proceeds
in the same way as in x 3. In the present case, the normal modes
(axial orbits) are given by

R ¼ 2E; J2 ¼ 0 (type Ia); ð107Þ
R ¼ �E=2; J1 ¼ 0 (type Ib): ð108Þ

The other periodic orbits are identified by the zeros of the system

K̃
(1:2)
R ¼ 0; ð109Þ

K̃
(1:2)
 ¼ 0: ð110Þ

In one case, equation (110) is satisfied by  ¼ 0, and the corre-
sponding root of equation (109),

R ¼ RB(E; q); J1 ¼ J1(B); J2 ¼ J2(B); ð111Þ

determines the ‘‘banana’’ orbit. In the other case, equation (110)
is satisfied by ¼ �, and the corresponding root of equation (109),

R ¼ RA(E; q); J1 ¼ J1(A); J2 ¼ J2(A); ð112Þ

determines the ‘‘antibanana.’’ From equation (106), their range
is given by

0 � J1(B;A) � 2RB;A(E; q)þ E � 5E; ð113Þ

0 � J2(B;A) � 2E �RB;A(E; q) �
5

2
E: ð114Þ

4.2. Stability Analysis with the Normal Form

The procedure to determine the condition of stability of axial
orbits leads us to analyze critical curves of the modified function
from equation (70), where K is now given by equation (98). From
the analysis of the 1:1 resonance, we have seen that it cannot de-
tect any instability threshold of the long-axis periodic orbit, and
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therefore, we readily address this question in the framework of the
1:2 resonance. Considering the x-axis (type Ia, eq. [107]) orbit,
good coordinates are given by

X ¼
ffiffiffiffiffiffi
2J

p
cos �; ð115Þ

PX ¼
ffiffiffiffiffiffi
2J

p
sin �; ð116Þ

Y ¼ Y ; ð117Þ
PY ¼ V ; ð118Þ

so that the periodic orbit is given by

Y ¼ V ¼ 0; J ¼ 5E; ð119Þ
H 0 ¼ J þ Y 2þ V 2: ð120Þ

Equation (71) allows us to find the Lagrange multiplier

� ¼ 1

16
�32qþ 24Eq� 40E 2qþ 51E 2q2
� �

: ð121Þ

The equation det ½K (�)(E )�¼ 0, obtained by computing the ma-
trix of the second derivatives of K (�) on the normal bundle to
the periodic orbit from equation (119), is

48� 96qþ 24(3q� 1)E þ 26� 153qþ 153q2
� �

E 2

 �
; 48� 96qþ 24(3q� 1)E þ 26� 159qþ 153q2

� �
E 2


 �
¼ 0;

ð122Þ

whose zeros are

EB� ¼ 4
3� 9q �

ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�23þ187q� 432q2þ 306q3

p
26�153qþ153q2

;

ð123Þ

EA� ¼ 4
3� 9q �

ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�23þ193q� 444q2þ 306q3

p
26�159qþ153q2

:

ð124Þ

It happens that the conditions of existence in equations (113) and
(114) are satisfied exactly when

EBþ � E � EB� ð125Þ

for the banana orbit and

EAþ � E � EA� ð126Þ

for the antibanana. We again see the relation between transition
to instability of a normal mode and bifurcation of a resonant peri-
odic orbit, since outside the above ranges, the determinant � ¼
det ½K (�)(E )� is positive. As before, we want to make the analo-
gous analysis with the approximate integral to better grasp the re-
lationship between the two approaches.

4.3. Stability Analysis with the Approximate Integral of Motion

We can develop the parallel approach of determining the nature
of fixed points on the surface of section also for higher order ap-
proximate integrals. Using equation (12), if we truncate at fourth
order, we have

I (1:2) ¼ H0þ " 2 V2� K2ð Þþ "4 V4� fg2;K2g� K4ð Þ; ð127Þ

where

g2 ¼
1

24
P 2
X PYY � 3q

16
P 3
X X � 1

3
PX P

2
Y X � 5q

16
PX X

3

� 3

32q
P 3
YY � 7

24
PYX

2Y � 1

6
PXXY 2� 5

32q
PYY

3

ð128Þ

is the second-order generating function determined in the first step
of the normalization. This is the best approximate integral of mo-
tion of a symmetric perturbed 1 : 2 oscillator to order "6 in the per-
turbation parameter. Let us again consider the x-axis orbit; the
construction of the y-py Poincaré section and the study of the crit-
ical points of the function

F ¼ I (1:2)(0; y; py;E ); ð129Þ

obtainedbymeansof the intersectionof the function I (1:2)(x; y; py;E )
with the x ¼ 0 hyperplane, proceeds as above. Concerning the
nature of the fixed point in the origin, we get quadratic inequalities
in the energy analogous to those arising from equation (122);
the discrepancy between the two methods is still of order � 2.
The locus of points where the origin in the y-py Poincaré sec-
tion changes from an extremum to a saddle are

EB� ¼ 4
�8þ10q2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
228q� 887q2þ 830q3 þ 100q4

p
�76þ165q2

;

ð130Þ

EA� ¼ 4
�4þ 2q2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
180q� 659q2þ 614q3þ 4q4

p
15(�4qþ 7q2)

:

ð131Þ

These are clearly related to those found above, but are not the
same; to reconcile the two predictions, it is first necessary to give
the relation between the new ‘‘energy’’ E and the physical energy
E. But this is actually not enough; as seen in the 1:1 case, one
must also perform a series expansion of the relations in the (q;E )-
plane and truncate it at the same order as the normal form.

According to the rescaling from equation (30), with n ¼ 2 and
!2 ¼ 1=q, on the x-axis orbit given by equation (119), we have

K ¼ 2qJ � 3

4
qJ 2þ 1

2
q

5

3
� 17

4
q(q�1)

� 	
J 3 þ : : : ¼ 2qE:

ð132Þ

The dots are present to recall that a remainder has been neglected.
The series from equation (132) can be inverted to give

J ¼ 5E ¼ E þ 3

8
E 2 � 1

16

13

6
þ 17q(1� q)

� 	
E 3 þ : : : ;

ð133Þ

and this can be used in the treatment of stability to replace E with
E. We limit ourselves to the lower bounds in the ranges in equa-
tions (125) and (126), getting sufficient conditions for the bifurca-
tion of, respectively, bananas and antibananas:

EBþ ¼ 8 q� 1

2

� �
� 20

3
q� 1

2

� �2
; ð134Þ

EAþ ¼ 8 q� 1

2

� �
þ 28

3
q� 1

2

� �2
: ð135Þ
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It can be checked by a long but easy computation that the above
series coincide with those obtained by, respectively, expanding
EBþ in equation (130) and EAþ in equation (131) in q around q ¼
1/2, thus confirming the equivalence between the two methods. In
x 5 we present a more precise result obtained from a normal form
truncated at higher order.

5. ORBIT STRUCTURE
OF THE LOGARITHMIC POTENTIAL

The theory discussed in the above sections is applied to inves-
tigate the orbit structure of the logarithmic potential. In particu-
lar, we are interested in simple recipes to predict the stability of
the main periodic orbits. We can compare these analytical pre-
dictions with other results, mainly numerical, from the litera-
ture. In particular, we have chosen the work byMiralda-Escudé
& Schwarzschild (1989, hereafter MES89), who made an accu-
rate numerical exploration of the phase-space structure of the
logarithmic potential; they give the existence parameter ranges
of the main families of periodic orbits and the bifurcation ensu-
ing from instability thresholds in two models (corresponding to
ellipticity values q ¼ 0:7 and 0.9) determined by solving the per-
turbation equations with the Floquet method. The authors used
the core radius Rc to parameterize the sequence of periodic or-
bits, because they were interested in comparing the results with
the case of the singular scale-free case Rc ¼ 0; in fact, they fix the
energy E ¼ 0 in all their computations and vary Rc and q. For
our purposes, it is more natural to use the energy and the ellip-
ticity as parameters. To compare our results with that in MES89,
the conversion

E ¼ �log Rc ð136Þ

must be used. We have numerically computed the instability
thresholds of the axial orbits in the range 0:6 < q < 1, with
results in agreement with MES89 where available.

Another approach to the study of the stability of axial orbits in
the logarithmic potential has been followed by Scuflaire (1995,
hereafter S95), who solved the Hill-like equation of the normal
perturbation to the periodic orbit by means of a Poincaré-Lindstedt
series expansion up to order 20. S95 uses a, the amplitude of the
axial orbit, as a parameter; the conversion to energy is given by

E ¼ 1=2ð Þ log 1þ a2
� �

; ð137Þ
E ¼ 1=2ð Þ log 1þ (a=q) 2


 �
; ð138Þ

on the x-axis and y-axis orbits, respectively. The approach in S95
is analytical and perturbative, but being based on the theory of
nonlinear differential equations with periodic coefficients (Jordan
&Smith 1999), is quite different from ours; it is therefore a very
useful term of comparison, because its results, even if restricted
to axial orbits only, stem from a very high order perturbation
analysis.

5.1. Stability and Bifurcation of Closed Orbits

To get a higher precision than that obtained in the discussion
of xx 3 and 4, we have computed the 1:1 and 1: 2 resonant nor-
mal form up to order 6 (degree 8 in the variables). A general anal-
ysis of these normal forms is quite cumbersome, but concerning
the axial orbits, they allow us to get quite easily improved predic-
tions of the stability thresholds.

In the case of the y-axis orbit, using the same coordinate as in
x 3.2, the normal form on the periodic orbit (J1 ¼ 0; J2 ¼ E ) is

K ¼ E � 3

8q
E 2þ 29

192q2
E 3� 55

1024q3
E 4 þ : : : ¼ qE: ð139Þ

As a consequence, the upgraded evaluation of the frequency on
the y-axis orbit is

�2(E )¼
1

q

@K

@E ¼ 1

q
1� 3

4q
E þ 29

64q2
E 2� 55

256q3
E 3

� �
:

ð140Þ

These series generalize equations (82) and (85), respectively.
As before, we actually prefer to have expressions in terms of the
‘‘real’’ energy E, so we invert equation (139) to get

E ¼ qE 1þ 3

8
E þ 25

192
E 2þ 35

1024
E 3 þ : : :

� �
ð141Þ

and substitute in equation (140), obtaining

� 2(E )¼
1

q
1� 3

4
E þ 11

64
E 2þ 7

256
E 3

� �
: ð142Þ

Computing the determinant of thematrix of the second derivatives
of the modified function from equation (70), det ½d 2K (�)(E )�, and
setting it equal to zero gives

(q�1) 64q2� 48qE þ (29�17q)E 2

 �

; 64q2(1þ q)þ16q(3� q)E � q2 �2qþ 29
� �

E 2

 �

¼ 0;

ð143Þ

generalizing equation (79). Substituting equation (141) and solv-
ing for E, we get

E(q)¼ 2(1� q)þ (1� q)2� 5

6
(1� q) 3; ð144Þ

obtaining a prediction of the stability-instability transition of the
short-axis orbit (with subsequent bifurcation of the loop orbit) up
to third order in the (q;E )-plane. The values obtained from this re-
lation are shown in Figure 1 (solid line) and are comparedwith the
numerical results from the Floquet theory (dotted line), showing a
very good agreement; the values obtained by MES89 (dots) are

Fig. 1.—Stability thresholds of the short y-axis orbit: analytical (eq. [144], solid
line); numerical solution with the Floquet method (dotted line).
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0.21 in the case of q ¼ 0:9 and 0.72 in the case of q ¼ 0:7. More-
over, the expansions from equations (142) and (144) coincide up
to the same order with those reported in S95 when the conversion
from amplitude to energy is performed using equation (138).

We may also compute the ratio from equation (86) between the
frequency of the perturbation and that of the periodic orbit, where
the perturbation frequency is associated with the determinant in
the left-hand side of equation (143) like in equation (65) and the
e-folding rate is as defined in equation (87); as expected, at low
energy the ratio has limit q, since !p ! 1 and �2 ! 1/q, whereas
at the transition, the ratio coincides with the resonance value 1. In
Figure 2 the two quantities are plotted for q ¼ 0:9, and in Figure 3
they are plotted for q ¼ 0:7. They can be compared with the cor-
responding figures inMES89 (bottom panels in their Figs. 7 and 8)
where they have been obtained numerically. The return to stability
at higher energies mentioned in x 3 (cf. the second inequality in
eq. [80]) does not occur in the logarithmic potential. This incom-
pleteness also appears in the treatmentmade by deZeeuw&Merritt
(1983) of the Schwarzschild potential using first-order averaging.
This problem is solved by our higher order approach, because the
other roots of equation (143) are either negative or complex.

In the case of the x-axis orbit, we limit ourselves to provide
results without derivation. The 1: 2 normal form on the periodic
orbit (eq. [98] with J2 ¼ 0) is

K ¼ 2qJ1�
3

4
qJ 2

1 þ 1

2
q

5

3
� 17

4
q(q� 1)

� 	
J 3
1

� 5

16
q

7

2
� 11q� 75

8
q2

� �
J 4
1 : ð145Þ

As a consequence, the upgraded evaluation of the expansion of
the action in terms of the true energy is

J1 ¼ E þ 3

8
E 2 � 1

16

13

6
þ 17q(1� q)

� 	
E 3

þ 5

128

3

4
þ 7q� 27

2
q2

� �
E 4: ð146Þ

The frequency on the x-axis orbit computed through

�1(J1)¼
1

2q

@K

@ J1
ð147Þ

and expressed in term of the upgraded expansion from equa-
tion (146) is

�1 ¼ 1� 3

4
E þ 11

64
E 2 þ 7

256
E 3: ð148Þ

Computing the determinant of the matrix of the second deriva-
tives of the modified function from equation (70) on the periodic
orbit,� ¼ det ½d 2K (�)�, and setting it equal to zero gives, in this
case, an equation of sixth degree; the two roots in addition to those
in equations (130) and (131), in analogy to the rootsEB� and EA�,
does not put further constraints on the conditions sufficient for in-
stability of the axial orbit. Therefore, we use the upgraded version
of the relevant roots and express them as series in powers of q� 1

2
,

to get

EBþ ¼ 8 q� 1

2

� �
� 20

3
q� 1

2

� �2
þ 268

9
q� 1

2

� �3
; ð149Þ

EAþ ¼ 8 q� 1

2

� �
þ 28

3
q� 1

2

� �2
þ 460

9
q� 1

2

� �3
; ð150Þ

obtaining a prediction of the stability-instability transition of
the long-axis orbit (with subsequent bifurcation of the banana
orbit) up to third order in the (q;E )-plane. The values obtained
from these relations are shown in Figure 4; the solid and dotted
lines are, respectively, the relations in equations (149) and (150)
and are compared with the numerical results from the Floquet
theory, namely, bifurcation of the banana (dash-dotted line) and
bifurcation of the antibanana (dashed line). The values obtained
by MES89 are, respectively, E ¼ 1:52 and 4.29 in the case

Fig. 2.—Frequency ratio and e-folding rate for the short y-axis orbit at q ¼ 0:9.

Fig. 3.—Same as Fig. 2, but for q ¼ 0:7.

Fig. 4.—Stability thresholds of the long x-axis orbit: analytical ( banana bifur-
cation, eq. [149], solid line; and antibanana bifurcation, eq. [150], dotted line) and
numerical (dash-dotted and dashed lines, respectively).
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q ¼ 0:7, whereas in the case q ¼ 0:9, only the first transition at
E ¼ 3:62 is available. Moreover, the expansions from equa-
tions (148)Y(150) coincide up to the same orderwith those reported
in S95 when the conversion from amplitude to energy is performed
using equation (137).

We may also compute the ratio

r1 ¼ !p=�1; ð151Þ

between the frequency of the perturbation and that of the perio-
dic orbit, where the perturbation frequency is associated with the
determinant on the left-hand side of equation (122) like in equa-
tion (65) and the e-folding rate is as defined in equation (87), but
with�1 in place of�2. In this case, at low energy the ratio has limit
1/q, since !p ! 1/q and �1 ! 1, whereas at the transition, the
ratio has the resonance value 2. In Figure 5 the two quantities are
plotted for q ¼ 0:9, and in Figure 6 they are plotted for q ¼ 0:7.
They can be compared with the corresponding figures in MES89
(top panels in their Figs. 7 and 8) where they have been obtained
numerically.

A demanding test of an analytical approach like that based on
normal forms is that of investigating higher order boxlets; actu-
ally, the procedure is analogous to that above, but the number of
terms in the normal form can be very high. We have limited our-
selves to investigating the bifurcation of fish orbits. To this end,
we have to compute the 2 : 3 symmetric normal form, which must
include terms of degree at least 2(2þ 3) ¼ 10. Once K (2:3) is ob-
tained, we can express it in adapted resonance coordinates

 ¼ 6�1� 4�2; ð152Þ
� ¼ 6�1þ 4�2; ð153Þ
J1 ¼ 2E þ 3R; ð154Þ
J2 ¼ 3E � 2R; ð155Þ

and as before, knowledge of the orbit structure is obtained by
investigating the fixed points of the one-dimensional dynamical
system associated with the effective Hamiltonian

K̃ (2:3) ¼ K (2:3)(R;  ; E; q): ð156Þ

The periodic orbits are identified by the zeros of the system

K̃
(2:3)
R ¼ 0; ð157Þ

K̃
(2:3)
 ¼ 0: ð158Þ

In particular, equation (158) is satisfied by  ¼ 0, and the cor-
responding root of equation (157)

R ¼ RF (E; q) ð159Þ

determines the ‘‘fish’’ orbit. Using this relation and equation (154)
in the existence condition 0 � J1F � 2E gives an equation whose
roots are related to the bifurcation of the fish orbit from the normal
mode. Using as usual the true energy in place of the fictitious E,
we get the fourth-degree equation

X4
i¼0

ci(q)E
i ¼ 0; ð160Þ

with coefficients

c0 ¼ �6þ 9q;

c1 ¼ 3� 27q

4
;

c2 ¼ � 381

500
þ 54;639q

4000
� 677;727q2

16000
þ 14;337q3

256
� 12;393q4

512
;

c3 ¼
637

250
� 3186q

125
þ 705;807q2

8000
� 131;787q3

1024
þ 66;339q4

1024
;

c4 ¼ � 18;689

12;800
þ 4;279;197q

256;000
þ 28;267;497q2

7;168;000
� 15;582;699q3

102;400

þ 1;062;755;397q4

3;276;800
� 1;370;678;193q5

4;096;000

þ 6;134;535q6

32;768
� 5;688;387q7

131;072
:

Equation (160) has a complex pair and a real pair of solutions;
the smaller positive root can be used for our purposes as a pre-
diction of the bifurcation energy. For q ¼ 0:7 and 0.9, we getEF ¼
0:2 and 1.7, respectively. The bifurcation energies numerically
found inMES89 are EF ¼ 0:21 and 2.28, respectively; clearly, the
disagreement between the theoretical and numerical results rapidly
grows with detuning.

5.2. Phase-Space Fraction Occupied by Boxlets

An analytical estimate of the fraction of phase space occupied
by each orbit family can bemadewith the tools constructed so far.
The method is based on the computation of the area on the sur-
face of section associated with the given orbit family. In this re-
spect, the estimate is affected by an error due to neglecting a factor

Fig. 5.—Same as Fig. 2, but for the long x-axis orbit.
Fig. 6.—Same as Fig. 6, but for q ¼ 0:7.
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depending on the period of individual orbits; this factor in general
does not allow us to assume simple proportionality between vol-
umes in phase space and areas on the surface of section (Binney
et al. 1985). However, in our case, the periods of the families at
hand belong to a range small enough to produce a negligible ef-
fect. To illustrate the method in its simplest form, we use the low-
est order theory applied to loop orbits in x 3 and to bananas in x 4.

For the loop orbits, we have that equation (62) gives the values
of the actions in terms of E and q. As usual, to comparewith quan-
tities of the ‘‘real’’ system, we need to convert to the physical en-
ergy, and this can be done by means of the K on the loop

K (1:1)
��
III
¼

q (1þ q)E � E 2þ 2(q�1)2

 �

3q2� 2qþ 3
¼ qE: ð161Þ

Inverting and expanding, this gives the integral E ¼ E(E ) in terms
of the true energy. An important point to remark on is that the
J terms appearing in the general expression of the normal form,
e.g.,K (1:1) of equation (37), are not true actions along a given fam-
ily. However, the J terms in equation (62) are true actions; in par-
ticular, at the bifurcation of the loop from the axial orbit they are
the actions of the orbits asymptotic (homoclinic) to the y-axis or-
bit, the ‘‘first’’ loop and the ‘‘last’’ box, respectively. Therefore,
J1(E )jIII is the area inside the homoclinic orbit on the x-px surface
of section, and J2(E )jIII is the area inside the homoclinic orbit on
the y-py surface of section. The ratios

floop ¼
J1(E )jIII
E(E ) ; fbox ¼

J2(E )jIII
E(E ) ð162Þ

can therefore be used as an approximation of the fraction of phase
space occupied by the loops and the boxes, respectively. Substi-
tuting into equation (62) and dividing by E(E ), their expressions
are

floop ¼
2(�3þ 3q� 5q2þ 5q3)þ E(9� 9qþ11q2� 3q3)

(3� 2qþ 3q2) �2(1� q)2 þ E(3� 2qþ 3q2)

 � ;

ð163Þ

fbox ¼
q 10�10qþ 6q2� 6q3þ E(�3þ 11q� 9q2 þ 9q3)½ �

(3� 2qþ 3q2) �2(1� q)2 þ E(3� 2qþ 3q2)

 � :

ð164Þ

In Figures 7 and 8 the two quantities are plotted for q ¼ 0:7 and
0.9, respectively, and a comparison can be made with the nu-

merical estimate of floop in MES89 (cf. their Fig. 10) computed
by applying an approximate version of the recipe by Binney et al.
(1985).We remark that with their approachMES89 are not able to
compute the fraction pertaining to boxes, since their method does
not use families associated with normal modes.

Concerning banana orbits, we may follow an analogous line of
reasoning, obtaining

fban ¼
J1(B)(E )

E(E ) ; ð165Þ

where J1(B), introduced in equation (111), can be interpreted as
the area inside the orbit homoclinic to the unstable fixed point
on the x-px surface of section. In Figure 7 this quantity is plotted
for q ¼ 0:7, whereas for q ¼ 0:9, its application is meaningless
because it concerns exceedingly high energies. Comparing with
the numerical estimate of fban in MES89 (cf. left panel of their
Fig. 10), we have to take into account that our analytical estimates
originate from two independent systems, the two normal forms

Fig. 7.—Fraction of phase space occupied by low-order boxlets at q ¼ 0:7:
loops (solid line), boxes (long-dashed line), and bananas (short-dashed line).

Fig. 8.—Fraction of phase space occupied by low-order boxlets at q ¼ 0:9:
loops (solid line) and boxes (dashed line).

Fig. 9.—Zero-energy y-py surface of the section of the singular logarithmic
potential with q ¼ 0:7, computed with the 1 :1 resonant normal form.
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based on the 1:1 and 1 : 2 resonances. Therefore, we cannot ex-
pect that the occupancies of each family sum up to give thewhole
phase space. A suitable normalization would be necessary to ad-
just the proportions and could account for the numerical result.
However, since the normalization process contains a certain de-
gree of arbitrariness, we leave the quantities as they are and use
them only as relative measures. We come again to this point in the
x 5.3.

5.3. Surface of Section for Singular Logarithmic Potential

It is tempting to try to extract information concerning the scale-
free singular limit of the logarithmic potential from our analytical
setting based on series expansions. Formally, this operation should
be hindered by the lack of a series representation of the singular
logarithmic potential. However, we may nonetheless ‘‘force’’ our
approximate integrals of motion to play their role in the singular
limit too. If we try our chance by constructing, e.g., the y-py sur-
face of section with the same procedure as in x 4.3, using now

1

2
p2
x þ p2

y

� �
þ 1

2
log x2þ y2

q2

� �
¼ 0 ð166Þ

to eliminate px, we get, quite surprisingly, acceptable results. In
Figure 9 we see the section obtained by using the approximate
integral I (1:1) of equation (88) for q ¼ 0:7; it gives the family of
loops around the stable periodic orbit at y ’ 0:56 and can be com-
pared with Figure 1 in MES89. In Figure 10 we see the section
obtained by using the approximate integral I (1:2) of equation (127),
again for q ¼ 0:7; it gives the family around the stable banana

at y ’ 0:16 and boxes around it. A comparison with the same
Figure 1 in MES89 shows that also the banana is located quite
well on the section. However, from these considerations emerge
the main limitation of the approach based on resonant normal
forms: each resonance captures only one feature of the system
under study. For example, comparing our Figures 9 and 10with a
numerically computed section like that in Figure 1 inMES89, we
see that, in the ‘‘true’’ system, the island around the banana ‘‘eats’’
a substantial part of the island around the closed loop. A reliable
description of this phenomenon is not possible in the framework
of a single-resonance theory. This remark is evidently related to
the interpretation of the previous results concerning the compu-
tation of the fractions in phase space.

6. CONCLUSIONS

We have applied the method of resonant detuned normal forms
to investigate relevant features of a nonintegrable potential of in-
terest in galactic dynamics. The analytical setup consists of con-
structing a new integrable system (the ‘‘normal form’’) by means
of a sequence of canonical transformations with the method of the
Lie transform. The algorithm can be put in an efficient and power-
ful form (Boccaletti & Pucacco 1999; Giorgilli 2002) which can
handle quite high-order expansions. We have shown how to ex-
ploit resonant normal forms to extract information on several as-
pects of the dynamics of the original system. In particular, using
energy and ellipticity as parameters, we have computed the insta-
bility thresholds of axial orbits, bifurcation values of low-order
boxlets, and phase-space fractions pertaining to the families around
them. We have also shown how to infer something about the sin-
gular limit of the potential.
As in any analytical approach, this method has the virtue of

embodying in (more or less) compact formulae simple rules to
compute specific properties, giving a general overview of the
behavior of the system. In the case in which a nonintegrable sys-
tem has a regular behavior in a large portion of its phase space, a
very conservative strategy like the one adopted in this work pro-
vides sufficient qualitative and quantitative agreement with other
more accurate but less general approaches. In our view, the most
relevant limitation of this approach, common to all perturbation
methods, comes from the intrinsic structure of the single-resonance
normal form. The usual feeling about the problems posed by non-
integrable dynamics is in general grounded in trying to cope with
the interaction of (several) resonances. Each normal form is instead
able to correctly describe only one resonance at a time. However,
we remark that the regular dynamics of a nonintegrable system can
be imagined as a superposition of very weakly interacting reso-
nances. If we are not interested in the thin stochastic layers in the
regular regime, each portion of phase space associated with a given
resonance has a fairly good alias in the corresponding normal form.
An important subject of investigation would therefore be that of
including weak interactions in a sort of higher order perturbation
theory. For the time being, there are two natural lines of develop-
ment of thiswork: (1) to extend the analysis to cuspy potentials and/
or central ‘‘black holes’’ and (2) to apply this normalization al-
gorithm to systems with 3 degrees of freedom.
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