
GRAVITATIONAL COLLAPSE AND FRAGMENTATION OF MOLECULAR
CLOUD CORES WITH GADGET-2

Guillermo Arreaga-GarcI
´ı́a,

1
Jaime Klapp,

2
Leonardo Di G. Sigalotti,

3
and Ruslan Gabbasov

2

Received 2006 October 20; accepted 2007 May 28

ABSTRACT

The collapse and fragmentation of molecular cloud cores is examined numerically with unprecedentedly high spa-
tial resolutions, using the publicly released code GADGET-2. As templates for the model clouds we use the ‘‘standard
isothermal test case’’ in the variant calculated by Burkert & Bodenheimer in 1993 and the centrally condensed,
Gaussian cloud advanced by Boss in 1991. A barotropic equation of state is used to mimic the nonisothermal col-
lapse.We investigate both the sensitivity of fragmentation to thermal retardation and the level of resolution needed by
smoothed particle hydrodynamics (SPH) to achieve convergence to existing Jeans-resolved, finite-difference (FD)
calculations. We find that working with 0.6Y1.2 million particles, acceptably good convergence is achieved for
the standard test model. In contrast, convergent results for the Gaussian-cloud model are achieved using from 5 to
10 million particles. If the isothermal collapse is prolonged to unrealistically high densities, the outcome of col-
lapse for the Gaussian cloud is a central adiabatic core surrounded by dense trailing spiral arms, which in turn may
fragment in the late evolution. If, on the other hand, the barotropic equation of state is adjusted to mimic the rise of
temperature predicted by radiative transfer calculations, the outcome of collapse is a protostellar binary core. At
least, during the early phases of collapse leading to formation of the first protostellar core, thermal retardation not
only favors fragmentation but also results in an increased number of fragments, for the Gaussian cloud.

Subject headinggs: binaries: general — hydrodynamics — ISM: clouds — methods: numerical —
stars: formation

1. INTRODUCTION

The high frequency of binaries among preYmain-sequence
(Mathieu 1994; Ghez et al. 1997; Köhler &Leinert 1998; Köhler
et al. 2000; Hubrig et al. 2001;Woitas et al. 2001; Brandeker et al.
2003; Boden et al. 2005) and main-sequence (Duquennoy &
Mayor 1991; Fischer &Marcy 1992; Leinert et al. 1997; Patience
et al. 1998; Cutispoto et al. 2002) stars of all ages, including the
youngest, along with the incoming evidence for binary and low-
order, multiple protostars (Looney et al. 1997, 2000; Terebey et al.
1998;Moriarty-Schieven et al. 2000; Reipurth et al. 2002; Anglada
et al. 2004; Duchêne et al. 2004; Girart et al. 2004), points to
fragmentation of molecular cloud cores as the most likely mech-
anism for explaining the majority of binary and multiple stars
(Bodenheimer et al. 2000; Sigalotti &Klapp 2001a). In particular,
a deep search for companions of embedded protostellar objects in
Taurus andOphiuchus byDuchêne et al. (2004) shows that binary
and multiple protostars are a very frequent outcome of the frag-
mentation of prestellar cores and that their frequency and prop-
erties are not very sensitive to specific initial conditions. In this
scenario, binary formation and star formation are contemporary
processes that involve the gravitational collapse of cloud cores,
from densities P10�19 g cm�3 and sizes of �1017 cm to final
young stellar objects of densities k10�1 g cm�3 and sizes of
�1011 cm. The collapse of the core, or a portion of it, may then
lead to fragmentation, which appears to be necessary to explain
the wide range of observed distributions of mass ratios, periods,
and orbital eccentricities of binary stars (Bodenheimer 1995).

However, a direct conclusive proof of these assertions would cer-
tainly require a more continued detection of multiplicity among
protostellar objects.
In general, the geometries involved in the process of star for-

mation are complex, while the initial and boundary conditions
are chaotic and poorly constrained by the observations. This ex-
plains why our present understanding of fragmentation is still
mostly limited to three-dimensional (3D), numerical hydrody-
namics calculations of the collapse of rotating gas clouds, start-
ing from highly idealized geometries and initial conditions. Since
the parameter space of initial conditions and constitutive physics
is very large, the generality of the numerical results obtained is
rather hard to establish. In addition, the outcome of fragmenta-
tion is highly sensitive to the details of the thermodynamics and
radiation transfer effects that arise when the infalling gas becomes
optically thick and switches from being approximately isothermal
to being approximately adiabatic (Masunaga & Inutsuka 1999;
Boss et al. 2000). Moreover, the dynamics of collapse depends
also on a variety of thermal, chemical, and magnetic effects, with
the result that the energy equation is not a local function of state.
Therefore, proper numerical simulations of the protostellar col-
lapse and fragmentation are difficult and demand very large com-
putational resources that are not yet available.
Earlier work on protostellar collapse and fragmentation was

largely based on low spatial resolution calculations of a uniform
density, uniformly rotating, spherical gas cloud with an isother-
mal equation of state. As we shall see below, the bulk of these
models suffered from an inherent numerical viscosity due to vio-
lation of the Jeans condition (Truelove et al. 1998), which caused
artificial fragmentation to occur. Perhaps the most illustrative
example of binary fragmentation during the isothermal collapse
of an initially homogeneous cloud is given by the so-called ‘‘stan-
dard isothermal test case,’’ first calculated by Boss &Bodenheimer
(1979). Since then this model has acquired the status of a common
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test calculation for convergence testing and intercode compari-
sons, with a fairly good agreement that the outcome of the first
evolution is a protostellar binary system. In recent times, calcu-
lations of the standard isothermal test have focused on a slightly
different set of initial conditions (Burkert &Bodenheimer 1993).
This model and variants of it have been recalculated by several
other authors, employing different numerical techniques and
higher spatial resolution (Bate & Burkert 1997; Truelove et al.
1998; Klein et al. 1999; Boss et al. 2000; Kitsionas & Whitworth
2002; Springel 2005). All these authors predicted the formation of
a binary systemwith the exception of Bate&Burkert (1997),who
additionally found a bar between the binary fragments that broke
up into a number of subfragments. Later on, Truelove et al. (1998)
showed that fragmentation of the bar is a numerical artifact in-
duced by violation of the Jeans condition. Recently, Springel
(2005) performed a resolution study of the standard isothermal
test case, using up to �17.2 million particles, as part of the test-
ing program for the smoothed particle hydrodynamics (SPH) com-
ponent of the newly written code GADGET-2. However, his
calculations were only followed over �5.4 decades in density
and terminated when the two forming blobs were just entering
a phase of collapse upon themselves.

Although most fragmentation calculations apply to initially
uniform conditions, it is clear from the observations that molec-
ular cloud cores are centrally condensed (Ward-Thompson et al.
1994; André et al. 1998; Motte et al. 1998), with density pro-
files that are similar to those predicted by calculations of magne-
tized cores in the ambipolar diffusion stage (Basu&Mouschovias
1994; Ciolek & Mouschovias 1994; Mouschovias & Ciolek
1999). In response to this, a number of collapse models starting
from centrally condensed, Gaussian density profiles have also
been made. A particular computationally demanding isothermal,
Gaussian cloud model was first calculated by Boss (1991), and
thereafter recalculated by other authors as a further test case to
check both the likelihood of fragmentation during the isothermal
collapse phase and the reliability of the numerical code results
(Burkert & Bodenheimer 1996; Truelove et al. 1997; Boss 1998;
Boss et al. 2000; Sigalotti & Klapp 2001b, 2001c). Working at
low spatial resolution, Boss (1991) predicted fragmentation into a
quadruple system during the isothermal collapse of his Gaussian-
cloud model. Similar results were also obtained by Burkert &
Bodenheimer (1996), using higher spatial resolution. A new gen-
eration of three-dimensional collapse calculations started to ap-
pear later on with Truelove et al. (1997), who found that, working
at a resolution higher than the local Jeans length, the effects of
numerical viscosity are minimized preventing artificial fragmen-
tation. In particular, the same Gaussian-cloud model of Boss
(1991) did not fragment into a binary or quadruple system during
the isothermal infall, but rather collapsed to form a singular fila-
ment consistent with the self-similar solution derived by Inutsuka
&Miyama (1992) for the collapse of isothermal cylinders. Further
highly resolved calculations (Boss et al. 2000; Sigalotti & Klapp
2001b, 2001c) have shown that adhering to the Jeans resolu-
tion condition not only changes the nature of the solution for the
Gaussian-cloud model, but is the only road to guarantee con-
vergence of the numerical solution. Other Jeans-resolved mod-
els starting from a Bonnor-Ebert sphere have been reported by
Matsumoto & Hanawa (2003) and Hennebelle et al. (2004). In
particular, the former authors performed a large survey of model
parameters aimed at studying the effects of rotation speed, rotation
law, and amplitude of the bar mode perturbation on fragmentation.

Clarification of the issue of fragmentation is of fundamental
importance for explaining the duplicity of young stars and the
coupling between the processes of binary and star formation.

In connection with this, we note that the Gaussian-cloud model
calculations of Boss (1998) suffered from artificial fragmentation
despite obeying the Jeans condition, implying that it is a necessary
but not sufficient condition for physically realistic fragmentation.
On the other hand, Boss et al. (2000) demonstrated that the level
of resolution that is needed in order to achieve reliable results
may also depend on the particular numerical methods employed.
In addition, thermal retardation due to nonisothermal heating may
favor fragmentation during the collapse of the Gaussian cloud
and prevent its runaway collapse toward an infinitely thin spindle
(Boss et al. 2000). In order to investigate the actual level of res-
olution needed in an SPH-based code for achieving realistic
fragmentation and convergence to existing Jeans-resolved, finite-
difference (FD) calculations, we have recalculated the collapse
of the standard isothermal test case, using the new parallel code
GADGET-2 developed by Springel (2005). Since no definite so-
lution has as yet been found for the nonisothermal collapse of the
Gaussian cloud, here we also investigate the effects of thermal re-
tardation on fragmentation, using a barotropic equation of state
with unprecedentedly high spatial resolutions. In x 2 we add a few
comments on the numerical methods. The initial conditions and
details of the collapse models are given in x 3. This is followed, in
x 4, by the presentation and discussion of the results and, in x 5, by
the conclusions.

2. NUMERICAL METHODS

The calculations of this paper were performed using the parallel
code GADGET-2, which is described in full by Springel (2005).
The code is suitable for studying isolated, self-gravitating sys-
tems with unprecedentedly high spatial resolutions. So far, it has
mainly been used in cosmological applications with several mil-
lions of particles. The code is based on the tree-PM method for
computing the gravitational forces and on standard SPHmethods
for solving the 3D Euler equations of hydrodynamics. For a re-
cent review on the theory and applications of SPH we refer the
reader to Monaghan (2005).

As in most recent SPH codes used for problems involving
gravitational fragmentation, GADGET-2 incorporates the follow-
ing standard features: (1) The smoothing kernel Wij ¼ W (jri �
rjj; hi), where jri � rjj is the distance between two neighboring
particles and h is the smoothing length, has compact support so
that only a finite number of neighbors to each particle contribute
to the SPH sums. In particular, the SPH sum for the density is

�i ¼
XNneigh

j¼1

mjWij; ð1Þ

where mj denotes the mass of the jth particle and Nneigh is the
number of neighbors. (2) Each particle i has its own smoothing
length hi, which evolves with time so that the mass contained in
the kernel volume is a constant for the estimated density. For
equal-mass particles, this is equivalent to demanding that the
number of neighbors that contribute to the kernel be constant.
As was recently demonstrated by Attwood et al. (2007), the fidel-
ity of adaptive SPH calculations of self-gravitating systems relies
on the requirement that Nneigh be kept exactly constant. This con-
dition results in an effective reduction in the rates of numerical dis-
sipation and diffusion. However, if the particles have unequal
masses, as may be the case in centrally condensed configura-
tions, GADGET-2 may incur a change in the number of neigh-
bors at each time step. In this case, the problem is alleviated at the
expense of using a large number (Ntot) of particles. In particular,
if Ntot/Nneigh is increased, the timescales for numerical dissipation
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and diffusion are extended and the reliability of the results is sig-
nificantly improved (Attwood et al. 2007). For the present cal-
culations, we chooseNneigh ¼ 40 � �Nneigh, where the tolerance
�Nneigh ¼ 5. For uniform density distributions, where all par-
ticles have the same mass,�Nneigh is automatically set to zero,
while for varying density distributions, where the mass of the
particles may differ from one another, Nneigh may fluctuate be-
tween 35 and 45. In this case, the fidelity of the calculation can
be recovered by employing large enough values of Ntot/Nneigh

to make the timescale of numerical dissipation come close to
the evolution time. As we shall see in x 4, converging results for
the Gaussian-cloud collapse are achieved for Ntot k 5 million
particles, implying that Ntot/Nneigh must at least be greater than
�1:25 ; 105. (3) In most SPH fragmentation calculations, par-
ticles are also allowed to have individual gravity softening lengths
�i, which evolve in step with hi so that the ratio �i(t)/hi(t) is of
order unity. InGADGET-2, � is set equal to the minimum smooth-
ing length hmin, calculated over all particles at the end of each time
step�t. In this way, all particles share the same value of the grav-
ity softening length, while the gravitational acceleration and the
hydrostatic acceleration are still softened/smoothed on approxi-
mately the same scale. According to Bate & Burkert (1997), spu-
rious fragmentation is avoided in SPH simulations when � � h.
Also, they found that even with � � h, fragmentation is sup-
pressed artificially in zones where the local Jeans mass is smaller
than theminimummassMmin that can be resolved so that sub-Jeans
condensations are stabilized. These features were both indepen-
dently confirmed by Whitworth (1998), using analytic means.
(4) The gravitational forces are kernel-softened. In GADGET-2,
the SPH sums are evaluated using the spherically symmetricM4

kernel of Monaghan & Lattanzio (1985), and so gravity is spline-
softened with this same kernel.

The positions and velocities of particles are advanced through
a complete time step�t ¼ t nþ1� t n bymeans of a leapfrog inte-
gration scheme. In order to maintain hydrodynamic stability, the
signal-velocity approach derived byMonaghan (1997) is used to
calculate the Courant time step and the form of the artificial vis-
cosity. In particular, for the Courant factor we choose Cq ¼ 0:1.
The strength of the artificial viscosity is regulated by setting the
parameter�visc ¼ 0:75 in equation (14) of Springel (2005). These
choices of the parameters are enough to produce accurate and sta-
ble results.

3. INITIAL CONDITIONS AND COLLAPSE MODELS

3.1. The Uniform Cloud

The collapse of the uniform cloud starts with initial conditions
identical to the modified standard isothermal test case of Burkert
& Bodenheimer (1993). The initial cloud is a perfect sphere of
massM0 ¼ 1 M�, radius R ¼ 4:99 ; 1016 cm (�0.016 pc), tem-
peratureT ¼ 10 K, and constant density�0 ¼ 3:82 ; 10�18 g cm�3.
The sphere is initially in solid-body rotation with angular ve-
locity !0 ¼ 7:2 ; 10�13 s�1. The model has ideal gas thermo-
dynamicswith ameanmolecular weight� � 3. These parameters
correspond to initial ratios of the thermal and rotational energies
to the absolute value of the gravitational energy of � � 0:26 and
� � 0:16, respectively. The isothermal sound speed of the gas
is ciso � 1:66 ; 104 cm s�1, and the initial mean free-fall time
is tA � 1:07 ; 1012 s. In addition, a small-amplitude (a ¼ 0:1),
m ¼ 2 density perturbation of the form

� ¼ �0½1þ a cos (m�)� ð2Þ

is imposed on the underlying uniform density distribution, where
� is the azimuthal angle about the z-axis.

3.2. The Gaussian Cloud

The Gaussian cloud employs the same initial conditions ad-
vanced by Boss (1991) in his case C4. They correspond to a cen-
trally condensed sphere of mass M0 ¼ 1 M� and radius R ¼
4:99 ; 1016 cm. The density distribution is exponentially falling
from the center and is given by

�(r) ¼ �c exp � r

b

� �2
� �

; ð3Þ

where �c ¼ 1:7 ; 10�17 g cm�3 is the initial central density and
b � 0:578R is a length chosen such that the central density is
20 times the density at the outer edge. The gas has a temperature
of 10 K and a chemical composition of X ¼ 0:769, Y ¼ 0:214,
and Z ¼ 0:017, corresponding to a mean molecular weight � �
2:28. The cloud is given a 10% bar mode (m ¼ 2) perturbation
having the same form as expression (2). Solid-body rotation is
assumed at the rate of !0 ¼ 1:0 ; 10�12 s�1. With this choice of
the parameters, the values of� and � are the same as for the uni-
form model, while the isothermal sound speed is ciso � 1:90 ;
104 cm s�1 and the central free-fall time is tA � 5:10 ; 1011 s.
Note that the Gaussian cloud has the same global properties as the
uniform cloud in spite of being centrally condensed. A Gaussian
cloud of this type is in fair agreement with observations of pre-
collapse cloud cores, which indicate that their internal structure
fits with radial density profiles that flatten out near the center,
implying a finite central condensation (André et al. 1998; Motte
et al. 1998). In addition, it does not have the extreme central con-
densation of the singular isothermal sphere (� / r�2), which, if
uniformly rotating, would presumably be stable against fragmen-
tation (Tsai & Bertschinger 1989).

3.3. Equation of State

The isothermal phase of collapse is approximately valid for
densities in the range of �10�19 to �10�13 g cm�3. At higher
densities the collapse of some portions of the cloud core becomes
nonisothermal once the heating rate, due to gas compression, ex-
ceeds locally the cooling rate, due to dust grain radiation. As a re-
sult, the temperature increases in those portions. According to
Masunaga & Inutsuka (1999), the point at which the collapse
becomes nonisothermal is not necessarily determined by the
point at which the core becomes optically thick to its own radia-
tion, but rather by two other possible situations: (1) the cloud
core starts heating up just before it becomes optically thick
because the dust grains cease to be efficient coolants, or (2) it be-
gins to heat up thereafter because radiative diffusion allows the
core to remain isothermal. The former condition is a more likely
scenario in regions where both the metallicity and temperature are
lower, while the second one is more appropriate in regions with
higher metallicity and higher temperature.
Precise knowledge of the dependence of temperature on den-

sity at the transition from isothermal to nonisothermal collapse
will require solving the radiative transfer problem coupled to
a fully self-consistent energy equation. Spherically symmetric
calculations by Masunaga et al. (1998), using a nongray, var-
iable Eddington factor method have shown that for typical star-
forming conditions, heating prior to the gas becoming optically
thick in the cloud center ismodest (from 10K to only about 13K).
In addition, nonisothermal collapse of the central cloud is ex-
pected to begin at densitiesk10�15 g cm�3 (Inutsuka & Miyama
1997). On the other hand, the validity of these results in full three-
space dimensions was studied by Boss et al. (2000) for the collapse
of theGaussian cloud, using nonisothermal thermodynamics and
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solving the mean intensity equation in the Eddington approxima-
tion with detailed equations of state (see Boss & Myhill 1992).
They found that the collapse remains strictly isothermal up to
�10�16 g cm�3 (see Fig. 4 of Boss et al. 2000).At higher densities
the collapse is near isothermal, with the temperature rising very
slowly from 10 to �11.2 K by the time � � 10�14 g cm�3. Soon
afterward, when �k10�14 g cm�3, the collapse becomes non-
isothermal and the temperature rises steeplywith the density. Boss
et al. (2000) went on to argue that for the nonisothermal Gaussian
cloud, the variation of temperature with density cannot be fit well
with a single power law in density because the derived pressures
used to update the momentum equations will differ between a cal-
culation using a stiffened equation-of-state approximation and a
fully consistent calculation incorporating radiative transfer.

A drawback of fully nonisothermal calculations is the severe
computational burden imposed by solving the radiative transfer
equations at high spatial resolution, even in the Eddington approx-
imation. Therefore,many nonisothermal, 3D collapse calculations
to date rely on a barotropic prescription for the thermodynamics.
In this approximation, a self-consistent energy equation is not
needed and the thermal properties of the gas are expressed solely
in terms of the density. Here the uniform- and Gaussian-cloud
models are calculated using the barotropic pressure-density rela-
tion (e.g., Boss et al. 2000)

p ¼ c2iso�þ K��; ð4Þ

where � ¼ 5/3 is the adiabatic exponent in the optically thick
regime and K is a constant set by the requirement that the iso-
thermal and adiabatic parts of equation (4) are equal at some
critical density � ¼ �crit separating the isothermal from the non-
isothermal regimes, i.e.,

K ¼ c2iso�
1��
crit : ð5Þ

With the above prescriptions, the local sound speed becomes

c ¼ ciso 1þ �

�crit

� ���1
" #1=2

; ð6Þ

so that c � ciso when �T�crit and c � cad ¼ �1/2ciso when �3
�crit. Since the present calculations apply only to the initial phase
of fragmentation, we shall use equations (4)Y (6) for temperatures
well below 100 K. At such temperatures, a value of � ¼ 5/3 is
appropriate because the rotational and vibrational degrees of free-
dom of molecular hydrogen are frozen out, and so only transla-
tional degrees of freedomneed be considered (Winkler&Newman
1980; Boss et al. 2000).

The effects of thermal retardation on fragmentation are studied
for two different choices of the free parameter �crit (see Table 1). A
value of �crit ¼ 5:0 ; 10�14 g cm�3 produces a behavior that is
more representative of the near isothermal phase and fits better the
Eddington approximation solution of Boss et al. (2000). Con-
versely, a value of �crit ¼ 5:0 ; 10�12 g cm�3 prolongs the iso-
thermal phase of collapse to unrealistically high densities, but
allows direct comparison with the fully isothermal, FD calcula-
tions of Burkert & Bodenheimer (1993, 1996) and the noniso-
thermal (barotropic), SPH calculations of Kitsionas &Whitworth
(2002), who also used �crit ¼ 5:0 ; 10�12 g cm�3.

3.4. The Jeans Condition

After the work of Truelove et al. (1997), a new generation of
collapse and fragmentation calculations began to appear because

of the need of appropriate spatial resolution requirements. They
demonstrated, using a FD Cartesian code based on an adaptive
mesh refinement (AMR) technique, that perturbations arising from
the FD discretization of the gravitohydrodynamics equations can
induce artificial fragmentation in isothermal collapse calcula-
tions for which the Cartesian cell size�x exceeds one-fourth of
the local Jeans length

kJ ¼
�c2iso
�G

� �1=2

; ð7Þ

where G is the gravitational constant. This is equivalent to claim-
ing that the mass within a cell must never exceed 1/64 of the
Jeansmass �k3

J in order to avoid artificial fragmentation. They also
found that by fulfilling this condition, the isothermal Gaussian
cloud did not fragment into a binary or quadruple system as in pre-
vious calculations (Boss 1991; Burkert & Bodenheimer 1996),
but, rather, underwent runaway collapse to a singular filament.
Convergence to this solutionwas subsequently confirmedbyBoss
et al. (2000) and Sigalotti & Klapp (2001b), using Jeans-resolved
calculations of the same Gaussian cloud with the aid of indepen-
dent adaptive, FD codes based on spherical coordinates.

The corresponding Jeans condition for SPH was derived by
Bate & Burkert (1997), who found that true fragmentation is cap-
tured in SPH calculations provided that (1) the gravity softening
and the particle smoothing lengths have similar scales (i.e., � � h),
and (2) the minimum resolvable massMmin � Nneighm, wherem is
the mass of a single SPH particle, be less than the local Jeans mass

MJ �
6c3

G3=2�1=2
; ð8Þ

so that the Jeans condition can be written as an upper limit on
the mass of a single SPH particle

m <
6c3

NneighG3=2�1=2
: ð9Þ

TABLE 1

Collapse Models

Model

�crit
(g cm�3)

Number of

Particles

Final

Outcome Convergence

Uniform Clouds

U1A................ 5.0 ; 10�12 600,000 Binary Yes

U2A................ 5.0 ; 10�12 1,200,000 Binary Yes

U1B................ 5.0 ; 10�14 600,000 Binary Yes

U2B................ 5.0 ; 10�14 1,200,000 Binary Yes

Gaussian Clouds

G1A................ 5.0 ; 10�12 600,000 Binary No

G2A................ 5.0 ; 10�12 1,200,000 Triple No

G3A................ 5.0 ; 10�12 2,000,000 Triple No

G4A................ 5.0 ; 10�12 3,000,000 Binary Partial

G5A................ 5.0 ; 10�12 5,000,000 Single Yes

G6A................ 5.0 ; 10�12 10,000,000 Single Yes

G1B................ 5.0 ; 10�14 600,000 Triple No

G2B................ 5.0 ; 10�14 1,200,000 Triple No

G3B................ 5.0 ; 10�14 2,000,000 Quadruple No

G4B................ 5.0 ; 10�14 3,000,000 Binary Partial

G5B................ 5.0 ; 10�14 5,000,000 Binary Yes

G6B................ 5.0 ; 10�14 10,000,000 Binary Yes
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Whitworth (1998) derived analytically the Jeans criterion for a
gas simulated using SPH methods in which Nneigh is held con-
stant and � ¼ h. He showed that artificial formation of conden-
sations by numerical instability are effectively suppressed as
long as Mmin < MJ. Thus, only structures involving more mass
thanMmin are resolved properly. He also confirmed the findings
of Bate & Burkert (1997) that even with � � h, fragmentation is
suppressed artificially in regions where MJ < Mmin, implying
that unresolved Jeans-unstable condensations are stabilized nu-
merically. These results were independently confirmed byHubber
et al. (2006) by means of a simple perturbation analysis, using the
standard M4 kernel and kernel-softening gravity options. They
showed that SPH only captures genuine and resolved fragmenta-
tion and that failing to satisfy the Jeans condition simply suppresses
true fragmentation, rather than promoting artificial fragmentation
as with FD methods.

As shown in Table 1, we consider two sequences of model
calculations. One sequence consists of four independent runs of
the uniform-cloud test, while the other sequence is made up of 12
calculations of the Gaussian cloud. The models in both sequences
differ only in the value of �crit and in the total number of SPH
particles from the outset. For example, in the uniform clouds all
SPH particles have the same mass. With 600,000 particles (mod-
els U1A andU1B), themass of a particle ism � 1:67 ; 10�6 M�,
while in the runs with 1.2 million particles (cases U2A and U2B),
the mass of a particle ism � 8:33 ; 10�7 M�. At � ¼ �crit, equa-
tion (9) takes the form

m <
6c3iso

Nneigh�
1=2
crit

2

G

� �3=2

: ð10Þ

For �crit ¼ 5 ; 10�12 g cm�3, the right side of the above inequal-
ity gives �3:19 ; 10�5 M�, implying that for these two runs
the Jeans condition is satisfied at the point where the collapse
ceases to be isothermal. We compare the results of models U1A
and U2Awith those obtained by Kitsionas &Whitworth (2002),
who also employed 600,000 SPH particles in one model calcu-
lation with no particle splitting. They followed the collapse to
�max � 3:0 ; 10�9 g cm�3. At these densities, the right side of
equation (9) gives �2:83 ; 10�4 M�. Similarly, models U1B
and U2B are compared with the AMR calculations of Klein
et al. (1999), who followed the evolution up to �max � 1:08 ;
10�10 g cm�3. At this density, the right side of equation (9) be-
comes�5:30 ; 10�3 M�. Thus,MJ increases deep into the non-
isothermal collapse, making the Jeans condition less stringent
than for the isothermal collapse. The collapse of the Gaussian
cloud was recalculated with different resolutions, ranging from
0.6 to 10 million particles (see Table 1). While adhering to the
Jeans condition, thesemodels will allow us to find at which spatial
resolution SPHwould yield converging results for the nonisother-
mal collapse and fragmentation of the Gaussian cloud. As far as
we know, there are no SPH calculations of the Gaussian cloud
available in the literature, which also justifies the present study.

3.5. Setup of the Initial Models

In order to set up the initial particle distribution, we first define
a Cartesian box with sides equal to twice a specified radius Rb k
R ¼ 4:99 ; 1016 cm, and with its geometrical center coinciding
with the origin (x ¼ y ¼ z ¼ 0) of a Cartesian coordinate system.
The box is then subdivided into regular cubic cells of volume
� 3 ¼ �x�y�z each. The spherical cloud is then copied within
the box by placing an SPH particle at the center of each cell at dis-
tances d � R from the origin, so that the region outside the sphere

is a vacuum.A little amount of disorder is added to the regular dis-
tribution of particles by shifting each particle a distance� /4 from
its cell-center location and along a specified direction, which is
chosen randomly among the three Cartesian axes. We define the
mass of particle i at location (xi, yi, zi) to be

mi ¼ �(xi; yi; zi)�
3; ð11Þ

where �(xi; yi; zi) is either a constant, as for the uniform cloud,
or given by equation (3), as for the Gaussian cloud. The initial
averaged radial density profiles (crosses) for the uniform and
Gaussian clouds are shown in Figure 1. The solid lines depict
the corresponding exact profiles. The small scatters in the nu-
merical profiles near the center and near the outer edge are only
cosmetic because they are an effect of the disordered position of
particles on the radial averaging procedure.
Solid-body rotation about the z-axis is assumed in a counter-

clockwise sense by assigning to particle i an initial velocity given by

vi ¼ (!0xi; �!0yi; 0): ð12Þ

Finally, the bar mode density perturbation given by equation (2)
is applied by modifying the mass of particle i according to

mi ! mi½1þ a cos (m�i)�; ð13Þ

where �i denotes the azimuthal position of that particle. The
Mezquite Cluster of the University of Sonora, equipped with
70 Dual Intel (64 bit) Xeon processors of 3.6 GHz each, was
used for the parallel calculations of this paper.

4. RESULTS

4.1. Collapse of the Uniform Cloud

The collapse of the uniform cloud is a valuable fragmenta-
tion test to explore the convergence of the solution at resolutions

Fig. 1.—Averaged radial density profiles as calculated from the initial distribu-
tion of particles (crosses) for both the uniform- and Gaussian-cloud models with
600,000 SPH particles. The solid lines depict the corresponding exact profiles. The
density is expressed in terms of the reference value �0 ¼ 3:82 ; 10�18 g cm�3, and
the radial distance is given in terms of the initial cloud radius.
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higher than those required by the Jeans condition. We start by
describing the results of models U1A and U2A, both with �crit ¼
5:0 ; 10�12 g cm�3. These two models differ only in their total
number of SPH particles (see Table 1). Kitsionas & Whitworth
(2002) showed that using 600,000 SPH particles, the collapse of
the uniform cloud can be followed with an isothermal equation
of state up to densities of �10�10 g cm�3, without violating the
Jeans condition. Recent resolution studies of the standard iso-
thermal collapse test up to peak densities of 10�12 g cm�3, using
the newly written code GADGET-2 with 0.0355, 0.2681, 2.144,
and 17.16 million particles, show that reasonably good conver-
gence is seen for the calculations with 2.144 and 17.16 million
particles, except for small residual differences in the evolution of
the maximum density at earlier collapse times (Springel 2005).
We note that 0.2681 million particles is less than half the number
of particles employed byKitsionas &Whitworth (2002), starting
from which converged SPH solutions would be expected for the
standard isothermal test case.

Figure 2 displays column density images of the cloud midplane
during the collapse of model U2A through �9.2 orders of mag-

nitude of increase in density. The evolution time is given in terms
of the initial free-fall time (�1:07 ; 1012 s), and the calibration
of the color scale is the same for all frames. For comparison,
Truelove et al. (1998) performed highly resolved AMR calcula-
tions of this test model over a density increase of 8.1 decades,
while Kitsionas & Whitworth (2002), using SPH methods, fol-
lowed the same collapse over 8.9 decades in density. This model
was also calculated by Boss et al. (2000), although with fixed
finest resolution and tomuch lower central density contrasts (only
5 decades). The morphology of collapse for model U1A is almost
undistinguishable from that depicted in Figure 2. Thus, a qualita-
tively converged solution is obtained when doubling the number
of particles required to satisfy the Jeans condition, with the main
difference being that model U2A progresses slightly faster than
does model U1A because of its finer resolution.

The details of the initial phase of collapse are similar to those
described by Bate & Burkert (1997). That is, collapse proceeds
primarily down the rotation axis, while material in and near the
central midplane undergoes a weak expansion perpendicular to
the rotation axis, causing the formation of two overdense blobs

Fig. 2.—Column density images of the cloud midplane during the evolution of model U2Awith 1.2 million particles. The times and peak densities are (a) 1.1146t ff ,
9:80 ; 10�16 g cm�3; (b) 1.2460t ff , 9:37 ; 10�15 g cm�3; (c) 1.2658t ff , 4:19 ; 10�13 g cm�3; (d ) 1.2694t ff , 6:93 ; 10

�12 g cm�3; (e) 1.2748t ff , 6:74 ; 10
�10 g cm�3; and

( f ) 1.2910t ff , 5:96 ; 10
�9 g cm�3. The color denotes the density on a logarithmic scale. The axes are in units of the initial cloud radius.
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from the initial m ¼ 2 perturbation seed. Soon after the end of
the first free-fall time (by�1.044tff ), the expansion stops and the
midplane region begins to collapse. As a result, the blobs fall
toward the center and merge to form a prolate structure (Fig. 2a
at 1.1146tff). By this time, the overall cloud has already com-
pressed into a flat disk with the inner bar being slightly denser at
the endpoints. So, as the ends of the bar grow in mass, due to a
converging gas flow onto them, they become self-gravitating and
collapse upon themselves (Fig. 2b) to form a protostellar binary
system, connected by a thin bar of lower density, as shown in Fig-
ure 2c at 1.2658tff . At this epoch, the peak density (�4:19 ;
10�13 g cm�3) is close to the values quoted by Truelove et al.
(1998) in their Figure 12 (�max � 3:91 ; 10�13 g cm�3 at
1.3167tff ) and Boss et al. (2000) in their Figure 6 (�max � 4:0 ;
10�13 g cm�3 at 1.300tff ). In particular, we may see the strong
resemblance of Figure 2cwith Figure 12 of Truelove et al. (1998).
The basic features of the formation of the binary and connect-
ing bar are very similar between the two cases. Elongation of
the fragments is already evident at these densities. Although no
symmetries are imposed in our calculations, it is quite remark-
able that to a good approximation, one fragment is the reflection
of the other about the origin. Also, at the epoch of Figure 2c, the
instantaneous separation between the fiducial centers of the frag-
ments is �9:04 ; 1015 cm for model U1A and �9:06 ; 1015 cm
for model U2A. For comparison, Truelove et al. (1998) quoted
a separation of 9:2 ; 1015 cm and Boss et al. (2000) found a dis-
tance of 1:1 ; 1016 cm at comparable maximum densities. The
subsequent isothermal collapse of the elongated fragments pro-
ceeds in an approximate cylindrical manner toward formation
of a linear singularity ( Inutsuka & Miyama 1992). Figures 2d
(at 1.2694tff ) and 2e (at 1.2748tff ) show the cloud center when
the maximum density has passed �crit. The binary components
and the bar connecting them approximate to filamentary sin-
gularities. Figure 2d shows good qualitative agreement with the
results of Kitsionas & Whitworth (2002) in their Figure 1a at
comparable peak densities. Also, note that the long filamentary
shape of the fragments, visible in Figure 2e, strongly resembles
that depicted by Truelove et al. (1998) in their Figure 13 by the
time the density has raised over �8 decades in both cases. Dur-
ing this stage, the gas within the fragments has become adiabatic
and is heating up. The breakdown of isothermality slows down
the cylindrical collapse of the fragments and forces them to a
reduction of dimensionality from an almost one-dimensional lin-
ear object to a quasi-spherical, essentially pointlike one. This fea-
ture is evident in Figure 2f (1.2910tff ), when the peak density has
increased over 9.2 decades.

Figure 3 depicts the position of particles in the cloud midplane
toward the end of the calculation for models U1A (Fig. 3a) and
U2A (Fig. 3b) at comparable maximum densities. Evident in
these figures is the fanning-out of the bar close to the quasi-
spherical binary fragments. Similar features were also observed
by Kitsionas &Whitworth (2002). They argued that this effect is
a real one due to tidal shearing of the bar by the inspiraling binary
fragments. In both cases, however, the bar is still isothermal and
continues to evolve to a singular filament with no signs of frag-
mentation. Amore quantitative comparison betweenmodels U1A
and U2A is given in Figure 4, where the mass of the binary frag-
ments and their ratios of the thermal (�) and rotational (� ) energy
over the absolute value of the gravitational energy are plotted as
functions of time. With this purpose, the fragment volume is ap-
proximately defined by the region around the particle of maxi-
mum density that is occupied by all surrounding particles with
densities higher than a factor f of the maximum density, where
f was assumed to vary monotonically with time between 0.5 (at

the epoch of fragment formation) and 0.1 (by the time the frag-
ment starts collapsing upon itself and evolving as a separate en-
tity). This criterion for choosing f has been employed in most
previous work and therefore we adopt it here. The mean mass of
a fragment is then obtained by summing over the masses of all
particles lying within this volume. Estimates of the thermal, ro-
tational, and gravitational energies associated with the fragment
volume are then obtained by means of the summations

Ether ¼
3

2

X
i

mi

pi

�i
;

Erot ¼
1

2

X
i

miv
2
�i
; ð14Þ

Egrav ¼
1

2

X
i

mi�i;

Fig. 3.—Positions of particles lying within a slice of thickness �z/R ¼
5 ; 10�4 about the cloud midplane (z ¼ 0). The binary core and the thin filament
connecting them are shown for (a) model U1A at 1.291tff when �max � 3:76 ;
10�9 g cm�3 and (b) model U2A at 1.286tff when �max � 3:60 ; 10�9 g cm�3. A
total number of 58,982 and 113,820 particles are shown in (a) and (b), respectively.
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respectively, where �i is the value of the gravitational potential
at the location of particle i, v�i

refers to the �-velocity compo-
nent for that particle with respect to a fixed axis passing through
the particle of maximum density, and the summations include
the contributions from all particles pertaining to the fragment
volume. It is clear from Figure 4 that the binary components in
each model are essentially identical and share almost the same
evolution. After the onset of fragmentation, the binary clumps
of model U2A have lower values of� (top left panel ) and � (top
right panel ), compared to model U1A at similar evolutionary
times. This is one effect of fragmentation occurring slightly ear-
lier in model U2A because of its finer resolution. However, after

about 1.27tff , when the fragments are already collapsing upon
themselves, the evolution of � and � for both runs exhibits a
closer convergence. The bottom left panel shows the evolution
of the fragments in the (�, � )-plane, where they are seen to ap-
proach a state of virial equilibrium by the end of the calcula-
tions.Moreover, the filament plus binary system for model U1A
is less massive (�0.112M�) than for model U2A (�0.143M�),
while the fragments contain �7.4% of the total cloud mass in
model U1A and �8.5% in model U2A, as we may see from
Table 2, where the fragment properties at the end of the cal-
culations are listed for the uniform models. Finally, the solid
(case U1A) and dashed (case U2A) lines in Figure 8 show the

Fig. 4.—Time evolution of the thermal (�; top left) and rotational energy (�; top right) to the absolute value of the gravitational energy for the binary fragments of
models U1A and U2A. The bottom panels show their tracks in the (�, � )-plane (bottom left) and their growing masses in units of the initial cloud mass (bottom right). The
plus signs and crosses apply to model U1A, while the asterisks and dotted circles apply to model U2A. The solid line in the bottom left panel marks the line of virial
equilibrium (�þ � ¼ 0:5).
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maximum density as a function of time. Reasonably good con-
vergence is achieved between these two curves. Only very small
residual differences are visible in the evolution just after the first
free-fall time, which is consistent with the fact that model U2A
evolves to higher densities slightly faster than does model U1A.

Models U1B and U2B differ from the previous cases in that
�crit ¼ 5:0 ; 10�14 g cm�3, so that the isothermal phase of col-
lapse is assumed to be shorter. Up to the time when �max � �crit,
the evolution is the same as described before. SPH calculations
of this model at much lower resolution were performed by Bate
& Burkert (1997). Later on, Klein et al. (1999) recalculated the
same collapse using their adaptive AMR code. Figures 5 and 6
show column density images of the cloud midplane during the
collapse of models U1B and U2B, respectively, starting from the
point where isothermality breaks down. Binary fragmentation is
already evident when �max exceeds �crit (Figs. 5a and 6a). How-
ever, unlike models U1A and U2A, adiabatic collapse impedes
the fragment region to approximate a filamentary singularity
(Figs. 5b and 6b). A prominent bar has also formed between the
fragments, which soon becomes optically thick. As a result, the
overwhelming pressure forces slow down and then stop further
collapse of the bar upon itself (Figs. 5c at 1.3144tff and 6c at
1.3212tff ). At this stage, the binary core and the bar are both
embedded in a long two-armed spiral, reminiscent of the initial
m ¼ 2 perturbation. In the subsequent evolution, the binary

TABLE 2

Fragment Properties for the Uniform Clouds

Model

Time

(tff ) Mf /M0 Mtot, f /M0 � �

U1A................ 1.2910 0.0372 0.0745 0.107 0.468

0.0373 . . . 0.104 0.470

U2A................ 1.2860 0.0426 0.0853 0.157 0.412

0.0427 . . . 0.155 0.414

U1B................ 1.3999 0.0935 0.1896 0.195 0.321

0.0961 . . . 0.193 0.327

U2B................ 1.3955 0.0929 0.1832 0.244 0.287

0.0903 . . . 0.249 0.272

Fig. 5.—Column density images of the cloud midplane during the evolution of model U1B with 600,000 particles. The times and peak densities are (a) 1.2739t ff ,
5:42 ; 10�14 g cm�3; (b) 1.2964t ff , 7:86 ; 10�13 g cm�3; (c) 1.3144t ff , 3:65 ; 10

�12 g cm�3; (d ) 1.3414t ff , 5:17 ; 10
�12 g cm�3; (e) 1.3594t ff , 7:08 ; 10�12 g cm�3; and

( f ) 1.3999t ff , 8:79 ; 10
�12 g cm�3. The color denotes the density on a logarithmic scale. The axes are in units of the initial cloud radius.
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fragments are pulled inward due to accretion of low angular
momentum gas from the bar. After a quarter-orbit of the frag-
ments, the trailing spiral arms warp up and elongate by the time
the bar has almost dissipated and the binary has come close
together (Figs. 5d at 1.3414tff and 6d at 1.3437tff ). Later on,
when �max � 7:08 ; 10�12 g cm�3 (case U1B) and �7:44 ;
10�12 g cm�3 (case U2B), the binary core reaches its closest or-
bital separation (Figs. 5e at 1.3594tff and 6e at1.3549tff ), which
is �90 AU for model U1B and �89 AU for model U2B. Note
that each binary component is accompanied by protostellar
disks, which accrete primarily high angular momentum mass
directly from the long spiral arms. The fragments in turn accrete
mass from the disks and start separating from each other, while
the trailing spiral arms wind up and form a dense circumbinary
disk (Figs. 5f at 1.3999tff and 6f at 1.3955tff ). At this stage, the
cores are fully detached with an instantaneous separation of
�302 AU for model U1B and �262 AU for model U2B. The
protostellar disks remain attached to the long spiral and have av-
erage radii of�100AU,while the circumbinary disk extends over
a mean diameter of �660 AU for model U1B and �680 AU for

model U2B. The morphology of collapse and fragmentation is
very similar to that obtained byKlein et al. (1999)with their AMR
code. In particular, the final binary protostellar disk/core system in
Figures 5f and 6f bears a strong resemblancewith their Figure 6 at
1.4816tff . At the moment of closest binary approach they quote a
separation of�44 AU (their Fig. 3), which is a factor of 1

2 smaller
than those found formodelsU1B andU2B.Also, the peak density
in their Figure 6 is about an order of magnitude higher than in
Figures 5f and 6f, while the final binary separation is �400 AU
compared to�302 AU for Figure 5f and�262 AU for Figure 6f.

The cores contain�19% (model U1B) and�18% (model U2B)
of the mass of the initial cloud (see Table 2). Figure 7 depicts the
time evolution of the fragment properties and their tracks in the
(�, � )-plane. It is clear from these figures that for both models
the fragments follow similar evolutions and that they approach a
state of virial equilibrium by the end of the calculations. For com-
parison,Klein et al. (1999) report that about 20%of the total cloud
mass is in the formof binary fragments at the time of their Figure 6.
Moreover, Figure 8 shows that reasonably good convergence is
achieved formodels U1B (dotted line) andU2B (dot-dashed line),

Fig. 6.—As in Fig. 5, but formodel U2Bwith 1.2million particles. The times and peak densities are (a) 1.2626tff , 5:31 ; 10
�14 g cm�3; (b) 1.2897tff , 7:36 ; 10

�13 g cm�3;
(c) 1.3212tff , 3:50 ; 10

�12 g cm�3; (d ) 1.3437tff , 5:11 ; 10
�12 g cm�3; (e) 1.3549tff , 7:44 ; 10

�12 g cm�3; and ( f ) 1.3955tff , 1:36 ; 10�11 g cm�3. The color denotes the
density on a logarithmic scale. The axes are in units of the initial cloud radius.
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Fig. 7.—Integral properties of the binary fragments for models U1B and U2B as functions of time. In each panel, the plus signs and crosses apply to model U1B, while
the asterisks and dotted circles apply to model U2B. The solid line in the bottom left panel marks the line of virial equilibrium (�þ � ¼ 0:5).



with only small differences toward the later phases of collapsewhen
the maximum densities for model U2B are slightly higher than for
modelU1B.As formodelsU1AandU2A, in this case convergence
is also seen when doubling the number of particles required to sat-
isfy the Jeans condition. Independently of whether the transition
from isothermal to adiabatic collapse is anticipated or retarded, the
uniform cloud leads to a binary system, implying that thermal re-
tardation plays no role in either enhancing fragmentation or chang-
ing the number of fragments. However, thermal retardation results
in more massive fragments due to enhanced mass accretion.

4.2. Collapse of Gaussian Clouds

We now turn to the collapse of the Gaussian cloud first cal-
culated by Boss (1991). This model was recalculated at high spa-
tial resolution with the aid of adaptive FD codes by Burkert &
Bodenheimer (1996), Truelove et al. (1997), Boss (1998), and
Sigalotti & Klapp (2001b, 2001c), using an isothermal equation
of state, and by Boss et al. (2000), who performed two indepen-
dent calculations: one with a barotropic equation of state and the
other by including nonisothermal thermodynamics,withEddington-
approximation radiative transfer and detailed equations of state,
to model the transition from isothermal to nonisothermal collapse.
While a fairly good agreement has been established that the out-
come of the isothermal collapse is a singular filament, as yet no
definite solution has been reached when nonisothermal (adiabatic)
effects are included. In particular, the calculations of Boss et al.
(2000) showed that in the barotropic approximation (their model
B&M-B) the cloud collapsed to form a thin filament, which shortly
thereafter fragmented into two weak clumps by the time �max ¼
1:3 ; 10�11 g cm�3. However, the subsequent evolution could not
be followed because of limitations with their spherical-coordinate
code to solve fine-scale structure. When the same model was rerun
with their adaptive AMR code, a nearly identical thin filament
formed, containing two weakly defined clumps, at about the same
maximum density as the B&M-B model. When the AMR calcu-
lation was evolved further in time toward a peak density of 1:0 ;
10�9 g cm�3, the two clumps converged to the center and merged

into a single, central core surrounded by trailing spiral arms. In
contrast, the radiative-transfer collapse calculation (their model
B&M-E) produced a central clump surrounded by spiral arms
containing two more clumps at a maximum density of 5:0 ;
10�11 g cm�3. The actual fate of the triple system could not be
assessed because they were unable to continue the collapse
farther in time with their radiative transfer code. In passing, we
note that so far no SPH calculations of the Gaussian cloud have
been reported in the literature.

In this section we describe the results obtained for the baro-
tropic collapse of the Gaussian cloud for two distinct sequences
of model calculations, the details of which are listed in Table 1.
The aim of the present models is to explore (1) the convergence
of the intermediate phases of collapse with the FD simulations of
Boss et al. (2000), (2) the level of resolution needed with SPH to
achieve convergence, and (3) the sensitivity of fragmentation to
the effects of thermal retardation due to nonisothermal heating.
We start the discussionwith models G1AYG6A, which refer to six
identical simulations with �crit ¼ 5:0 ; 10�12 g cm�3 and a differ-
ing number of particles (see Table 1). For comparison, the cal-
culations of Boss et al. (2000) used �crit ¼ 3:16 ; 10�12 g cm�3.
Figure 9 shows column density images of the cloud midplane for
the evolution of model G6A with 10 million particles. An al-
most identical evolution was also followed bymodel G5A, using
5 million particles. The cloud collapses isothermally to form a
central prolate core (Figs. 9a and 9b). Soon thereafter, the inner-
most core enters a phase of adiabatic collapse, while the sur-
rounding regions remain approximately isothermal and continue
to experience cylindrical collapse. During this phase, the AMR
calculations of Boss et al. (2000) lead to the formation of a thin
filament, containing two weak density maxima (their Fig. 5c at
�max ¼ 2:5 ; 10�11 g cm�3). A quite similar filament is also ob-
tained with GADGET-2, as shown in Figure 9c at the same peak
density. In the present case, however, no embedded binary clumps
are evident. As the central gas heats up, the filament stops its
cylindrical collapse and becomes distorted because of differential
rotation. Meanwhile a central adiabatic core forms (Fig. 9d). By
the time the maximum density has grown to 5:5 ; 10�10 g cm�3

(Fig. 9e), trailing spiral arms have developed around the central
core. This structure is also very similar to that shown byBoss et al.
(2000) in their Figure 5d when �max ¼ 1:0 ; 10�9 g cm�3. How-
ever, when the GADGET-2 calculation is evolved to such peak
density, the orbiting spiral arms surrounding the central core
quickly deform and expand away because of rotational effects
(Fig. 9f ). At this time, a number of small clumps appear to be
condensing from the distorted spirals. Continuation of the cal-
culation up to �max ¼ 2:54 ; 10�9 g cm�3 shows the formation
of a final central core embedded in a dense two-armed spiral.
Figure 10 displays images of the final configurations obtained
for models G1AYG6A at suchmaximum density, when the calcu-
lations are terminated. Models G1A (Fig. 10a) to G3A (Fig. 10c)
clearly lead to small-scale structures that differ in shape from one
another. According to the analysis of Attwood et al. (2007), the
lack of convergence suggests that for these models the ratio
Ntot/Nneigh was not sufficiently large to avoid numerical dissipa-
tion and for diffusion to take place over the evolution timescale.
As the total number of particles is increased from 3 million (case
G4A; Fig. 10d ) to 10 million (case G6A; Fig. 10f ), convergence
is achieved on qualitative grounds because the timescales of nu-
merical dissipation and diffusion become at least comparable to
the evolution time. In particular, Figures 10e (model G5A) and
10f (model G6A) look almost identical, meaning that true con-
vergence is obtained for this Gaussian-cloud collapse whenwork-
ing with 5Y10 million particles. The two-armed spiral has a

Fig. 8.—Time evolution of the maximum density for models U1A (solid line),
U2A (dashed line), U1B (dotted line), and U2B (dot-dashed line).
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Fig. 9.—Column density images of the cloud midplane during the evolution of model G6Awith 10 million particles. The times and peak densities are (a) 1.3675tff ,
2:84 ; 10�13 g cm�3; (b) 1.3728tff , 1:05 ; 10

�12 g cm�3; (c) 1.3782tff , 2:55 ; 10
�11 g cm�3; (d ) 1.3865tff , 1:71 ; 10�10 g cm�3; (e) 1.4150tff , 5:51 ; 10�10 g cm�3; and

( f ) 1.4368tff , 1:02 ; 10�9 g cm�3. The color denotes the density on a logarithmic scale. The axes are in units of the initial cloud radius.
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Fig. 10.—Column density images of the cloud midplane showing the final configuration obtained for models (a) G1A (1.4879tff), (b) G2A (1.4723tff), (c) G3A
(1.4697tff), (d ) G4A (1.4434tff), (e) G5A (1.4423tff), and ( f ) G6A (1.4418tff). In all frames, themaximumdensity is 2:54 ; 10�9 g cm�3. The color denotes the density on
a logarithmic scale. The axes are in units of the initial cloud radius.

303



well-defined clumpy structure, suggesting that further fragmenta-
tion may eventually occur. However, by the times of Figures 10e
and 10f the small clumps have masses lower than �5:0 ; 10�4

times the initial cloud mass and so they cannot be considered
true fragments. The time evolutions of the maximum density
for models G1AYG6A are compared in Figure 11. That models
G5A and G6A essentially converge to the same solution can be
seen by the solid line (model G5A) overlapping the short-dashed
curve (model G6A), except toward the end of the calculation
when model G6A attains slightly higher densities compared to
model G5A because of its finer resolution. Table 3 lists the frag-
ment properties for the Gaussian clouds at the termination of
the calculations. Note that only �0.6% of the total cloud mass is
contained by the central adiabatic core.

We now describe the results for models G1BYG6B, which dif-
fer from the previous sequence in that the isothermal phase of col-
lapse is assumed to be shorter (i.e., �crit ¼ 5:0 ; 10�14 g cm�3).
The time history of model G6B with 10 million particles is de-
picted in Figure 12.ModelsG4B andG5Bwith a lower number of
particles evolved in quite similar fashion. Up to the point where
�max ¼ �crit, the cloud evolves into a centrally condensed, flat disk
as before. As the central cloud regions enter the adiabatic phase of
collapse, a differentially rotating bar develops (Fig. 12a), whose
maximum density is about 2 orders of magnitude lower than in
model G6A (Fig. 9c) because of thermal retardation. The bar in-
flates due to the deforming effects of rotation and the increased
pressure gradients that slow down the collapse. As a result, the
central bar warps up, develops two weak density maxima, and
evolves to a transient elliptical disk with trailing spiral arms
(Fig. 12b). Later on, because of further rotation the disk soon
becomes S-shaped and the two density peaks fall toward the
center (Fig. 12c). After rotating for more than 90�, the S-shaped
structure grows in size and develops long arms connected by a
central dense bar (Fig. 12d). The bar accretes mass directly from
the arms and starts fragmenting into two clumps (Fig. 12e). At this
time, the end parts of the winding arms evolve into two more
(‘‘satellite’’) condensations, which are confined by self-gravity.

Fragmentation of the bar leads to a well-defined inner binary
(Fig. 12f ). In contrast, for models G1B and G2B, working with
0.6 and 1.2 million particles, respectively, the central bar de-
cayed into a central blob without ever fragmenting. Meantime,
the satellite fragments condense and take the form of an outer
binary (Fig. 12g). The inner binary rotates at a faster rate and
detaches, while the outer binary follows a nearly circular orbit
and accretes mass from the outer disk, coming close together
(Fig. 12h). As the inner binary further detaches, its compo-
nents merge with those of the outer binary. As a result a wide bi-
nary system forms, as shown in Figure 12i, when �max ¼ 1:39 ;
10�11 g cm�3. Figure 13 compares the outcome of the evolution
for models G1BYG6B at comparable maximum densities (k1:4 ;
10�11 g cm�3), when the calculations were terminated. Evidently,
good convergence is reached for models G5B (Fig. 13e) and
G6B (Fig. 13f ), working with 5 and 10 million particles, respec-
tively. The evolution of the maximum density for all six mod-
els is depicted in Figure 14, where only the curves for models
G5B (solid line) and G6B (short-dashed line) exhibit a closer
correspondence.
Models G1B and G2B formed a ternary system (Figs. 13a and

13b), while model G3B (Fig. 13c) formed a quadruple core. The
difference in the number of final fragments is due to the fact that
for the former models the central bar did not fragment but rather
decayed into a single blob. It may well be that the quadruple sys-
tem for model G3B could eventually decay into a binary core, as
inmodels G4BYG6B, due to pairwise merging of the component
fragments later in the evolution. The wide binaries in models
G5B and G6B have mean separations of �300 AU and masses
of �1.0 M� each, representing about 10% of the total initial
cloud mass. The properties of these fragments at the times of

TABLE 3

Fragment Properties for the Gaussian Clouds

Model

Time

(tff ) Mf /M0 Mtot, f /M0 � �

G1A...................... 1.4879 0.0079 0.0114 0.136 0.462

0.0035 . . . 0.172 0.437

G2A...................... 1.4723 0.0039 0.0084 0.202 0.320

0.0026 . . . 0.239 0.350

0.0019 . . . 0.235 0.380

G3A...................... 1.4697 0.0056 0.0126 0.153 0.351

0.0038 . . . 0.194 0.406

0.0031 . . . 0.205 0.415

G4A...................... 1.4434 0.0061 0.0110 0.251 0.447

0.0046 . . . 0.156 0.343

G5A...................... 1.4423 0.0063 0.0063 0.156 0.356

G6A...................... 1.4418 0.0061 0.0061 0.152 0.384

G1B...................... 1.8011 0.0401 0.0797 0.229 0.261

0.0207 . . . 0.435 0.224

0.0190 . . . 0.476 0.190

G2B...................... 1.8252 0.0396 0.0833 0.245 0.263

0.0233 . . . 0.422 0.238

0.0204 . . . 0.413 0.184

G3B...................... 1.8613 0.0371 0.1023 0.280 0.251

0.0224 . . . 0.397 0.257

0.0215 . . . 0.385 0.321

0.0213 . . . 0.348 0.318

G4B...................... 1.8091 0.0510 0.0966 0.252 0.373

0.0456 . . . 0.314 0.294

G5B...................... 1.8110 0.0494 0.0969 0.269 0.314

0.0475 . . . 0.279 0.318

G6B...................... 1.8072 0.0480 0.0938 0.243 0.288

0.0458 . . . 0.266 0.259

Fig. 11.—Time evolution of the maximum density for models G1AYG6A.
The legend within the box specifies the model to which each curve corresponds.

ARREAGA-GARCÍı́A ET AL.304



Fig. 12.—Column density images of the cloud midplane during the evolution of model G6B with 10 million particles. The times and peak densities are (a) 1.4244tff ,
5:96 ; 10�13 g cm�3; (b) 1.4434tff , 6:51 ; 10�13 g cm�3; (c) 1.5574tff , 1:37 ; 10�12 g cm�3; (d ) 1.6248tff , 2:93 ; 10

�12 g cm�3; (e) 1.6913tff , 4:36 ; 10
�12 g cm�3;

( f ) 1.7130tff , 7:61 ; 10
�12 g cm�3; (g) 1.7283tff , 8:85 ; 10

�12 g cm�3; (h) 1.7663tff , 1:17 ; 10
�11 g cm�3; and (i) 1.8043tff , 1:39 ; 10�11 g cm�3. The color denotes the

density on a logarithmic scale. The axes are in units of the initial cloud radius.



Figure 13 are listed in Table 3. At least during the early phases
of collapse, thermal retardation seems to favor fragmentation of
the Gaussian cloud, leading to an increased number of fragments
at least for those runs where convergence is attained. However, it
is clear from the results of models G5A and G6A that further
fragmentation may well occur late in the evolution so that thermal
retardation may indeed not play a role in determining the final
number of protostars.

5. CONCLUSIONS

In this paper, we have calculated the early phases of cloud col-
lapse and fragmentation up to the formation of the first proto-
stellar core, using the code GADGET-2 with unprecedentedly
high spatial resolutions. The initial conditions for the cloudmod-
els are chosen to be the ‘‘standard isothermal test case’’ in the
variant calculated by Burkert & Bodenheimer (1993) and the
centrally condensed, Gaussian cloud advanced by Boss (1991).
A barotropic equation of state is assumed to simulate the tran-
sition from isothermal to nonisothermal collapse. The first mo-

tivation of this study is to investigate the sensitivity of fragmen-
tation to the effects of thermal retardation by varying the value of
the critical density (�crit) at which nonisothermal heating is as-
sumed to begin. The second goal is to explore the level of resolu-
tion needed by smoothed particle hydrodynamics (SPH) methods
to achieve realistic fragmentation and convergence to existing
Jeans-resolved, finite-difference (FD) calculations. Further rea-
sons that justify the present study are (1) the complete lack of SPH
calculations of the Gaussian-cloud collapse and (2) the fact that
while a fairly good agreement exists that the outcome of the iso-
thermal collapse of the Gaussian cloud is the formation of a sin-
gular filament, no definite solution has as yet been found for its
barotropic collapse. The main results are summarized as follows.
The calculations show that increasing the number of particles

from 0.6 to 1.2 million yields reasonable good convergence for
the collapse and fragmentation of the standard isothermal test
case. When �crit ¼ 5:0 ; 10�12 g cm�3, the cloud fragments into
a binary system connected by a thin filament, which never sub-
fragments, in excellent agreement with previous adaptive FD

Fig. 13.—Column density images of the cloud midplane showing the final configuration obtained for models (a) G1B (1.8011tff ), (b) G2B (1.8252tff ), (c) G3B
(1.8613tff ), (d ) G4B (1.8091tff ), (e) G5B (1.8110tff ), and ( f ) G6B (1.8072tff ). The maximum densities are (a) 1:43 ; 10�11 g cm�3, (b) 1:45 ; 10�11 g cm�3,
(c) 1:43 ; 10�11 g cm�3, (d ) 1:42 ; 10�11 g cm�3, (e) 1:46 ; 10�11 g cm�3, and ( f ) 1:44 ; 10�11 g cm�3. The color denotes the density on a logarithmic scale. The axes
are in units of the initial cloud radius.
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calculations by Truelove et al. (1998) and SPH calculations by
Kitsionas & Whitworth (2002). As long as the critical density is
lowered to the value of 5:0 ; 10�14 g cm�3, which is more rep-
resentative of the near isothermal phase (Boss et al. 2000), the
cloud collapses to produce a binary core embedded in a circum-
binary disk in much the same way as predicted by the adaptive
FD calculations of Klein et al. (1999). In particular, the SPH
calculations show that reasonably good convergence with Jeans-
resolved, FD calculations is achieved for the collapse of the
uniform cloud when the number of SPH particles is at least twice
that demanded by the Jeans condition. For the uniform models,
thermal retardation neither favors fragmentation nor increases the
number of final fragments that form.

On the other hand, convergent results for the collapse of
the Gaussian cloud are achieved only when working with 5Y
10million particles.When �crit ¼ 5:0 ; 10�12 g cm�3, the cloud
collapses in a fashion similar to that predicted by the AMR
calculations of Boss et al. (2000); that is, a single central core
is formed surrounded by dense trailing spiral arms. When the
GADGET-2 calculations are continued to peak densities higher
than that reported by Boss et al. (2000), the spirals develop a
clumpy structure, suggesting that fragmentation could eventually
occur in the further evolution. Conversely, when the critical den-
sity is lowered to 5:0 ; 10�14 g cm�3, fragmentation into a qua-
druple system is seen to occur deep in the adiabatic collapse. In

this case, fragmentation is quite similar to the ‘‘satellite’’ type
fragmentation described by Matsumoto & Hanawa (2003) for
the collapse of rapidly rotating, Bonnor-Ebert spheres. However,
the quadruple system soon decays into a well-defined binary be-
cause ofmerging of the components of the quadruple core. Thus,
the effects of thermal retardation result not only in fragmentation
but also in an increase in the number of final fragments. While
this result is at least valid for the early phases of collapse, leading
to the formation of the first protostellar core, a definite answer to
this question would demand continuing the calculations deeper
into the evolution.

The reason for requiring about an order of magnitude more
particles than demanded by the Jeans condition to ensure conver-
gence for the Gaussian cloud compared to the uniform cloud is
most probably due to intrinsic features of the SPH formalism
implemented by GADGET-2. As was recently discovered by
Attwood et al. (2007), the fidelity of adaptive SPH calculations
of self-gravitating systems relies on requiring that the number
of neighbors that contribute to the kernel volume be kept con-
stant. In this way, nonlinear numerical dissipation and diffusion
can be maintained at a low rate. In GADGET-2 the mass con-
tained in the kernel volume, rather than the number of neigh-
bors, is maintained constant. Therefore, if all particles share the
samemass, as for the uniform-cloudmodels, the condition of con-
stant mass is equivalent to having a constant number of neighbors.
This explains why for the uniform models convergence is always
attained at resolutions equal to or twice that demanded by the
Jeans condition. Conversely, for the Gaussian-cloud models
the SPH particles have unequal masses, in which case the con-
dition of constant mass does not necessarily imply a constant
number of neighbors. Convergence would then demand having
a much larger total number of particles in order to significantly
reduce the rates of numerical dissipation and diffusion. For the
particular case of the Gaussian cloud, we find that GADGET-2
produces reliable results only when working with more than
5 million particles, corresponding to an order-of-magnitude more
particles than demanded by the Jeans condition.

The calculations of this paper were performed using the com-
putational facilities of the University of Sonora (Mexico). This
work is partially supported by the Mexican Consejo Nacional de
Ciencia y Tecnologı́a (CONACyT) under contract U43534-R,
the Fondo Nacional de Ciencia, Tecnologı́a, e Innovación
(Fonacit) of Venezuela under contract 200400103, the Deutsche
Forshungsgemainshaft (DFG), and the Deutscher Akademischer
Austauschdienst (DAAD). We thank Ricardo Duarte for helping
us with the use of the graphics package PV-WAVE, and we thank
the anonymous referee for providing a number of comments and
suggestions that have improved the content and quality of the
manuscript.
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& Sako, S. 2004, AJ, 127, 2969

Hennebelle, P., Whitworth, A. P., Cha, S.-H., & Goodwin, S. P. 2004, MNRAS,
348, 687

Hubber, D. A., Goodwin, S. P., & Whitworth, A. P. 2006, A&A, 450, 881
Hubrig, S., Le Mignant, D., North, P., & Krautter, J. 2001, A&A, 372, 152
Inutsuka, S.-I., & Miyama, S. M. 1992, ApJ, 388, 392
———. 1997, ApJ, 480, 681
Kitsionas, S., & Whitworth, A. P. 2002, MNRAS, 330, 129
Klein, R. I., Fisher, R. T., McKee, C. F., & Truelove, J. K. 1999, in Numerical
Astrophysics 1998, ed. S. Miyama, K. Tomisaka, & T. Hanawa (Dordrecht:
Kluwer), 131
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Köhler, R., & Leinert, C. H. 1998, A&A, 331, 977
Leinert, C. H., Henry, T., Glindemann, A., & McCarthy, D. W. 1997, A&A,
325, 159

Looney, L. W., Mundy, L. G., & Welch, W. J. 1997, ApJ, 484, L157
———. 2000, ApJ, 529, 477
Masunaga, H., & Inutsuka, S.-I. 1999, ApJ, 510, 822
Masunaga, H., Miyama, S. M., & Inutsuka, S.-I. 1998, ApJ, 495, 346
Mathieu, R. 1994, ARA&A, 32, 465
Matsumoto, T., & Hanawa, T. 2003, ApJ, 595, 913
Monaghan, J. J. 1997, J. Comput. Phys., 136, 298
———. 2005, Rep. Prog. Phys., 68, 1703

Monaghan, J. J., & Lattanzio, J. C. 1985, A&A, 149, 135
Moriarty-Schieven, G. H., Powers, J. A., Butner, H. M., Wannier, P. G., &
Keene, J. 2000, ApJ, 533, L143
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