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ABSTRACT

Galactic disks in triaxial dark matter halos become deformed by the elliptical potential in the plane of the disk in
such a way as to counteract the halo ellipticity. We develop a technique to calculate the equilibrium configuration of
such a disk in the combined disk-halo potential, which is based on the method of Jog but accounts for the radial
variation in both the halo potential and the disk ellipticity. This crucial ingredient results in qualitatively different
behavior of the disk: the disk circularizes the potential at small radii, even for a reasonably low disk mass. This effect
has important implications for proposals to reconcile cuspy halo density profiles with low surface brightness galaxy
rotation curves using halo triaxiality. The disk ellipticities in our models are consistent with observational estimates
based on two-dimensional velocity fields and isophotal axis ratios.

Subject headinggs: dark matter — galaxies: halos — galaxies: kinematics and dynamics — galaxies: spiral —
galaxies: structure — methods: numerical
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1. INTRODUCTION

Galaxies are thought to be surrounded by large dark matter
halos. These halos are much more massive than the visible com-
ponents of galaxies and dominate much of the dynamics. Al-
though dark matter halos are often assumed to be spherical for
simplicity, the halos that form in cosmological simulations are
quite flattened, with typical intermediate axis ratios of b /a � 0:8
and minor axis ratios of c /a � 0:6, with some systematic vari-
ation depending on the mass of the halo and the radius at which
the shape is measured (Warren et al. 1992; Jing & Suto 2002;
Bailin& Steinmetz 2005; Allgood et al. 2006). This nonsphericity
is a testable prediction of cosmological models.

Simulations of disk galaxy formation within dark matter halos
find that the presence of the disk modifies the shape of the halo,
reducing the halo triaxiality (Dubinski 1994; Kazantzidis et al.
2004; Bailin et al. 2005; Berentzen & Shlosman 2006). How-
ever, as long as the final shape of the halo retains some ellipticity
in the plane of the disk, the dynamics and shape of the disk will
be affected by the deviations from axisymmetry (e.g., Gerhard &
Vietri 1986; Schoenmakers et al. 1997).

Observations indicate that many disks do indeed have small
but nonzero ellipticities. Evidence for elliptical disks comes from
harmonic decomposition of galaxy photometry (Rix & Zaritsky
1995), harmonic decomposition of two-dimensional velocity fields
(Schoenmakers et al. 1997; Simon et al. 2005), and statistical
analysis of the distribution of projected shapes (Ryden 2006).
These results qualitatively confirm that galactic dark matter halos
are elliptical; precision measurements could provide direct con-
straints on the shapes of the halos.

Recently, Hayashi&Navarro (2006, hereafter HN06) proposed
that elliptical orbits within the disk produced by the triaxiality of

the halo could reconcile cuspy density profiles that form in cos-
mological simulations (Navarro et al. 1996, hereafter NFW96)
with observed rotation curves of low surface brightness (LSB)
galaxies, which often appear to require haloswith constant density
cores (e.g., de Blok et al. 2001). This analysis did not take into ac-
count the self-gravity of the disk. In galaxies with massive disks,
the gravity of the disk contributes to the net potential, and the
dynamics of the disk are determined by a combination of the halo
and the disk itself. In order to draw conclusions about the shape
of the halo from the measured dynamics of the disk, we must
determine self-consistently both how the disk is perturbed by the
potential and how the perturbed disk contributes to the potential.

An elegant method to carry out these calculations was pro-
posed by Jog (2000, hereafter J2K; see also Jog 1997, 1999). By
assuming a logarithmic halo potential with a small constant el-
liptical perturbation and an exponential disk with a small constant
elliptical response, J2K solved for the self-consistent response.
She demonstrated that the disk response dilutes the ellipticity of
the potential most strongly at 1.42 disk scale lengths.

There are a number of simplifying assumptions in J2K that
require examination. The most important assumption is that both
the halo perturbation and the disk response are constant with
radius. In contrast, HN06 demonstrated that a radially varying per-
turbation is required to reconcile LSB long-slit rotation curves
with cuspy halo profiles. Indeed, cosmological simulations predict
a radially varying perturbation in the halo potential; even if halos
had isodensity surfaces of constant ellipticity, the shape of the po-
tential would vary with radius, and Hayashi et al. (2007, hereafter
HNS07), who directly measured the shapes of isopotential surfaces
of cosmological halos, found even stronger variation with radius.
The response of the disk is also not expected to be uniform in a ra-
dially varying potential.

In this paper we generalize the method of J2K to the more
realistic case of radially varying halo perturbations and radially
varying disk responses. In x 2 we detail the method for deter-
mining the disk shape and dynamics. In x 3 we use this method
to determine the shapes and dynamics of disks in sample triaxial
halos and demonstrate how the results depend on the properties of
the disks and halos. Section 4 discusses our results in the context
of observations that directly probe disk ellipticity, and in x 5 we
present our conclusions.
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2. METHOD

2.1. Outline

Our method, which is based closely on J2K, is as follows.

1. Calculate the axisymmetric component of the potential and
the elliptical perturbation in the potential induced by the triaxial
halo (x 2.2).

2. Calculate the closed orbits and corresponding disk ellip-
ticity for a given net perturbation to the potential (xx 2.3 and 2.4).

3. Calculate the elliptical perturbation in the potential in-
duced by a given disk ellipticity (x 2.5).

4. Solve for the form of the net potential perturbation that
satisfies all of the above constraints (x 2.6).
Throughout this procedure, the halo is kept fixed, i.e., it does not
respond to the presence of the disk. Therefore, the potential that
should be used in the calculation is the real shape of the halo in
which the disk lies, which is less triaxial than the shape the halo
would have in the absence of baryonic processes (Kazantzidis
et al. 2004; Bailin et al. 2005; Berentzen & Shlosman 2006).

The main differences between this work and J2K are:

1. Where J2K assumes a logarithmic potential for the halo,
we evaluate the radial form of the potential directly from a den-
sity distribution motivated by cosmological simulations.

2. Where J2K assumes a constant perturbation to the halo
potential, we allow the perturbation to vary with radius and
either evaluate it directly from a triaxial density distribution mo-
tivated by cosmological simulations or use parameterizations de-
veloped from measurements of halos in cosmological simulations.

3. Where J2K assumes that the disk responds with a constant
ellipticity, we allow the disk ellipticity to vary with radius.

Whenever we carry out numerical calculations in this paper, all
radially varying functions are tabulated on a radial grid sampled at
100 radii Ri spaced logarithmically between 0.1 and 100 kpc in
order to finely sample the inner region of the disk where the quan-
tities vary most rapidly; 50 grid points lie at R < 1 kpc. The func-
tions are linearly interpolated between grid points when their
values are required at arbitrary radii.

2.2. Axisymmetric Potential and Halo Perturbation

For the perturbative approach, we assume that within the
plane of the disk (which we take to be z ¼ 0 for simplicity), the
total potential can be written as

�(R; � ) ¼ �0(R)þ �pert(R; � )

¼ �0(R) 1þ fpert(R) cosm�
� �

; ð1Þ

where R, �, and z are the cylindrical coordinates. For the purposes
of this paper, we assume an elliptical perturbation (i.e., m ¼ 2)
from now on (see the Appendix for a discussion of the m ¼ 4
mode). We assume that fpert(R) is small and varies slowly with R.
Note that for fpert > 0, isopotentials are elongated along the x-axis,
and closed orbits in the disk are elongated along the y-axis.

Both the disk and halo contribute to both the axisymmetric
and m ¼ 2 components of the potential:

�0(R) ¼ �halo
0 (R)þ �disk

0 (R); ð2Þ

fpert(R) ¼ f halopert (R)þ f disk
pert (R): ð3Þ

To first order, the m ¼ 2 perturbation in the potential induces
an m ¼ 2 perturbation in the surface density distribution of the

otherwise exponential disk (see the Appendix for a justification of
our decision to neglect the higher order terms),

�(R; � ) ¼ �0 exp � R

Rd

1� �disk(R)

2
cos 2�

� �� �
: ð4Þ

We assume �disk(R), the ellipticity of the isodensity ellipse, is small
and varies slowly with R. The axisymmetric component of the disk
potential is given by

�disk
0 (R) ¼ ��G�0R I0( y)K1( y)� I1( y)K0( y)½ �; ð5Þ

where I and K are modified Bessel functions ( y ¼ R/2Rd; see
Freeman 1970; Binney & Tremaine 1987, eq. [2-168]).
Given the density distribution of the dark matter halo, both

axisymmetric and m ¼ 2 components of the halo potential can
be evaluated. If the isodensity surfaces of the halo are self-similar
ellipsoids, then the halo density can be written as

�(x; y; z) ¼ �(s); ð6Þ

where

s2 ¼ x

a

� �2

þ y

b

� �2

þ z

c

� �2

: ð7Þ

For example, we can use anNFW96 form for the density (NFW96;
Jing & Suto 2002),

�(s) ¼ �0

s=rsð Þ 1þ s=rsð Þ½ �2
: ð8Þ

We make no assumptions about the relative magnitudes of a, b,
and c; they are simply the relative axis ratios along the x-, y-, and
z-axes, respectively. Therefore, the disk, which lies in the x-y
plane, can be oriented in any of the principal planes of the halo.
We calculate the halo potential along the x-axis, �halo

x (R) �
�halo(R; 0; 0), and along the y-axis, �halo

y (R) � �halo(0;R; 0), by
numerically integrating equation (2-99) of Binney & Tremaine
(1987) using �(s) given in equation (8). This allows us to calcu-
late �halo

0 and f halo
pert as

�halo
0 (R) ¼ 1

2
�x(R)þ �y(R)
� �

; ð9Þ

f halo
pert (R) ¼

1

2�0(R)
�x(R)� �y(R)
� �

: ð10Þ

2.3. Closed Orbits

In a triaxial potential, dissipative gas settles on stable closed
loop orbits when such orbits exist (El-Zant 2001). This is the
case throughout the potential of a centrally concentrated mass
profile such as the NFW96 profile. Therefore, the structure of a
galactic disk, which consists of gas clouds and stars formedwithin
those gas clouds, is determined by the form of the closed orbits.
These have been examined in detail by Schoenmakers et al. (1997)
and simplified into a convenient form by HN06. These previous
derivations have assumed that the perturbation to the potential is
constant over the radial excursion of an orbit, which is not the case
for the radially varying perturbations thatwewish to study.Wehave
therefore rederived the equations for closed orbits within a radially
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varying perturbation from the equations of motion. The orbits
follow

R ¼ R0 1� fperta12

2
cos 2�0

	 

; ð11Þ

� ¼ �0 þ
a12 þ a32

2m
fpert sin 2�0; ð12Þ

with velocities

VR ¼ Vc fperta12 sin 2�0; ð13Þ

V� ¼ Vc 1þ fperta32

2
cos 2�0

	 

; ð14Þ

where R0 and �0 define the guiding center of the orbit, �0 ¼ �0t,
and the following functions of �0(R) are evaluated at R0:

�0(R) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

R

d�0

dR

r
; ð15Þ

Vc(R) ¼ R�0(R); ð16Þ

Vesc(R) ¼
ffiffiffiffiffiffiffiffiffiffiffi
2j�0j

p
; ð17Þ

gm(R) ¼
1

�2
0

d 2�0

dR2
� m2 � 3
� 


; ð18Þ

a1m(R) ¼
2

gm(R)
1� V 2

esc

V 2
c

1þ 1

2

R

fpert

dfpert

dR

	 
� �
; ð19Þ

a3m(R) ¼ a1m(R)þ
V 2
esc

V 2
c

: ð20Þ

The coefficients a1m and a3m quantify the degree to which the
radius R and angular velocity V�, respectively, which are con-
stant for a circular orbit, vary for a unit perturbation to the po-
tential. Our expressions differ from those inHN06 for the following
reasons. (1) We have taken the radial variation of the perturbation
into account in our derivation of equation (19). (2) We have gen-
eralized the expression for gm(R) to be valid for allm, while the ex-
pression in HN06 is specific to m ¼ 2. (3) We have removed the
factor of fpert from the definitions of a1m and a3m for convenience
later (note that these quantities still depend implicitly on fpert
through its derivative). (4) We have generalized the expression
for a3m to be valid for all potential profiles, while the expression
in HN06 is only valid when g2(R) ¼ �3, which is not the case in
the inner regions of an NFW96 potential.

Given the tabulated values of �0, these functions can be eval-
uated at the grid points Ri. Because �0 has been calculated from
analytic functions, the tabulated values are relatively free of
noise, and even the numerical second derivative does not contain
large fluctuations. Note that the closed orbits are elongated per-
pendicular to the isopotential contours.

2.4. Disk Ellipticity

The disk must satisfy the continuity equation. In cylindrical
coordinates,

@

@R
R�(R; � )VR(R; � )½ � þ @

@�
�(R; � )V�(R; � )½ � ¼ 0: ð21Þ

We substitute �(R; � ) from equation (4), VR(R; � ) from equa-
tion (13), andV�(R; � ) fromequation (14). Tofirst order in the small
quantities fpert, �disk, and their derivatives,

R

Rd

�disk(R) ¼ fpert(R)

; a12(R) 1� R

Rd

þ R

Vc

dVc

dR

	 

� a32(R)

� �
: ð22Þ

The neglected second-order terms induce small m ¼ 4 pertur-
bations in the disk; see the Appendix for details.6 Equation (22)
provides us with a relationship between the radial profile of the
potential (embodied in a12, a32, and Vc), the strength of the per-
turbation in the net potential ( fpert), and the ellipticity of the disk
(�disk).

2.5. Disk Perturbation Potential

The ellipticity of the disk generates an m ¼ 2 perturbation to
the disk potential. We calculate this as (Binney & Tremaine
1987, eq. [2P-8])

�disk
pert � �disk � �disk

0 ¼ �G
X1

m¼�1
exp (im� )

;

Z 1

0

Jm(kR) exp (�kjzj) dk
Z 1

0

Jm(kR
0)R0 dR0

;

Z 2�

0

�(R0; �0)� �0 exp (�R0=Rd)½ � exp (�im�0) d�0: ð23Þ

We restrict ourselves to the plane z ¼ 0, corresponding to an infi-
nitely thin disk.

For small perturbations, the perturbed surface density is

�(R0; �0)� �0e
�R 0=Rd � �0e

�R 0=Rd
R0

Rd

�disk(R
0)

2
cos 2�0: ð24Þ

Substituting equation (24) into equation (23), we note that
the integral over d�0 vanishes except when m ¼ �2. SinceR

2�
0 cos 2�0e�i2� 0 d�0 ¼ �, e ixþ e�ix¼ 2 cos x, and J2(x)¼ J�2(x),

we find

�disk
pert (R; � ) ¼ ��G�0 cos 2�

Z 1

0

J2(kR) dk

;

Z 1

0

J2(kR
0)R0 exp � R0

Rd

	 

R0

Rd

�disk(R
0) dR0: ð25Þ

We can express (R0/Rd)�disk(R
0 ) in the final integral in terms of

fpert, a12, a32, and Vc using equation (22):

�disk
pert (R; � ) ¼ ��G�0 cos 2�

Z 1

0

J2(kR) dk

;

Z 1

0

J2(kR
0)R0 exp � R0

Rd

	 

fpert(R

0)

; a12(R
0) 1� R0

Rd

þ R0

Vc(R0)

dVc(R
0)

dR0

� �
� a32(R

0)

� �
dR0: ð26Þ

Because we do not know a priori the net perturbation fpert(R),
we cannot immediately evaluate these integrals. However, if we

6 We have also omitted the term in eq. (22) that is proportional to
Rd( fperta12) /dR; however, its effect is negligible.
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can find a function f
proxy
pert whose form is similar to fpert, i.e., if

fpert /f
proxy
pert is a slowly varying function of R, then we can ap-

proximate the potential as

�disk
pert (R; � ) � � fpert(R)

f
proxy
pert (R)

�G�0 cos 2�

Z 1

0

J2(kR) dk

;

Z 1

0

J2(kR
0)R0 exp � R0

Rd

	 

f
proxy
pert (R0)

; a12(R
0) 1� R0

Rd

þ R0

Vc(R0)

dVc(R
0)

dR0

� �
� a32(R

0)

� �
dR0: ð27Þ

Note that a12(R
0) and a32(R

0) depend implicitly on f
proxy
pert (R0)

through its derivative. A first approximation can be obtained by
setting f

proxy
pert ¼ f halo

pert , whose values have been tabulated from
equation (10). Because the integral over R0 is independent of R
and the integral over k is independent of R0, the integrals can be
evaluated independently on fine grids of k and R, respectively.
Using this technique, we calculate

�(R) � �G�0

f
proxy
pert (R)

Z 1

0

J2(kR) dk

;

Z 1

0

J2(kR
0)R0 exp � R0

Rd

	 

f
proxy
pert (R0)

; a12(R
0) 1� R0

Rd

þ R0

Vc(R0)

dVc(R
0)

dR0

� �
� a32(R

0)

� �
dR0 ð28Þ

at each grid point Ri. The perturbation potential due to the disk is
then given by

�disk
pert (R; � ) ¼ �fpert(R)�(R) cos 2�: ð29Þ

Expressed in this form, the meaning of �(R) becomes clear: it is
the magnitude of the disk response to a unit perturbation in the
potential.

2.6. Self-Consistent Solution

For clarity, we repeat here the important equations,

�pert(R; � ) ¼�0(R) fpert(R) cos 2� ð30Þ
¼�halo

pert (R; � )þ �disk
pert (R; � ); ð31Þ

�halo
pert (R; � ) ¼ f halo

pert (R)�0(R) cos 2� ð32Þ

(see eqs. [1] and [3]), and (repeated from eq. [29])

�disk
pert (R; � ) ¼ �fpert(R)�(R) cos 2�: ð33Þ

The physical interpretation of these equations is that the disk re-
sponse is proportional to the net perturbation fpert, which is itself
the sum of the disk response and the imposed halo perturbation.
The disk response is opposite in sign to the halo perturbation, so
fpert in the self-consistent solution must be reduced with respect
to the imposed halo perturbation.

The self-consistent solution can be obtained by collection
equations (30)Y(33) as

fpert(R) ¼ f halopert (R)
1

1þ �(R)=�0(R)
: ð34Þ

In other words, the response of the disk causes the overall potential
perturbation to be reduced by a factor of 1þ �(R)/�0(R). All

terms on the right-hand side have been tabulated at the grid points
Ri, resulting in a trivial evaluation of fpert(R).
Armed with this new estimate of fpert, we can reexamine equa-

tion (28), substitute f
proxy
pert ¼ fpert, and calculate a new value of

� (R) and therefore of fpert(R). We repeat this procedure until the
maximum change between iterations in the quantity fpert /f

halo
pert ,

which is a robust indicator of the relative error in fpert, is less than
10�3 at all radii; this is typically achieved in 20Y30 iterations. We
have confirmed for some specific cases that our solution agrees to
within�2% of the true solution (assumed to have converged after
a very large number of iterations) at all radii and to much higher
precision at most radii (see Fig. 1). Adopting a stricter convergence
criterion has no effect on our results. The relatively large number of
iterations is required in order to accurately capture the sharp feature
where fpert ! 0 that is seen in the solutions (see x 3).
Given fpert, the disk ellipticity �disk can be calculated as a function

of radius directly from equation (22), and the forms of the closed
orbits can be calculated from equations (11)Y(14). This provides a
complete description of the disk.

3. RESULTS

In this section we demonstrate how the disk dilutes the el-
liptical potential of the halo and give examples of the net ellipticity
induced in the disk. In x 3.1we demonstrate themain features of the
disk-halo systems using a halo with constant axis ratios, while in
x 3.2 we investigate how these results are affected by varying disk
and halo parameters such as the halo concentration, axis ratio, disk
scale length, and run of halo axis ratio with radius.

3.1. Response for Various Disk Masses

We demonstrate the main features of our models using a fi-
ducial triaxial NFW96 halo with mass M200 ¼ 1012 M�, axis
ratios b /a ¼ 0:8 and c /a ¼ 0:6, and a concentration c200 ¼ 12.7

These values are typical for galaxy-sized dark matter halos in
cosmological simulations (Allgood et al. 2006). The disk rota-
tion axis is aligned with the minor axis of the halo, in agreement
with the orientation of the halo angular momentum in simu-
lations (Bailin & Steinmetz 2005). All disks have radial scale
lengths Rd ¼ 3:0 kpc, with masses that range from zero up to
1011 M�.

7 The terms M200 and c200 refer to the mass and concentration relative to the
radius r200, defined such that the mean density within r200 is 200 times the critical
density. We assume the Hubble parameter h ¼ 0:7.

Fig. 1.—Maximum change in the solution for fpert /f
halo
pert per iteration (dashed

line) and maximum difference between the solution at a given iteration and the
true solution, assumed to have converged after 100 iterations (solid line), for
the fiducial halo and 3 ; 109 M� disk of x 3.1. The vertical dotted line indicates the
point where our convergence criterion is achieved.
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Figure 2 demonstrates how the axisymmetric component of the
potential,�0(R), and the rotation curve,Vc(R), vary as functions of
disk mass. The potential is given in units of V 2

200 � GM200 /r200.
For disk masses less then 3 ; 109 M�, the halo dominates the
axisymmetric component of the potential at all radii, with the disk
becoming increasingly more important with increasing disk mass
beyond this. The nonaxisymmetric component of the potential is
demonstrated in Figure 3 for the 3 ; 109 M� disk. Although the
ellipticity of isopotential surfaces, ��, rises to small radii, the mag-
nitude of the potential perturbation, f halo

pert , must vanish at small
radii because�x(R ¼ 0) ¼ �y(R ¼ 0) while�0(R ¼ 0) reaches a
finite value.

Figure 4a demonstrates both the initial halo perturbation ( f halo
pert ,

solid lines) and the net perturbation after including the self-
consistent response of the disk ( fpert, dashed lines). Note that even
though the halo is identical in each case, f halopert is lower for higher
mass disks because the disk contributes to �0.

HN06 proposed that a suitable perturbation

fpert ¼ fiso(R) � axe�x=b ð35Þ

(with x � R /rs, a ¼ 0:1, and b ¼ 0:098) would cause the rota-
tion curve of a perturbed NFW96 profile to mimic that of a cored
isothermal profile. We denote this as a dotted line in Figure 4a.
The form of this perturbation is very different from the form of
the perturbation that we find to be induced by a triaxial halo of
uniform axis ratio, particularly once the self-consistent response
of the disk is taken into account.

Figure 4b demonstrates the degree to which the initial halo
perturbation f halo

pert is diluted by the self-consistent response of the
disk. This is equal to f pert /f

halo
pert and is determined from 1/ 1þ½

�(R) /�0(R)�. The ellipticity in the potential vanishes in the

central region where �(R)3�0(R). Even for a negligible disk
mass, the potential in the innermost region is circularized. This
region is larger formore realistic disks, which have a significant im-
pact on the potential out to several disk scale lengths. As the disk
mass increases, the form of the disk dominates both � (R) and
�0(R), and therefore, this function approaches an asymptotic form.

Comparison between Figure 4b and the equivalent Figures 2
and 3 of J2K reveals dramatically different behavior at small radii:
in J2K, the ‘‘reduction factor’’ reaches a minimum at 1:42Rd

(=4.26 kpc for Rd ¼ 3:0 kpc) and then rises to unity, while in
Figure 4b it falls monotonically to vanish at small radii. This is a
direct result of the radial variation of fpert in a physically realistic
elliptical halo. Because� (R) depends inversely on fpert (see eq. [28]),
which must vanish at small radii, �(R) must dominate over�0(R)
in the inner regions and the potential must become completely
circularized.

In Figure 4c we plot the ellipticity of the disk isodensity con-
tours (�disk, solid lines) and of the orbits within the disk (�orbit �
fperta12, dashed lines). For a massless disk, we recover the results
of HN06 that the ellipticity rises toward the center of the halo.
However, the presence of a massive disk changes the situation
dramatically. Because fpert /f

halo
pert vanishes at small radii (Fig. 4b),

the equilibrium disk is axisymmetric at small radii. Even very
low mass disks, which contribute negligibly to �0, still respond
strongly enough to the elliptical potential to cause an important
change in the behavior at small radii. We also note that the el-
lipticity of disk isophotes are always greater than the ellipticity
of orbits within the disk.

3.2. Varying Disk and Halo Parameters

HNS07 found that the radial variation of the shape of the po-
tential of cosmological N-body halos is not consistent with

Fig. 2.—(a) Axisymmetric component of the potential, �0(R), for massless
disks (black line) and disks of mass 3 ; 108 M� (red line), 3 ; 109 M� (blue line),
3 ; 1010 M� (green line), and 1011 M� ( purple line) within the fiducial halo of
x 3.1. (b) Circular velocity curve within the unperturbed potential. The disk con-
tribution to the rotation curve is denoted with dashed lines. Colors are the same as
in (a).

Fig. 3.—(a) Solid lines indicate the potential along the x- (bottom line) and
y-axis (top line) for the disk ofmass 3 ; 109 M� within the fiducial halo of x 3.1. The
dotted line indicates the axisymmetric component of the potential. The horizontal and
vertical lines demonstrate how the ellipticity of the isopotential surfaces and the
magnitude of the perturbation, respectively, are calculated. (b)Magnitude of the per-
turbation fpert (solid line) and ellipticity of the potential �� (dashed line) for the same
halo as in (a). [See the electronic edition of the Journal for a color version of this
figure.]
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self-similar isodensity contours (see also Jing & Suto 2002; Bailin
& Steinmetz 2005). They found instead that the isopotential axis
ratios are well fit by the function

log
b

a
or

c

a

	 

¼ � tanh � log

r

r�

	 

� 1

� �
: ð36Þ

We have recomputed the self-consistent response of disks of
varying mass in a potential of this form, with the values of the
parameters taken from halo G4 of HNS07, which has a very
similar mass and concentration to the halo used in x 3.1. The
results are shown in Figure 5. As noted by HNS07, the pertur-
bation in this case contains a peak at intermediate radius and is
much more similar to the form of fiso required by HN06 to fit

LSB rotation curves, although unlike fiso the perturbation re-
mains more prominent to large radius. However, in many cases
LSB rotation curves are only measured out to radii of a few kpc,
so it is less clear what the required form of fiso is at larger radii.
The disks have less effect on the perturbation than in x 3.1; in par-
ticular, the radius inside which they circularize the potential is re-
duced, resulting in significantly more elliptical orbits at 1Y3 kpc
than for the equivalent disks in a halo with constant axis ratios.
Disk masses higher than�3 ; 109 M� reduce the prominence of
the peak in the perturbation and shift it to larger radii. The peak in
f halo
pert could be moved to a smaller radius and, therefore, brought

further into agreement with fiso, by reducing the r� parameter in
equation (36); however, this is unlikely to be a common situa-
tion, as G4 already has by far the lowest r� value of any of the
halos studied by HNS07.
The effect of the baryonic disk on the shape of the halo is not

yet well understood. Simulations suggest that halos containing
baryonic disks are less elliptical than halos composed purely of
dark matter and that the circularization of the halo occurs most
strongly at the center (Kazantzidis et al. 2004). If the intrinsic

Fig. 4.—(a) Magnitude of the elliptical perturbation in the potential due to the
triaxiality of the halo ( f halopert , solid lines) and the net perturbation after including
the self-consistent response of the disk ( fpert, dashed lines). Different disk masses
are indicated by different colors as in Fig. 2. The dotted line shows the form of fpert
proposed by HN06 to produce a rotation curve mimicking a cored isothermal
density profile. (b) Ratio by which the input perturbation f halopert becomes diluted due
to the self-consistent response of the disk. (c) Ellipticity of the disk isodensity
contours (j�diskj, solid lines; note that �disk is negative for positive fpert in the sign
convention we have chosen) and of orbits within the disk (�orbit, dashed lines).

Fig. 5.—Same as Fig. 4, but for disks in a halo potential with the same radial
variation of its axis ratios as halo G4 of HNS07.
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shape of the pure darkmatter halo is well described by theHNS07
form, which is most elliptical at the center, baryonic processes
may result in a situationmore similar to the constant axis ratio case
of x 3.1.We therefore expect that the regions in which thesemodels
differ most strongly, 1Y3 kpc, are also the regions where the un-
known effect of disk formation introduces themost uncertainty into
our models.

In order to investigate how other properties of the halo and
disk affect our results, we have recalculated the results of x 3.1
(where the halo axis ratio was assumed to be constant with
radius) for the 3 ; 109 M� disk while varying the halo concen-
tration, the b /a axis ratio, the halo mass, and the disk scale length.
In more concentrated halos (Fig. 6), the strength of the pertur-
bation due to the halo, f halo

pert , is larger. The disk is also less able to
dilute the perturbation in more concentrated halos. The axis ratio
of the halo (Fig. 7) has a strong effect on the magnitude of the
perturbation, but has virtually no effect on the degree to which

the disk dilutes the perturbation. In Figure 8 we compare halos of
different virial mass, M200. In order to facilitate comparison be-
tween systems of different mass, we have kept rs constant by
varying c200 in proportion to r200 and kept the relative mass of
the disk and halo constant. We find that the mass of the halo has
little effect on the relative strength of the perturbation (either
before or after the disk is taken into account), but the resulting
disk ellipticities are higher in lower mass systems. Finally, al-
though the equilibrium shape of the potential is similar regardless
of the disk scale length (Fig. 9), a greater ellipticity is required to
achieve this reduction in the perturbation for less concentrated
disks, i.e., those with larger scale lengths.

4. DISCUSSION

4.1. Impact of Triaxial Halos on the Cusp/Core Problem

In Figure 10 we plot the azimuthal velocities along the major
and minor axes of the halo within the disk plane for disks of
different mass in the fiducial sample halo studied in x 3. Full
analysis of the velocity fields of these disks will be presented in a

Fig. 6.—(a) Magnitude of the net elliptical perturbation in the potential
(dashed lines) and the perturbation due to only the halo (solid lines) for disks of
mass 3 ; 109 M� in halos with concentrations c200 ¼ 8 (red lines), 12 (blue lines),
and 17 (green lines). The blue lines in these plots are identical to the blue lines in
Fig. 4. (b) Ratio by which the input perturbation becomes diluted due to the re-
sponse of the disk. (c) Ellipticity of the disk isodensity contours (solid lines) and
of orbits within the disk (dashed lines).

Fig. 7.—Same as Fig. 6, but for halos with axis ratios b/a ¼ 0:7 (red lines),
0.8 (blue lines), and 0.9 (green lines).
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future paper. However, we note that none of these rotation curves
show the linear rise characteristic of a constant density core, as
expected given the dramatic difference between the form of fpert
in these disks and the form of fiso required by HN06.

If we use the radial variation of the shape of the halo potential
proposed by HNS07 (Fig. 11), for which f halo

pert is much more
similar to fiso, we find that for very low diskmasses the azimuthal
velocity along the minor axis of the halo is characterized by a
much more gradual rise. Observationally, such a rotation curve
might be interpreted as indicating a constant-density core in
the dark matter halo. However, for disk masses above 3 ; 109 M�
(0.3% of the virial mass of the halo and just 1.8% of the baryonic
mass of the system) the response of the disk removes this feature
from the center of the rotation curve. Based on these results, we
conclude that simple analyses of the shapes of halos are therefore
not sufficient to determine whether halo triaxiality can reconcile
LSB rotation curveswith cuspy halo density profiles, as suggested
byHN06; full analyses that take into account the disk response are

required. Preliminary tests on simulated velocity fields constructed
using the results of this paper do suggest that triaxiality can pro-
duce apparent constant-density cores, in agreement with HN06,
but a more detailed analysis including many halos and lines of
sight is needed before comparing to the observational distribu-
tion of density profile slopes (Simon et al. 2005).
We also plot the maximum radial velocity (amplitude of non-

circular motions) at each radius in Figures 10 and 11. Although
the radial velocities aremuch smaller than the azimuthal velocities
in all but the lowest mass disks, they are at a level that can be
detected in observations of two-dimensional velocity fields. The
magnitude of the radial motions, which reach 5Y35 km s�1 de-
pending on the disk mass and halo properties, are consistent with
the magnitude of radial motions found by Simon et al. (2005) and
reproduce the observed trend for the radial motions to be neg-
ligible at small radii and to only become important at larger radii.

4.2. Comparison to Observed Disk Ellipticities

It is interesting to compare the ellipticity of our model disks to
observed values. Using two-dimensional velocity fields, Simon

Fig. 8.—Same as Fig. 6, but for halos with virial massesM200 ¼ 3 ; 1011 M�
(red lines), 1012 M� (blue lines), and 3 ; 1012 M� (green lines). In order to
facilitate the comparison, the halo scale radius rs is kept constant by varying
c200 in proportion to r200, and the ratio between the disk and halo mass is kept
constant.

Fig. 9.—Same as Fig. 6, but for disks with scale lengths Rd ¼ 2:0 (red lines),
3.0 (blue lines), and 4.0 (green lines).
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et al. (2005) found lower limits on the orbital ellipticities ranging
from 0 up to 0.175, similar to the orbital ellipticities in our model
disks. We note that the orbital ellipticity throughout most of the
disk is determined by the mass of the disk (Fig. 4c), the ellipticity
of the halo (Fig. 7c), and the variation of halo ellipticity with ra-
dius (compare Figs. 4c and 5c), with very little dependence on the
concentration of either the halo (Fig. 6c) or the disk (Fig. 9c) or
on the global mass of the system (Fig. 8c). We therefore pre-
dict that galaxies with large observed ellipticities such as NGC
4605 either lie in halos that are more triaxial than average near
their center or contain an unusually low fraction of their mass in
their disk. The trends in intrinsic disk ellipticity that we predict
may be tested with further analysis of larger kinematic samples,
such as those presented by Ganda et al. (2006).

Ryden (2006) found that the distribution of isophotal shapes
of galaxies in the 2MASS Large Galaxy Atlas (Jarrett et al. 2003),
as measured in the near-infraredKs band (which is a good tracer of
the stellar disk mass), is well fit if the intrinsic disk ellipticity dis-
tribution is a truncated Gaussian distribution centered at 0.01 with a
width of � ¼ 0:26. This corresponds to amedian ellipticity of 0.18,
with 68% of disks having ellipticities 0:05 � �disk � 0:37. For the
disk parameters we have studied, the 18.8 mag arcsec�2 isophote at
which her shapes were measured corresponds to radii of between
1.5 and 8.5 kpc. Our models naturally produce disk ellipticities in
this range at these radii, although the highest ellipticities can only be
produced by our leastmassive disks in ourmost elliptical potentials.

Finally, we note that our models only take into account el-
lipticity in the disk induced by the dark matter halo. Central
regions of the disk, which have high surface density and sit in
an axisymmetric potential, may be unstable to bar formation
(Berentzen & Shlosman 2006). This can induce additional el-

lipticity to the kinematic and photometric properties of disk gal-
axies (e.g., Valenzuela et al. 2007).

5. CONCLUSIONS

We have presented a computationally efficient method to self-
consistently determine the dynamics of massive disks in triaxial
darkmatter halos. Our work extends the study of J2K by allowing
the perturbation to the potential to vary with radius in an appro-
priate manner and by allowing the ellipticity of the disk to vary
with radius self-consistently. These improvements result in qual-
itatively different behavior for the ellipticity of disks at small
radii: J2K found that disks counteract the halo ellipticity most
strongly at 1:42Rd and have a negligible effect at small radii; in
contrast, we find that the effect of the disk increases monotoni-
cally to small radii, completely circularizing the potential in the
innermost regions.

This self-consistent radially varying response of the disk to the
halo perturbation must be taken into account when comparing the
observed kinematic and photometric properties of galactic disks
to those expected in triaxial dark matter halos, particularly for
comparisons at small radii. When this response is calculated for
plausible halo values, model disks have ellipticities consistent
with those determined from observations of velocity fields and
from isophotal axis ratio distributions. We also find that the radial
variation of the halo axis ratios has a significant impact on the disk
structure. Halos with axis ratios that vary with radius as suggested
by cosmological simulations produce much more elliptical orbits
in the inner disk than do halos with constant axis ratios, resulting
in potential perturbations similar to the perturbation required to
create apparent cores in galaxy density profiles. Further analysis
exploring in detail the conditions under which corelike rotation

Fig. 10.—Azimuthal velocity along the halo major axis (top line) andminor axis (middle line) and the maximum radial velocity at each radius (bottom line) for disks of
varyingmass in the halo of x 3.1. NFW96 and isothermal rotation curves are shown for reference in the top right panel. [See the electronic edition of the Journal for a color
version of this figure.]
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curves might be obtained will be necessary to determine if halo
triaxiality can resolve the cusp/core problem.
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We thank Miloš Milosavljević and Darren Croton for helpful
conversations and the referee, Chanda Jog, for a very useful
report.

APPENDIX A

SECOND-ORDER TERMS AND m ¼ 4 DISTORTIONS

We have assumed that the halo perturbation and the induced distortion in the disk are completely described by them ¼ 2mode. This
is a direct consequence of only including terms linear in the small quantities fpert, �disk, and their derivatives.

Fig. 11.—Same as Fig. 10, but for the shape of the halo potential found by HNS07 for their halo G4. [See the electronic edition of the Journal for a color version of this
figure.]

Fig. 12.—Magnitude of terms contributing to the m ¼ 4 distortion in the disk compared to �2, the magnitude of the calculated m ¼ 2 distortion for a disk of mass
3 ; 109 M� in the fiducial halo of x 3.1.
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The validity of this assumption can be tested by evaluating the magnitude of the second-order terms that contribute to the m ¼ 4
distortion in the disk. If we expand the potential as

�(R; � ) ¼ �0(R) 1þ f2(R) cos 2�þ f4(R) cos 4�½ �; ðA1Þ

the disk surface density as

�(R; � ) ¼ �0 exp � R

Rd

1� �2(R)

2
cos 2�� �4(R)

2
cos 4�

� �� �
; ðA2Þ

and include all second-order terms, then the m ¼ 4 distortion in the disk, �4, depends on terms of order f4, f2�2, and Rf2 d�2 /dR.
8

Figure 12 compares the magnitude of these terms to the m ¼ 2 ellipticity for the 3 ; 109 M� disk in the fiducial halo of x 3.1. The
higher order terms are more than 2 orders of magnitude smaller than the first-order terms over most of the disk and are also negligible
in the central region where the first-order terms vanish, validating our use of linear perturbation theory.
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