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ABSTRACT

Results of numerical three-dimensional (3D) simulations of propagation of acoustic waves inside the Sun are pre-
sented. A linear 3D code which utilizes the realistic OPAL equation of state was developed. A modified convectively
stable standard solar model with a smoothly joined chromosphere was used as a background model. A high-order
dispersion relation–preserving numerical scheme was used. The top nonreflecting boundary condition established in
the chromosphere absorbs waves with frequencies greater than the acoustic cutoff frequency which pass through the
chromosphere, simulating a realistic situation. We simulate acousto-gravity wave fields on the Sun, generated by lo-
calized randomly distributed sources in a subphotospheric layer. Three applications for solar wave physics are pre-
sented: changes in oscillation properties due to the mechanism of wave damping, effects of nonuniform distribution
of sources, and effects of nonuniform localized perturbations on wave properties. In particular, we studied two mod-
els of wave dampingwith leakage andwith an explicit friction-type damping term in the photospheric layers and chro-
mosphere. In both cases we were able to reproduce observed characteristics of the acoustic spectrum (line widths and
amplitude distribution). We found that the suppression of acoustic sources, e.g., in sunspots, may significantly con-
tribute to the observed power deficit. The lower sound speed in sunspot areas may cause an increase of the wave am-
plitude, but this effect is less important for the acoustic power distribution than the suppression of the acoustic sources.

Subject headinggs: Sun: oscillations — sunspots

1. INTRODUCTION

Solar 5 minute oscillations are excited by turbulent convection
(mostly by downdrafts) in subsurface layers of the Sun. These
oscillations consist of acoustic and surface gravity waves which
have the power spectrum with a maximum around 3 mHz and a
wide range of wavenumbers. The observed oscillations can be
used for reconstruction of the internal structure of the Sun bymeth-
ods of helioseismology. There are severalmethods of investigation
of interaction of acoustic waves with small inhomogeneities of
the background state. One of them is the time-distance approach
(Duvall et al. 1993; Kosovichev 1996). The key concept of this
method ismeasuring and invertingwave travel times. Propagation
of the acoustic waves in this approach is calculated using the ray
theory or the first Born approximation (Kosovichev & Duvall
1997; Kosovichev et al. 2000; Jensen et al. 2001; Couvidat
et al. 2004, 2006). These approximations have been tested us-
ing simple models for point sources (e.g., Birch et al. 2001; Birch
& Felder 2004), but not for realistic solar conditions, e.g., realistic
stratification and random excitation sources. Such tests, which re-
quire direct numerical simulations, are important for validating
inferences from time-distance helioseismology and other local
helioseismology methods.

There are two main approaches to numerical simulation of so-
lar oscillations and waves. The first one is to use realistic nonlin-
ear simulations of solar convection. In such simulations, waves
are naturally excited by convectivemotions. These simulations re-
produce quitewell the solar oscillation spectrum (Stein et al. 2004)
and have been used for testing time-distance helioseismology
(Georgobiani et al. 2007). This modeling is self-consistent. How-
ever, a shortcoming of this approach is that there is no freedom in
choosing the type and depth of the acoustic sources and model
perturbations. The second approach, which is based on the lin-
earized Euler ormagnetohydrodynamic equations describingwave
propagation for a given background state (Mansour et al. 2004;

Hartlep&Mansour 2006;Khomenko&Collados 2006;Hanasoge
et al. 2006; Shelyag et al. 2006), is being actively developed now.
The depth and type of the acoustic sources can be specified by the
researcher. The background state can be taken from nonlinear nu-
merical simulations or by perturbing the standard solar model. In
our simulations we use this second approach. We describe the
numerical method and present initial simulation results.

We developed a three-dimensional (3D) code which accurately
simulates propagation of the acoustic waves in the interior of the
Sun and their reflection from the photosphere and chromosphere.
The method uses a high-order numerical scheme which preserves
the dispersion relation for short waves better than standard classical
schemes. A realistic equation of state calculated by interpolation of
the OPAL tables (Rogers et al. 1996) was used. In x 2.1 we give a
detailed description of the underlying physics. Most of our atten-
tion is paid to developing a consistent procedure for obtaining a
convectively stable backgroundmodel close to the standard solar
model and establishing a realistic top boundary condition based
on the perfectly matched layer (PML) method. In x 2.2 we de-
scribe a semidiscrete high-order finite-difference (FD) scheme
which preserves the dispersion relation of the continuous prob-
lem. We developed stable high-order numerical boundary condi-
tions consistent with the FD scheme. In x 3we compare numerical
and analytical solutions of various one-dimensional (1D) test prob-
lems with an isothermal background model to validate the code,
investigate the accuracy of the numerical scheme, and test the
nonreflecting boundary conditions in a gravitationally stratified
medium. In x 4 we present results of numerical three-dimen-
sional simulations of the acoustic wave field generated by various
configurations of acoustic sources. The main goals of developing
this code are to study properties of solar waves for various models
of excitation sources and background perturbations and to gen-
erate artificial wave fields for testing the accuracy of the Born and
ray approximations and local helioseismic diagnostics of the solar
interior, currently used for analysis of SOHO Michelson Doppler
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Imager (MDI) and Global Oscillation Network Group (GONG)
data. The results of these tests will be presented in future papers.
The numerical simulations are carried out using parallel super-
computers at the NASA Ames Research Center.

2. CODE DESCRIPTION

2.1. Physical Background

Propagation of adiabatic acoustic waves below the solar photo-
sphere is described by the following system of linearized Euler
equations:

@�0

@t
þ @

@x
(�0u

0)þ @

@ y
(�0v

0)þ @

@z
(�0w

0) ¼ 0;

@

@t
(�0u

0)þ @p0

@x
¼ Sx;

@

@t
(�0v

0)þ @p0

@y
¼ Sy;

@

@t
(�0w

0)þ @p0

@z
¼ �g0�

0 þ Sz;

ð1Þ

where x, y, z, and t are the Cartesian coordinates and time, respec-
tively, u0, v0, and w0 are the perturbations of the x-, y-, and
z-components of velocity, �0 and p0 are the density and pressure
perturbations, respectively, and S(x; y; z; t) is thewave source func-
tion. Quantities with subscript 0, such as pressure p0(x; y; z), den-
sity �0(x; y; z), and gravitational acceleration g0(z) correspond to
the background reference model. To close the system we used an
adiabatic relation between Eulerian variations of pressure p0 and
density �0,

p0 ¼ a2
0�

0 � a2
0

N 2
0

g0
�0�zð Þ; ð2Þ

where a20 ¼ �1p0 /�0 is the square of sound speed, �1 ¼ (@ log p/
@ log �)ad is the adiabatic exponent, � z is the vertical displacement,
N 0 is the Brunt-Väisälä frequency

N 2
0 ¼ g0

1

�1

d log p0

dr
� d log �0

dr

� �
; ð3Þ

and r is the distance from the center of the Sun. So, from the
background model we need only the parameters a0(x; y; z) and
N 2

0(x; y; z).
The standard solar model is convectively unstable, especially

just below the photosphere, where the temperature gradient is super-
adiabatic and convective motions are very intense and turbulent.
Using the original standard model as a background state leads to
instability of the solution of the linear system of equations (1).
The convective instability is developed on a timescale of 30–
40 minutes of solar time, while simulations of solar oscillations
need to be performed for time intervals of at least 5–8 hr. This in-
stability prevents this and, thus, must be suppressed.We used the
standard solar model S (Christensen-Dalsgaard et al. 1996) with
a smoothly joinedmodel of the chromosphere fromVernazza et al.
(1976) as the backgroundmodel. The condition for stability against
convection requires that the square of the Brunt-Väisälä frequency
is positive. The profile ofN 2

0 for the standard solar model near the
solar surface is shown in Figure 1e by the solid curve. We cal-
culated amodified profileN 2

mod /g0 by replacing negative values of
N 2

0 /g0 by zero or small positive numbers (about 3 ; 10�5 Mm�1).
Combining equation (3) with the condition of hydrostatic equi-

librium,we get the following boundary value problem formodified
p0 and �0:

1

�0

d�0
dz

¼ � g0
a20

� �
N 2

mod

g0
;

dp0

dz
¼ ��0g0;

0 � z � L; �0(0) ¼ �s(0); �0(L) ¼ �s(L); p0(L) ¼ ps(L);

ð4Þ

where L is the depth of the computational domain and z is the
vertical coordinate with the origin at the bottom of the domain.
We introduced a free parameter �, which is determined from the
boundary conditions matching the original solar model. Param-
eter � does not change the condition of convective stability if it
remains positive. So, the procedure to calculate a convectively
stable background model close to the standard one is as follows.
We smoothly join the density profiles of the standard solar model
and the chromosphere, obtain the pressure profile from the con-
dition of hydrostatic equilibrium, calculate a stable profile of
N 2

mod, and substitute it into the right-hand side of equation (4).
Then, parameter � and profiles of density and pressure of the
modified convectively stable model are obtained as a solution
of the boundary value problem from equation (4). The adiabatic
exponent �1 is calculated from the realistic OPAL equation of
state for the hydrogen X and heavy element Z abundances of the
standardmodel (X ¼ 0:737265,Z ¼ 0:019628). The vertical pro-
files of p0, �0, a0, N 2

0, �1, and acoustic cutoff frequency

!2
c ¼ a2

0

4H2
1� 2

dH

dr

� �
; H�1¼ � d log �0

dr
ð5Þ

for both models (the standard one with the joined chromosphere
and the modified convectively stable model ) are shown in Fig-
ure 1. In this case, the lower boundary was 30 Mm deep, and
parameter � was approximately 0.861.

2.2. Numerical Algorithm

The system from equation (1) is written in the conservative
form

@q

@t
þ @F(q)

@x
þ @G (q)

@y
þ @H(q)

@z
¼ �R(q)þ S; ð6Þ

where q ¼ (�0; �0u
0; �0v

0; �0w
0)T , R ¼ (0; 0; 0; g0�

0)T , S is the
source term with components (0; 0; 0;�)T corresponding to the
z-component of force or (0; @�/@x; @�/@y; @�/@z)T for the pres-
sure source, where�(x; y; z; t) is a scalar functionwhich describes
the spatial distribution of sources and their temporal dependence.
Vectors F, G, H, and R are linear in q, and their explicit expres-
sions can be easily found from system (1). We use a semidiscrete
numerical scheme. In the semidiscrete approach, the space and
time discretization processes are separated. First, the spatial dis-
cretization using a uniform grid is performed, leaving the prob-
lem continuous in time. The spatial derivatives are approximated
by the FD scheme using a symmetrical seven-point stencil

@f

@x

����
m

’ 1

�x

X3
j¼�3

bj fmþj ¼
1

�x

X3
j¼�3

bj f (xm þ j�x); ð7Þ
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where f is any component of vector q. This reduces the system of
partial differential equations to the system of ordinary differen-
tial equations

dqilm
dt

¼ Lilm(q)þ Silm(t);

Lilm(q) ¼� 1

�x

X3
j¼�3

bjFi;l;mþj �
1

�y

X3
j¼�3

bjGi;lþj;m

� 1

�z

X3
j¼�3

blHiþj;l;m þ Rilm; ð8Þ

where indices m, l, and i number nodes of the spatial grid along
the x-, y-, and z-axes, respectively, and �x, �y, and �z are the
steps of the spatial grid along the corresponding axes. This sys-
tem is solved by a four-stage, third-order strong stability-preserving
Runge-Kutta method (Shu 2002) with the Courant number C ¼ 2.

Time advancing from t n to t nþ1 ¼ t n þ� t is given by the fol-
lowing formulae:

q(1) ¼ q(n)þ 1

2
�t L q(n)

� �
þ S(t n)

� �
;

q(2) ¼ q(1)þ 1

2
�t L q(1)

� �
þ S t n þ 1

2
�t

� �� 	
;

q(3) ¼ 2

3
q(n)þ 1

3
q(2)þ 1

6
�t L q(2)

� �
þ S(t n þ�t)

� �
;

q(nþ1) ¼ q(3)þ 1

2
�t L q(3)

� �
þ S t n þ 1

2
�t

� �� 	
; ð9Þ

where �t is the time step.
The high-order dispersion relation–preserving (DRP) scheme

of Tam & Webb (1993) was used for spatial discretization. Co-
efficients bj in this FD scheme (eq. [7]) are chosen from the re-
quirement that the error in the Fourier transform of the spatial

Fig. 1.—Vertical profiles of the density (a), pressure (b), sound speed (c), adiabatic exponent (d ), Brunt-Väisälä frequency (e), and acoustic cutoff frequency ( f ). The
solid curves represent profiles for the standard model, and dashed curve show the profiles of the convectively stable modified model. The thin vertical line marks the
position of the fitting point between the chromosphere and the standard solar model.

SIMULATION OF WAVE FIELD IN SOLAR CONVECTION ZONE 549No. 1, 2007



derivative isminimal. Taking the Fourier transform fromboth sides
of equation (7), one gets effective wavenumber keA,

keA ¼ � i

�x

X3
j¼�3

bje
ijk� x: ð10Þ

The condition that integral errorE¼
R �/2
��/2 jk�x�keA�xj2 d(k�x)

is minimal for waves with wavelength k � 4�x can be combined
with the requirement that the FD scheme from equation (7) ap-
proximates the first derivative to the fourth order. This provides a
system of linear equations for bj. The explicit expressions for this
coefficients are

b0 ¼ 0;

b�1 ¼ � 496�15�

42(45��128)
;

b�2 ¼ � 5632�1725�

84(45��128)
;

b�3 ¼ � 17(16� 5�)

14(45��128)
: ð11Þ

The plots of numerical wavenumber keA�x versus k�x for dif-
ferent FD schemes are shown in Figure 2. Dotted, dash-dotted,
dashed, and solid curves represent the classic second-, fourth-,
sixth-, and DRP fourth-order FD schemes, respectively. One can
see that the fourth-order DRP FD scheme describes short waves
more accurately than the classic sixth-order FD scheme.

Waves with the wavelength less than 4�x are not resolved by
the FD scheme. They lead to point-to-point oscillations of the
solution that can cause a numerical instability. Such waves have
to be filtered out. We used the following sixth-order digital filter
to eliminate unresolved short-wave components from the solution:

f smi ¼ fi � �f

X3
m¼�3

dm fiþm; ð12Þ

where fi represents any component of vector q, f smi is the corre-
sponding filtered grid function, and �f is a constant between 0
and 1 determining the filter strength. The frequency response func-

tionG (k), which relates the Fourier images of the original f̃ and fil-
tered f̃ sm(k) ¼ G(k) f̃ (k) grid functions is

G (k�x) ¼ 1� �f

X3
m¼�3

dme
imk� x ¼ 1� �f sin

6 k�x

2

� �
: ð13Þ

Then, coefficients dm of the digital filter are symmetric and given
as

d0 ¼ 5=16; d1 ¼ d�1 ¼ �15=64;

d2 ¼ d�2 ¼ 3=32; d3 ¼ d�3 ¼ �1=64: ð14Þ

The efficiency of high-order FD schemes can be reached only
if they are combined with adequate numerical boundary condi-
tions. It is easy to derive nonsymmetric boundary operators which
approximate the first derivative near boundaries with high order.
However, such approximations are often unstable. We follow
Carpenter et al. (1993) and use an implicit Padé approximation of
the spatial derivatives near the top and bottom boundaries to
derive stable third-order boundary conditions (see details in the
Appendix).
The spatial dependence of the acoustic source function S is

given by a spherically symmetric Gaussian with a half-width of
2–3 grid nodes. The sources have a finite lifetime.We experimented
with two different time dependencies of acoustic sources described
by one period of the sin function, sin ½! (t � t0)�, t0 � t � t0þ
2�/!, and a Ricker’s wavelet, (1� 2� 2)e�� 2

, � ¼ ½!(t � t0)/2�
��, t0 � t � t0 þ 4�/!. These time dependencies were chosen
because the solar sources are not monochromatic and have spec-
tral power localized around the central frequency !/2�, but the
spectral power is not too spread out. We did simulations both
with single and multiple randomly distributed sources.
Besides the numerical and convective stabilities, we have to

prevent spurious reflections of acoustic waves from the bound-
aries. In this paper we followHu (1996), who proposed a perfectly
matched layer (PML) procedure for Euler equations. It can be
proven that for a homogeneous medium and uniform mean flow
without gravity the PML absorbs waves without reflection for any
angle of incidence and frequency.We set the nonreflecting bound-
ary conditions based on the PML at the top and bottom boundaries
of the domain. The lateral boundary conditions are periodic. In-
side the PML, variables q are split into components q1, q2, and q3
such that q ¼ q1þ q2 þ q3. Thus, in the PML 3D system (1) is
split into a 1D+1D+1D systemof coupled, locally one-dimensional
equations

@q1
@t

þ @F(q)

@ x
¼ 0;

@q2
@t

þ @G (q)

@ y
¼ 0;

@q3
@t

þ @H(q)

@z
¼ �R(q)þ S� �zq3; ð15Þ

where �z is a damping factor chosen in the form �t�z ¼ 0:05þ
�max(ZPML/D)

2, whereD is the depth of the PML and ZPML is the
distance from its interface with the interior domain. Values of
�max at the top and bottom boundaries are 0.3 and 1.0, respec-
tively. Hu (1996) suggested to use the quadratic dependence,
�max(ZPML /D)

2, of the damping factor on the coordinate ZPML.
However, in the presence of gravity the PML calculations may
become unstable, and this instability develops near the inter-
face with the interior domain, where �z is small. We found that
adding a small constant term 0.05 stabilizes the PML and does

Fig. 2.—Effectivewavenumber keA�x vs. k�x for different numerical schemes.
Dotted, dash-dotted, dashed, and solid curves represent classic second-, fourth-,
sixth-, and DRP fourth-order schemes, respectively.
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not cause noticeable reflection. It is important to note that vec-
tors F,G, andH depend only on the unsplit variable q. Although
q1, q2, and q3 are not defined outside the PML, the variable q,
which is used for calculation of the spatial derivatives, is defined
everywhere in the computational domain. Hence, inside the PML
near the interface with the interior region we can use the same
centered FD stencil as for the interior nodes. Near the top and
bottom boundaries the implicit Padé approximation is used (see
the Appendix), which guarantees numerical stability.

We established the top nonreflecting boundary in the chromo-
sphere above the temperature minimum. This simulates a realistic
situation when not all waves are reflected by the photosphere.
Waves with frequencies higher than the acoustic cutoff frequency
pass through the photosphere and are absorbed by the PML layer.
Such a choice of the top boundary naturally introduces frequency
dependence of its reflection properties.

3. NUMERICAL TESTS

For validation of the code we used a 1D initial boundary value
problem (IBVP) for the linearized Euler equations with constant
gravity,

@�0

@t
þ @

@ x
(�0u

0)¼ 0;
@

@t
(�0u

0)þ @p0

@ x
¼ g0�

0;

@

@t
(�0� ) ¼ �0u

0; p0 ¼ a2
0�

0 þ (�1 � 1)g0(�0� );

0 � x � 1; t � 0; �0(0; t) ¼ �0(1; t) ¼ 0;

�0(x; 0) ¼ h(x); �0(x)u
0(x; 0) ¼ 0;

�0(x)�(x; 0) ¼ �
Z x

0

h(�) d�; ð16Þ

where � is the displacement and x is the depth from the top bound-
ary. We used nondimensional variables

½x; �� ¼ L; ½t� ¼ L

ā0
; ½u� ¼ ā0;

½�� ¼ �̄0; ½ p� ¼ �̄0ā
2
0 ; ½g� ¼ ā2

0

L
; ð17Þ

where L is the depth of the computational domain and quantities
with the bar represent corresponding values of the background
model at the top boundary x ¼ 0.

For test problems we chose a hydrostatic isothermal ( p0 /�0 ¼
const) background model, because it shows the characteristic be-
havior of a realistic solution and yet is not too complicated and can
be solved analytically. The last equation of system (16) represents
the adiabatic relation from equation (2) written for the isothermal
background model. System (16) is written in the same conserva-
tive form as the original system (1). The analytical solution of
these equations can be obtained by the method of separation of
variables,

�0(x; t) ¼ ex=2H
P1
n¼1

An sin �nx cos kna0t;

�(x; t) ¼ e�x=2H
P1
n¼1

Bn( sin �nx� 2�nH cos �nx) cos kna0t;

An ¼ 2
R 1

0
h(�)e��=2H sin �n� d�; Bn ¼ � 2HAn

1þ 4�2n2H2
;

kn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4H 2
þ �2n2

r
; n ¼ 1; 2; : : : ; H�1 ¼ 	g0

a20
:

ð18Þ

The initial condition for density perturbation �0 was chosen as

�0(x; 0) ¼ 104 (x� 0:5)2 � 0:001
� �2

; 0:4 � x � 0:6;

0; x > 0:6 or x < 0:4:

(

ð19Þ

Solution of this problem for different moments of time for pa-
rameters a0 ¼ 1, �1 ¼ 5/3, g0 ¼ 10, �t ¼ 2 ; 10�3, and N ¼
200 (number of grid nodes) is shown in Figure 3. The left column
represents the density perturbation, and the right column shows
the vertical displacement. The solid curve is the exact solution given
by equation (18). The dashed curve represents the low-order so-
lution obtained with a second-order classic central-difference ap-
proximation of spatial derivatives for the interior nodes and a
first-order approximation at the boundaries (we define this scheme
as CLS-2-1). The high-order numerical solution is indistinguish-
able from the exact one. It uses the fourth-order DRP approxi-
mation of spatial derivatives for the interior nodes with the stable
third-order approximation at the boundaries (defined as DRP-4-3).
The bottom panels from Figure 3 show the profiles of density and
displacement after the wave reflection from the bottom boundary.
This test illustrates the importance of high-order boundary con-
ditions. No matter what the accuracy of a numerical scheme is, if
boundary conditions are approximated to the first order, after
reflection the accuracy of the solution switches to the first order.
The high-order solution based on the DRP-4-3 scheme repro-
duces the exact solution quite well even after 30,000–40,000 time
steps and 20–30 reflections from boundaries. This test shows that
the high-order DRP numerical scheme does not introduce a notice-
able damping or dispersion even for long intervals of integration.
These simulations also test the accuracy and stability of the nu-
merical boundary conditions.

To test the efficiency of the PML method for a gravitationally
stratified isothermal background model, we compared the numer-
ical solution of problem (16) for a case with the PML established at
the top boundarywith the exact solution of the sameproblem for the
infinite interval �1 � x � 1,

�0(x; t) ¼ 1

2
h(xþ a0t)e

�a0t=2H þ 1

2
h(x� a0t)e

a0t=2H

� a0t

4H
ex=2H

Zxþa0t

x�a0t

e��=2H

J1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2
0 t

2 � (x� �)2
q

=2H

� 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2
0 t

2 � (x� �)2
q h(�) d�:

ð20Þ

The analytical solution from equation (20) does not contain re-
flectedwaves, because all initial perturbations propagate to infinity.
This solution can be used as a reference solution for determining
the damping properties of the top PML. The bottom was reflecting
in this test. The results for �0 / �0ð Þ1/2 (scaled density perturbation to
remove the exponential factor) are shown in Figure 4 for t ¼ 0, 0.2,
0.4, and 0.64. The solid curve represents the exact solution from
equation (20), the dash-dotted curve represents the numerical solu-
tionwith PMLat the top boundary, and the dashed curve represents
the exact solution from equation (18) for the reflecting top bound-
ary. The solid vertical line marks position of the interface between
the top PML and the inner region. The dashed vertical line shows
the position of the initial perturbation. The top PML reduces the
amplitude of the reflected wave by a factor of 20–40.

Since our original 3D system contains the acoustic source term,
we have tested the code for the same problem from equation (16)
with zero initial conditions �(x; 0) ¼ 0 and �0(x)u

0(x; 0) ¼ 0 and
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Fig. 3.—Solution of the IBVP (16) for the isothermal hydrostatic backgroundmodel. Density variations and displacement are shown in the left and right panels, respectively.
Solid curves represent the exact solution, and dashed curves show the CLS-2-1 numerical solution. The high-order DRP-4-3 numerical solution is indistinguishable from
the exact one.

Fig. 4.—Density perturbation �0/
ffiffiffiffiffi
�0

p
for different moments of time. The solid curve represents the exact solution from eq. (20), the dash-dotted curve represents the

numerical solution with the PML at the top boundary, and the dashed curve represents the exact solution from eq. (18) for the reflecting top boundary. The vertical solid
and dashed lines mark positions of the PML interface and the initial perturbation, respectively.



pressure source term �@�(x; t)/@x added to the right-hand side
of the momentum equation, where �(x; t) is a Gaussian-shaped
harmonic function

�(x; t)¼ exp � x� hsrc

Dsrc

� �2
" #

sin (!0t); ð21Þ

where !0 is the angular frequency and hsrc andDsrc are the depth
and spread of the source, respectively. The source amplitude is
measured in units �̄0ā

2
0 , where the bar represents the corresponding

properties of the backgroundmodel at the top boundary x ¼ 0. The
analytical solution is

�0(x; t) ¼
R t

0

R 1

0

@ 2�(�; �)

@� 2
G (x; �; t � �) d� d�;

G (x; �; �) ¼ 2e(x��)=2H
P1
n¼1

sin kna0�
kna0

sin �nx sin �n�;

kn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4H 2
þ �2n2

r
; n ¼ 1; 2; : : : :

ð22Þ

In Figure 5 we compare this with the results of numerical simula-
tions for parameters N ¼ 120,�t ¼ 2 ; 10�3, a0 ¼ 1, 	 ¼ 5/3,
g0 ¼ 10, hsrc ¼ 0:4, !0 ¼ 10�, and Dsrc ¼ 0:0178. The nonre-
flecting boundary conditions are established at the top and bottom
boundaries for the numerical solution. The solid curve represents
the exact solution with zero boundary conditions for �0 at x ¼ 0
and 1. The dashed line represents theDRP-4-3 numerical solution.
The vertical dashed line marks the position of the source. The
vertical solid line shows the position of the interface between the
interior domain and the nonreflecting PML. The numerical solution
reproduces the analytical one well in the inner region and dem-
onstrates effective damping by the absorbing layer, preventing
unwanted reflection from the bottom boundary.

4. RESULTS AND DISCUSSION

4.1. Modeling of Wave Damping

In this section we present results of 3D numerical simulations
ofwave propagation in the solar convection zone. The convectively
stabilized standard solar model (see x 2.1) with the smoothly joined
chromosphere was chosen as a background model. The computa-
tional domain of 122 ; 122 ; 32 Mm3 was covered by a uniform
816 ; 816 ; 640 grid. The background model varies sharply in
the region above the temperature minimum. Thus, to simulate
propagation of acoustic waves into the chromosphere we chose
the vertical spatial step�z ¼ 50 km in order to preserve the ac-
curacy and numerical stability. The spatial intervals in the hor-
izontal direction are �x ¼ �y ¼ 3�z. To satisfy the Courant
stability condition for the explicit scheme, the time step equals
0.68 s. Spatially localized spherically symmetric sources of the
z-component of force with the random amplitudes and frequen-
cies ranging from 2 to 8 mHz were randomly distributed at the
depth of 350 km below the photosphere. The sources are initiated
at randommoments of time (one source per time step) and depend
on time as Ricker’s wavelet with central frequency from range 2–
8 mHz. Zero initial conditions and nonreflecting boundary con-
ditions established at the top and bottom boundaries were used for
all solar simulations. The lateral boundary conditionswere periodic.
The top boundary was established in the region near or above the
temperature minimum. This layer absorbs all waves with fre-
quencies higher than the acoustic cutoff frequency which pass to
the chromosphere and does not affect reflection of waves with

lower frequencies, because these waves are reflected from lower
layers below the photosphere. Such a top boundary condition nat-
urally introduces frequency dependence of the reflection properties
of the top boundary. The thickness of both the top and bottom
PMLs is 250 km.

We found that the height of the PML affects the absorbing prop-
erties of the top boundary and the shape of the acoustic spectrum
(‘-
 diagram). We studied behavior of the solution for different
heights of the top boundary. The region with the acoustic cutoff
frequency greater than the wave frequency !c > ! acts as a po-
tential barrier for such waves. For the low top boundary (500 km
above the photosphere in our case), even if the wave frequency is
less than the acoustic cutoff frequency, waves become evanescent
in this region. If the thickness of the barrier is finite, then thewaves
can leak through it and reach the PML that causes damping. This
process is similar to the tunneling effect in quantum mechanics.
This happens in the real Sun as well. Balmforth & Gough (1990)
found that for simulations including corona the leakage of acous-
tic waves into the corona has a maximum at �8 mHz. Studying
the leakage of acoustic energy into the chromosphere and corona
requires a separate detailed investigation and will be done in fu-
ture papers. Here we are primarily focused on choosing the height
of the absorbing top boundary which reproduces the properties of
the solar acoustic spectrum (the line widths and the shape of the
envelope).

If the height of the top boundary is sufficiently high (in our
simulations it was 1750 km), the waves are reflected back from
the top boundary without a noticeable damping. The modes with
frequencies less than the acoustic cutoff frequency and turning
points above the bottom boundary are trapped in the domain with-
out damping. The acoustic sources continuously supply energies
to the waves, and the amplitude of trapped modes is growing. The
total energy increases, and the rms oscillation amplitude does not
reach an equilibrium state. This distorts the acoustic power spec-
trum and changes the amplitude ratio of trappedmodes andmodes
that can be absorbed at the top and/or bottomboundaries. The spec-
tra of the vertical velocity component for observations (Fig. 6a)
and the simulations with low (500 km) PML (Fig. 6b) and high
(1750 km) PML (Fig. 6c) are shown in Figure 6. The left pan-
els show the acoustic power spectra (‘-
 diagram), and the right

Fig. 5.—Solution of the IBVP (16) for the isothermal hydrostatic background
model with the source. The solid curve represents the exact solution with zero
boundary conditions for �0. The dashed curve represents the DRP-4-3 numerical
solution with the nonreflecting top and bottom boundaries. Numerical solution is
effectively damped by the absorbing layer.
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ones show the vertical cuts of the corresponding diagrams at ‘ ¼
584, where ‘ is the mode degree. The white curves in panels
Figures 6b and 6c represent the theoretical ridges of f, p1, and p2
modes calculated for the modified solar model. The theoretical
frequencies were calculated using the adiabatic approximation in
spherically symmetric geometry by solving an eigenvalue prob-
lem for a fourth-order system of ordinary differential equations
(Kosovichev 1999). Figure 6c shows the presence ofweak g-modes
in the simulations. They appear because our background model is
made convectively stable. The acoustic spectrum obtained with the
low PML (Fig. 6b) shows good agreement with observations. The
envelope of the acoustic spectrum obtained with the high PML
(Fig. 6c) differs from the observational one. Themode amplitudes
are distorted by the trapped modes. The calculated spectral peaks
are thinner than the peaks in the observed spectrum, indicating
that damping in this model is weaker than on the Sun. In the case
of low (500 km) PML, energy leakage through the acoustic po-

tential barrier does not change the shape (envelope) of the acoustic
power spectrum. Therefore, the height of the top boundary can be
used for modeling the damping rate without distortion of the en-
velope of the acoustic spectrum.
The damping mechanism of the solar modes below the acous-

tic cutoff frequency is not yet completely understood. Both inter-
action of acoustic waves with turbulence in subsurface layers
(e.g., Gough 1980; Balmforth 1992; Murawski 2003) and non-
adiabatic effects in the chromosphere (Christensen-Dalsgaard &
Frandsen 1983) may play significant roles. We simulated numer-
ically both of these mechanisms. The atmospheric damping was
modeled by imposing the upper absorbing boundary at different
levels. We found that the observed envelope and line widths in
the power spectrum are well reproduced if we set the height of the
top absorbing boundary equal to 500 km above the photosphere.
FollowingGizon&Birch (2002)wemodeled the turbulent damp-
ing by introducing a friction-type term ��d(z)�0vz to the vertical

Fig. 6.—Oscillation power spectra obtained from observations (a), simulations with htop ¼ 500 km (b), and simulations with htop ¼ 1750 km (c). The left panels show ‘-

diagrams, and the right panels represent cuts of corresponding diagrams at ‘ ¼ 584. The thin white curves in the left panels show the positions of the f, p1, and p2 ridges
calculated for the modified convectively stable background model.
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component of themomentumequation, where damping coefficient
�d(z) is constant above the photosphere and smoothly decreases to
zero at a depth of about 500 km. For these simulations the top
absorbing boundary was established at 1750 km above the photo-
sphere. The time dependence of the rms value of �0w

0 (propor-
tional to the vertical momentum) in nondimensional units averaged
over the horizontal plane at the height of 300 km above the pho-
tosphere for different heights htop of the top boundary and different
values of the damping coefficient �d is shown in Figure 7. Curve I
represents the solution for htop ¼ 1750 km and without explicit
damping, and curves II, III, and V are for the same htop and ad-
ditional damping with �d ¼ 0:3, 0.6, and 1.0, respectively.
Curve IV corresponds to the PML, established at the height of
500 km above the photosphere without additional damping in the

inner region. The rms amplitude in this case reaches an equilib-
rium state, because the acoustic modes leak through the acoustic
potential barrier, and their evanescent parts reach the top absorb-
ing boundary, which adds damping and stabilizes the amplitude.
Numerical experiments with smaller regions of size 200 ; 200 ;
220 nodes and different heights of the PML show that for the
PML height of 800 km the average oscillation amplitude is not
stabilized. Hence, the maximum height where the PML can be
establishedwithout distortion of the acoustic spectrum is the height
of the temperature minimum.

From the current simulations we cannot determine the relative
role of these damping mechanisms. They both can reproduce rea-
sonably well the observed properties of the power spectrum.

4.2. Nonuniform Distribution of Sources

Excitation of acoustic waves is suppressed in sunspots, because
a strong magnetic field inhibits convective motions which are the
source of acoustic oscillations. We randomly distributed spheri-
cally symmetric sources of the z-component of force on a hori-
zontal plane at the depth of 350 km. For modeling the effects of
suppressed excitation, we masked the wave sources (gradually
reduced their strength to zero) in a circular regionwith the diameter
of 20.4 Mm. A snapshot of the density perturbation is shown in
Figures 8a and 8b. The background model has been chosen the
same inside and outside the masked region. This eliminates effects
of interaction of acoustic waves with perturbations of pressure and
density inside the sunspot which are described in x 4.3. The acous-
tic waves propagate to the masked region from below by paths
shown by the white dashed lines in Figure 8b. So, inside the
masked region these perturbations propagate toward the photo-
sphere and have mostly vertical velocity components. To com-
pare oscillation amplitudes inside and outside themasked region,
we calculated the oscillation power and the corresponding am-
plitude in these regions by doing a Fourier transform of a signal
at each point of a horizontal plane at the photospheric depth and
calculating an amplitude map for the chosen depth and frequency.
The amplitude distribution of vertical velocity at the photospheric
level for a frequency bin at 
 ¼ 3:66 mHz is plotted in Figure 8c.
The thin solid curve represents a horizontal cut through the center
of themasked region. The thick solid curve represents the angular-
averaged amplitude. The ratio of wave amplitudes outside and
inside the masked region is equal to 2:6 � 0:8. The amplitude of
oscillations drops rather sharply at the boundary of the central

Fig. 7.—Mean square wave amplitude ½h(�0w0 )2 ixy�
1/2

/�̄0ā0 averaged along
the horizontal plane at the height of 300 km above the photosphere for different
heights of the top boundary and different damping coefficients, where �̄0 and ā0
are the density and the sound speed at the photosphere. Curve I corresponds to
the high top boundary, established at 1750 km above the photosphere without
any additional damping. Curves II, III, and V correspond to the same boundary
conditions but different values of damping coefficient �d ¼ 0:3, 0.6, and 1.0.
Curve IV corresponds to the top boundary, established at 500 km without arti-
ficial damping.

Fig. 8.—Horizontal photospheric (a) and vertical (b) slices of the density perturbation of the wave field generated by the acoustic sources masked in the central circle with
the diameter of 20.4 Mm. Position of the photosphere is marked by the white horizontal line near the top boundary in (b). The thin horizontal black lines near the top and the
bottomboundaries of the same panel mark the nonreflecting PMLs. Angular-averaged oscillation amplitude, calculated for the frequency 
 ¼ 3:66mHz, is shown in (c) by the
thick solid curve, and the thin solid curve represents a horizontal cut of the amplitude map through the center of the masked region.
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region. This simulation shows that the nonuniform distribution
of the acoustic sources affects the amplitude distribution of the
resulting wave field and must be taken into account in sunspot
seismology. Of course, additional factors such asmode conversion
in magnetic field and temperature and density change may also
affect the oscillation amplitude and have to be included in future
simulations.

4.3. Interaction with Inhomogeneities of Solar Structure

To study the effects of 3D inhomogeneous structures, we sim-
ulated propagation of waves, generated by a single spherically
symmetric source of the z-component of force, through an axially
symmetric region with reduced sound speed

a2
sp(x; y; z) ¼ a2

0 (z) 1� �a2

ā2
0

����
ph

Q(rh) cos
�z

2Hsp

" #
; ð23Þ

where rh ¼ (x� xc)
2 þ ( y� yc)

2
� �1/2

is the horizontal distance
from the axis (xc; yc) of the sound speed perturbation, (�a

2 /ā2
0 )jph

is the relative perturbation of the square of sound speed at the
photospheric level, Hsp is the depth of the inhomogeneity, and
the horizontal profile of the sound speed perturbation Q(x; y) is
given by

Q(x; y)¼
1

2
1þ cos

�rh
Rsp

� �
; rh � Rsp;

0; rh > Rsp;

8<
: ð24Þ

where Rsp is the radius of the perturbation. The source function
depends on time as Ricker’s wavelet. Themaps of density pertur-
bation �0 at 10.8 minutes after switching on the source are pre-
sented in Figure 9. Figures 9a and 9b show photospheric horizontal
and vertical slices, respectively. The white horizontal line near the
top boundary in Figure 9b marks the position of the photosphere.
The position of the background sound speed perturbation is shown
by the dashed circles in Figure 9a and the vertical dashed lines in
Figure 9b. The outer circle corresponds to the radius Rsp, and the
inner one shows a half-width level of the profile. The small solid
circle near the center of Figure 9a shows the wave source. The
solid curve in Figure 9c represents a horizontal cut through the cen-
ter of the sunspot (marked by the solid horizontal line in Fig. 9a),
the dashed curve shows a vertical cut marked in Figure 9a by the
dashed line. The vertical solid and dashed lines in Figure 9c show
the positions of the source and the sunspot, respectively. The

vertical cut is used as a reference profile because it goes through
parts of the wave front not perturbed by the sunspot. This cal-
culation shows that the sound speed perturbation results in de-
laying the wave front and increasing its amplitude by 20%. Thus,
such an effect can be measurable by local helioseismology.

5. CONCLUSION

We developed a linear 3D code for modeling propagation of
acoustic waves inside the Sun. The code utilizes the realistic
equation of state by interpolation of the OPAL tables, the non-
reflecting boundary conditions based on PML, and stable high-
order numerical boundary conditions consistent with the interior
FD scheme. The top nonreflective boundary above the tempera-
ture minimum naturally introduces frequency dependence of the
reflecting properties of the top boundary and simulates a realistic
situation when waves with frequencies less then the acoustic cut-
off frequency are reflected from the photosphere and waves with
higher frequencies escape into the chromosphere. Thewave sources
are modeled by stochastic randomly distributed perturbations of
force and pressure. The accuracy of this code has been extensively
tested by using analytical solutions for gravity-acoustic waves.
We have presented initial results of three studies for solar acoustic
waves. The first one is simulations of oscillation power spectra for
two models of wave damping with leakage and damping in the
lower chromosphere and with an explicit damping (friction-type)
term in the subphotospheric layers and chromosphere. In both
cases, wewere able to reproduce the observed characteristics ( line
widths and amplitude distribution in the acoustic spectrum). The
second study was to model nonuniform distribution of sources. In
this case, we found that the suppression of acoustic sources in sun-
spots may significantly contribute to the observed power deficit.
The third study was to investigate the effects of localized pertur-
bations of temperature onwave properties. It showed that the tem-
perature reduction in sunspots may lead to higher amplitude, but
this effect is less significant than the effect of suppressed excitation.
All these effects are important for local helioseismology and de-
serve future detailed investigation, using both observations and
simulations.

This research is supported by the Living With the Star NASA
grant NNG 05-GM85G. The calculations were performed on the
Columbia supercomputer at NASA Ames Research Center.

Fig. 9.—Propagation of acoustic wave generated by a single localized spherically symmetric source through an axially symmetric perturbation of the background model
with reduced sound speed. Panel (a) represents a horizontal slice at the photospheric level shown by the horizontalwhite line in panel (b), which represents a vertical slice of the
computational domain. The solid and dashed curves in panel (c) represent, respectively, horizontal and vertical cuts shown in panel (a) by the horizontal solid and vertical
dashed lines. The dashed circular contour lines in panel (a) show the outer boundary of the sound speed perturbation and the level where its amplitude is half of the maximum
amplitude.
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APPENDIX

PADÉ APPROXIMATION

Let’s consider a uniform grid fzi ¼ i�z, i ¼ 0; : : : ;Ng of N þ 1 mesh points and a grid function fUi ¼ U (zi), i ¼ 0; : : : ;Ng
defined at the nodes fzig of the computational grid. Assume that the first spatial derivatives are approximated by the fourth-order DRP
FD scheme from equation (7) with the coefficients bj given by equation (11). To build a stable high-order approximation of derivatives
at the boundary, we follow Carpenter et al. (1993) and use an implicit Padé approximation of spatial derivatives near the top and
bottom boundaries

P
@U

@x
¼ QU; ðA1Þ

where P andQ are almost identity and band matrices except the top left and bottom right dense blocks with elements fpi; jg and fqi; jg,
respectively, which satisfy the following conditions.

1. P is a symmetric nonsingular matrix (P ¼ PT ).
2. P is a positive-definite matrix (VTPV > 0 8V ).
3. Q is an almost skew-symmetricmatrix, except the corner top left and bottom right elements [QþQT ¼ jq0;0jdiag(� 1; 0; : : :; 1)].
4. qN ;N > 0 and q0;0 ¼ �qN ;N .

Taking into account these properties, one can write explicitly the top left corners of matrices P and Q as

Q ¼

q00 q01 q02 q03 0 0 0 0

�q01 0 q12 q13 b3 0 0 0

�q02 �q12 0 q23 b2 b3 0 0 : : :

�q03 �q13 �q23 0 b1 b2 b3 0

0 �b3 �b2 �b1 0 b1 b2 b3

..

. . .
.

0
BBBBBBBBB@

1
CCCCCCCCCA
;

P ¼

p00 p01 p02 p03 0

p01 p11 p12 p13 0

p02 p12 p22 p23 0 : : :

p03 p13 p23 p33 0

0 0 0 0 1

..

. . .
.

0
BBBBBBBBB@

1
CCCCCCCCCA
; ðA2Þ

where coefficients bi are defined by equation (11). The size of the dense Nd ;Nd blocks depends on the order of approximation ac-
curacy � near the top and bottom boundaries Nd ¼ �þ1. Expanding the left- and right-hand sides of equation (A1) in Taylor series at
the top boundary and equating terms of the same order of�x, one can obtain a system of linear equations for coefficients pij and qij.
Not all of these equations are independent; hence, the solution depends on two free parameters p33 and p23,

p00 ¼ � 83

108
þ p33; p11 ¼ �8p23 � 15p33�

908672� 314865�

378(45�� 128)
;

p22 ¼
1727

108
� 8p23� 15p33; p01 ¼ p23�

5(207�� 752)

189(45�� 128)
;

p02 ¼ 3p33�
229725�� 659968

1512(45�� 128)
; p03 ¼ �p23� 4p33�

1616896� 566145�

3024(45�� 128)
;

p12 ¼ 7p23 þ 12p33�
5(50931�� 146176)

432(45�� 128)
; p13 ¼ 3p33�

5(36459�� 102400)

1512(45�� 128)
;

q00 ¼ � 1

2
; q01 ¼ �2p23� 6p33�

5765888� 2006415�

6048(45�� 128)
;

q02 ¼ 4p23 þ 12p33�
893925�� 2562304

1512(45�� 128)
; q03 ¼ �2p23� 6p33�

5(341073�� 974080)

6048(45�� 128)
;

q12 ¼ �6p23� 18p33�
716288� 251055�

288(45�� 128)
; q13 ¼ 4p23 þ 12p33�

807255�� 2289664

1512(45�� 128)
;

q23 ¼ �2p23� 6p33�
4504832� 1608975�

6048(45�� 128)
: ðA3Þ
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To satisfy the condition of positive definiteness, it is sufficient to choose matrix elements p33 and p23 in such a way that the signs of co-
efficients of a characteristic polynomial alternate. However, this property does not guarantee that the solution is bounded for all times.
This property is known as asymptotic stability. To make a solution asymptotically stable, all eigenvalues of the spatial discretization
operator Lilm, represented by equation (8) with the boundary conditions, must have nonpositive real parts. Because of the complexity
of the original 3D problem, we have tested the stability of the FD scheme using a 1D advection problem. The distribution of
eigenvalues of the DRP spatial discretization operator in the complex plane for different choices of the pairs of coefficients ( p23, p33) is
shown in Figure 10. Plus symbols correspond to the scheme p23 ¼ 1/30; p33 ¼ 31/32, which does not exhibit asymptotic stability.
Circles and crosses represent choices (1/90, 125/128) and (�1/10, 65/64) of coefficients ( p23; p33), respectively. Both these FD schemes
are asymptotically stable.
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