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ABSTRACT

We present numerical magnetohydrostatic solutions describing the gravitationally stratified, bulk equilibrium of
cool, dense prominence plasma embedded in a near-potential coronal field. These solutions are calculated using the
FINESSE magnetohydrodynamic equilibrium solver and describe the morphologies of magnetic field distributions
in and around prominences and the cool prominence plasma that these fields support. The equilibrium condition for
this class of problem is usually different in distinct subdomains separated by free boundaries, across which solutions
are matched by suitable continuity or jump conditions describing force balance.We employ our precise finite element
elliptic solver to calculate solutions not accessible by previous analytical techniques with temperature or entropy pre-
scribed as free functions of the magnetic flux function, including a range of values of the polytropic index, tem-
perature variations mainly across magnetic field lines and photospheric field profiles sheared close to the polarity
inversion line. Out of the many examples computed here, perhaps the most noteworthy is one which reproduces pre-
cisely the three-part structure often encountered in observations: a cool dense prominence within a cavity/flux rope
embedded in a hot corona. The stability properties of these new equilibria, which may be relevant to solar eruptions,
can be determined in the form of a full resistive MHD spectrum using a companion hyperbolic stability solver.

Subject headings: MHD — Sun: corona — Sun: magnetic fields — Sun: prominences

1. INTRODUCTION

Solar prominences are cool, dense concentrations of plasma
suspended by magnetic fields about 10,000 km clear of the base
of the corona (Tandberg-Hanssen 1995). The prominence is re-
ferred to as a filament when it is observed in absorption against
the solar disk. Observing, understanding, and modeling promi-
nences and the equilibrium and stability properties of their mag-
netic fields is a major topic of solar research. Eventually, many
quiescent prominences erupt abruptly and are expelled through
the corona into interplanetary space embedded within a coronal
mass ejection (CME). CMEs are the most powerful drivers of
the Sun-Earth connection. Observations (e.g., Munro et al. 1979;
Webb & Hundhausen 1987) and recent developments in solar
magnetohydrodynamics (MHD) have shown that more than
70% of CMEs originate from eruptions of prominences caused
by failures of the confinement of highly twisted magnetic fields
(Low 1996, 2001; Amari et al. 2003a, 2003b; Fan & Gibson
2003, 2004; Fan & Low 2003; Flyer et al. 2004, 2005; Zhang
& Low 2004, 2005). Recently, using magnetofriction models,
Mackay & van Ballegooijen (2006a) considered the formation
and ejection of flux ropes as the result of the buildup and con-
centration of axial flux by a simple reconnection process.

The magnetic field is central to the formation and persistence
of quiescent prominences (Tandberg-Hanssen 1995). It provides
support against gravity for the electrically highly conducting
prominence plasma and also acts as a thermal shield for the cool
prominence against the million-degree coronal environment. Ob-
servations have shown that long quiescent prominences form

from the remnants of decaying active regions (Gaizauskas et al.
2001), and tend to lie in a cavity at the base of a well-formed
coronal helmet streamer, running along the polarity inversion
line of an extensive bipolar region on the photosphere (Tandberg-
Hanssen 1995). These prominences also tend to be suspended
higher in the corona (>30,000 km above the photosphere) than
those in active regions, which tend to be shorter in length and
more contorted in shape by the more complex active region
fields. We adopt the hypothesis of Low & Hundhausen (1995)
that quiescent and active region prominences share the same
basic magnetic structure and mechanics, although they differ in
magnetic intensity, structural complexity, structural length scale,
and evolutionary timescale.
The long life of a quiescent prominence as a macroscopic

structure, from days to a week or more, suggests that static equi-
librium is a reasonable first approximation for describing the
prominence (Anzer 1989). We confine our equilibrium study
to two-dimensional (2D) configurations for two reasons. First,
prominences are significantly larger in one horizontal direction
than the other, being about 200,000 km long and about 5000 km
wide, so that their bulk properties can be modeled in 2D. They
are invariably found parallel to and above photospheric polarity
inversion lines. Our 2D models describe flux ropes levitating in
the solar atmosphere above the photosphere, which is taken as
an infinite plane. The topology of the ends of the flux rope, which
in reality curve down to meet the photosphere in a full three-
dimensional (3D) configuration, is left out of the 2D description.
This description captures features of flux ropes the main part
of whose lengths are suspended in the atmosphere above the
photosphere.
The second reason is that in 3D themagnetohydrostatic (MHS)

force-balance equation becomes highly nonlinear, and a follow-up
stability analysis becomes even more challenging as the effect of
line-tying at the photospheric end pointsmust be taken into account
as well. Furthermore, the 3DMHS force-balance equation changes
type from elliptic to mixed type, causing the character of the
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boundary value problem to change. The 2D MHS (Grad-
Shafranov) equation has a linear, elliptic differential operator, so
that its characteristic curves are all imaginary. Thus, like fields �
described by, e.g., Laplace’s equation92� ¼ 0 or the linear wave
equation 92�þ k 2� ¼ 0, solutions  of the Grad-Shafranov
equation are continuous functions uniquely determined by spec-
ifying their value, normal derivative, or linear combination of
the two on the boundary. The situation with the 3D MHS prob-
lem is very different (Parker 1979, 1994); the inclusion of three-
dimensional variations causes the force-balance equation to change
type, from a simple elliptic equation with purely imaginary char-
acteristics to an equation of mixed type with both imaginary and
real characteristics. Across the real characteristic curves, field de-
rivatives may not be defined. Since these real characteristics
coincide with field trajectories, tangential discontinuities are per-
mitted there, provided that the total pressure Bj j2/8�þ p is bal-
anced across the discontinuity. In general, equilibrium solvers
break down for mixed-type problems, and it can be questioned
whether the equilibrium and perturbation can be meaningfully
distinguished in thesemixed-type regimes, as has been questioned
for hyperbolic regimes inmixed-type problems (Goedbloed 2003,
2004).

The stability properties of these new equilibria, which may be
relevant to solar eruptions, can be determined in the form of a full
resistive MHD spectrum by solving the linearized MHD equa-
tions using the companion hyperbolic stability solver PHOENIX
(Blokland et al. 2007b).MHDwaves and instabilities control the
dynamics of plasma and occur as the natural response to global
excitation. Measurement of the spectrum of MHD waves gives
direct information on the internal state of the plasma. This is
called MHD spectroscopy (Goedbloed & Poedts 2004), in anal-
ogywith quantummechanical spectroscopy, which also involves
eigenvalue problems of linear operators. MHD spectroscopy
entails a separate study of the nonlinear static equilibrium con-
figuration on the one hand, and the various linear wave structures
that can occur on the other. The first study is the subject of this
paper and the spectroscopy will be treated in a sequel.

The paper is organized as follows.We discuss the morphology
of prominences and their associated magnetic fields in x 2. The
basic magnetohydrostatic equilibrium problem is introduced in
x 3 before the newmodels are presented in x 4.We conclude with
a discussion in x 5.
2. PROMINENCE MAGNETIC FIELD MORPHOLOGY

After a lapse of 20 years or so, there has been a renewed in-
terest in the measurement of prominence (and coronal) magnetic
fields (Judge 1998; Lin et al. 1998, 2000; Lopez Ariste & Casini
2002, 2003; Trujillo Bueno et al. 2002; Casini & Judge 1999;
Casini et al. 2003). New techniques for observing magnetic
fields of prominences on the solar disk (Lin et al. 1998; Trujillo
Bueno et al. 2002) allow many new possibilities for diagnosing
prominences, including low-lying ones inaccessible to older meth-
ods which relied on the prominences being clearly visible above
the limb.

Spectropolarimetry has shown that a prominence is threaded
by a nearly horizontal magnetic field whose principal compo-
nent is along the long axis of the prominence. Prominences are
classified by whether their magnetic fields thread in the same
(called normal topology) or opposite (inverse topology) com-
pared to the underlying photospheric bipolar field. These two
classes imply distinct topologies for the coronal magnetic fields
around prominences. These two basic topologies, normal and
inverse, were first captured in the models of Kippenhahn &
Schlúter (1957) and Kuperus & Raadu (1974), respectively. The

observed principal component of prominence magnetic fields
along the long axes of prominences implies that fields around
prominences are characterized by highly sheared or twisted mag-
netic topologies.

Statistical studies of prominence topologies suggest that in-
verse prominences are more common than normal prominences
by a factor of about 3, while inverse prominences sit higher
in the atmosphere than normal prominences (Leroy et al. 1984;
Leroy 1989; Bommier et al. 1994).Most prominences associated
with helmet streamers have the inverse configuration (Leroy
et al. 1984). In the 2D inverse topology, the prominence must
sit in a two-fluxmagnetic system, one flux connecting the bipolar
magnetic sources in the photosphere below and the other form-
ing a rope which embeds the prominence and runs above and
parallel to the photospheric polarity inversion line. In 3D, single-
flux models can produce inverse topologies and helmet streamer
structures (e.g., Aulanier & Démoulin 1998; Mackay & van
Ballegooijen 2006a, 2006b). The prominence flux rope is seen
as a cavity in coronal white light observations and as a fila-
ment channel in the chromosphere. For the inverse topology
with the prominence magnetic field in the opposite direction to
that of the bipolar photospheric field region below, the mag-
netic flux rope containing the prominence supports a part of
the prominence weight by current attraction from above (Low
& Hundhausen 1995). Low & Zhang (2002) suggested that the
two loosely defined classes of impulsively and gradually ac-
celerated CMEs, fast and slow CMEs, may be explained by the
different interactions between expulsion dynamics and mag-
netic reconnections taking place in the different inverse and
normal field topologies.

A solar prominence cavity or flux rope may be idealized as
a 2D structure running above and parallel to the photospheric
polarity inversion line in the ignored direction, the x-direction.
In the y-z plane, it is represented by a finite region of closed con-
tours of the magnetic flux function with cool plasma localized
by gravitational stratification at the bottom of the rope. The char-
acteristic hydrostatic scale length of the cool prominence plasma
is a few hundred km while a typical flux rope size is estimated to
be 10 Mm or more. While details of magnetic field structure in
and around prominences have not been precisely determined by
observations, Low&Hundhausen (1995) give a plausible sketch
of how this field may be structured in their Figure 1. The flux
contours are compressed at the bottom by the cool, dense prom-
inence plasma.

Amari & Aly (1989, 1992) modeled prominences by embed-
ding massive MHS line currents and current sheets in twisted
2D force-free magnetic fields for the first time. Then Low &
Hundhausen (1995) gave an insightful model of the two topol-
ogies of quiescent prominences using line currents. Taking the
plane z ¼ 0 to be the photosphere, the magnetic field above this
plane around the prominence mass, which is formed along a line
( y; z) ¼ (0; z2) parallel to the x-axis, with z2> 0, is given by the
magnetic flux function

 ¼ Iphot

c
log y2 þ z� z1ð Þ2

h i

þ Iprom

c
log

y2 þ z� z2ð Þ2

y2 þ zþ z2ð Þ2

" #
; ð1Þ

where c is the speed of light. The Iphot term causes the photo-
spheric field to be bipolar and is due to a subphotospheric vir-
tual line current at ( y; z) ¼ (0; z1) with z1 < 0. The Iprom term
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represents the line current associated with the prominence it-
self as well as an image current beneath the photosphere which
causes this part of the flux function to vanish at the photosphere.
Thus, the vertical magnetic field Bz at the photosphere is entirely
unaffected by the presence of the filament-image pair, which
only changes the horizontal magnetic field By. There is no axial
magnetic field component Bx in this simple model, which is use-
ful for investigating the magnetic field topology around the
prominence and does not resolve the prominence structure itself.
For this simple line-current model, the two basic magnetic prom-
inence topologies depend on whether Iphot and Iprom are of the
same sign (inverse topology) or opposite signs (normal topol-
ogy). Figure 1 shows an example of each topology. We will use
this simple model to guide our numerical modeling in later
sections.

Hundhausen & Low (1994) presented an analytical continua-
tion method for calculating polytropic MHS equilibrium states
in the Cartesian plane. This method was exploited in Low &
Hundhausen (1995)’s study of inverse prominences. Whereas
Low & Hundhausen (1995) represented prominence plasma
enhancements by massive line currents and current sheets, Low
& Zhang (2004) gave analytical solutions describing plasma en-
hancements of finite width by addressing a free-boundary problem.
By this approach they were able to describe both normal and in-
verse magnetic topologies. This was made possible by the as-
sumption of a circular boundary between the prominence plasma
and the ambient corona and by making assumptions simplifying
the polytropic equation of state.

In this paper we present classes of prominence-like solutions
calculated numerically using the Finite Element Solver for Sta-
tionary Equilibria (FINESSE; Belien et al. 2002), which allows
the computation of stationary, gravitationally stratified axisym-
metric or Cartesian configurations. The two codes FINESSE

and PHOENIX (Blokland et al. 2007b) have already been used
in tandem to determine the stability of tokamaks and accretion
disks with steady flows (Goedbloed et al. 2004a, 2004b; Blokland
et al. 2007a), but have not been adapted for the study of solar
phenomena although the PARIS code (Belien et al. 1997), which
treats the gravitational stratification of axisymmetric static loops,
is incorporated in the functionality of FINESSE. Here, we use a
suitably improved version of the FINESSE code to extend recent
analytic work on translationally invariant magnetohydrostatic
equilibria with uniform gravity in Cartesian geometry, by allow-
ing a free boundary between the prominence flux rope and the
ambient coronal magnetic field and by allowing one to choose
the polytropic index freely. The various classes of magnetohydro-
static solutions discussed in what follows each lead to a second-
order partial differential equation (PDE), which FINESSE solves
in weak form using a Picard iteration. We implemented the var-
ious forms obtained for this PDE under different choices of freely
chosen flux functions, along with their scalings, as discussed in
the Appendix. We restrict our numerical calculations to static
solutions which are translationally symmetric, all of which fall
into an elliptic regime where a split between the equilibrium and
the perturbations in a forthcoming stability analysis can mean-
ingfully be performed.

3. THE MAGNETOHYDROSTATIC PROBLEM

Consider the static-equilibrium model based on the one-fluid
ideal hydromagnetic description, denoting the magnetic field,
plasma pressure, and density by B, p, and �, respectively. The
balance of forces is described by

1

4�
: < Bð Þ < B�:p� �gẑ ¼ 0; ð2Þ

Fig. 1.—Inverse (left) and normal (right) prominence topologies for prominences represented by massive line currents. In the inverse topology the line current flows
in the same direction as the intrinsic photospheric current, while the currents are oppositely directed in the normal topology. The Lorentz force is directed upward in both
examples, as it must be to balance the weight.
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assuming a uniform local gravity of acceleration g in the �z
Cartesian direction. Then the ideal gas law relates the gas pres-
sure p to the gas density �

p ¼ kB

�
�T ; ð3Þ

where kB is Boltzmann’s constant and � is the mean particle
mass for a fully ionized (monatomic) hydrogen plasma. The
solenoidal condition

: = B ¼ 0; ð4Þ

closes the set of equations to determine p, �, and B. To keep the
physical problem simple, we avoid the complication of a full
energy equation by applying, in turn, two assumptions: (1) that
the plasma temperature is a flux function T ¼ T ( ) (including
the isothermal case T ¼ T0, a constant), and (2) that the poly-
tropic case where the entropy s ¼ p/�� ¼ s( ) is a flux function.
(The polytropic case with � equal to the ratio of specific heats
describes an adiabatic gas, while the isothermal case eliminates
heat transport.) The value of the polytropic index, denoted here
by �, is not well known in the corona. Parker (1962) gives
� � 1:1Y1.2 as a guide, and this seems to hold 40 years after
publication. Any value of � less than 5/3, the adiabatic lapse
value, is of potential physical interest. The � < 1 cases extend
the work of Low & Hundhausen (1995) and Low & Zhang
(2004) in which � is of the form � ¼ n/(nþ 1) where n is an
integer which is positive in their cases.

In the 2D case with axial symmetry (@/@x ¼ 0), the magnetic
field satisfying equation (4) has the form

B ¼ f ( y; z);
@ ( y; z)

@z
;� @ ( y; z)

@y

� �
; ð5Þ

where f ( y; z) is the axial magnetic field component and  ( y; z)
is themagnetic flux function, whose isosurfaces contain themag-
netic field trajectories. By standard theory (Low 1975), the mo-
mentum equation (2) reduces to

92 þ f ( )
df ( )

d 
þ 4�

@p( ; z)

@ 
¼ 0; ð6Þ

@p( ; z)

@z

����
 ¼const

þ �g ¼ 0; ð7Þ

where f ( y; z) ¼ f ( ) must be a strict function of  from the
projection of the momentum equation on the symmetry axis.
Here we take the partial z derivatives while keeping  constant.
Equation (7) is solved by

p( ; z) ¼ p1( )�
Z z

0

�  ; z0ð Þg dz0: ð8Þ

Details of the method used to solve equation (6) numerically
are given in the Appendix. For simplicity, a Cartesian grid with
exponentially varying grid point spacing is used to capture the
detailed structure near the symmetry axis. Thus, grid points are
packed around the origin while the domain can extend to 50 units
or more, at which distances the field is rather insensitive to the
details of the structure near the origin.

The solutions are calculated numerically, solving in both po-
tential and nonpotential regions simultaneously, exploiting the
freedom to define p0( ) and f

2( ) arbitrarily. Piecewise defini-

tions of p0 and f 2 allow one to calculate a full magnetohydro-
static equilibrium embedded in a potential field at once.

The mapping from the Cartesian space ( y; z) onto the ( ; z)
space is not one-to-one in general because there may be more
than one field line of the same value  ¼  c at a given height z.
The field lines in the inverse configuration typically have two
points at a given height, or one in the half-domain y > 0 in which
the problem is solved in practice. Then under symmetry about
the z-axis, single functions p( ; z) and �( ; z) characterize the
gas pressure and density fully. Field lines of the normal topology,
on the other hand, may have four (two in y > 0) distinct points at
the same height. Moreover, the same constant value of  may be
found at two field lines: one anchored to the base of the atmo-
sphere and one within the levitating flux rope. Even with sym-
metry about the z-axis, the two points at the same height are
generally complicated by having distinct gas pressures while
they are mapped onto the same point ( ; z). In such a situation,
p( ; z) and �( ; z) are multivalued functions of (Low&Zhang
2004).

In general, the Grad-Shafranov equation can assume as many
different forms as there are distinct regions of physical space,
each occupied by a different branch of the functions p( ; z) and
�( ; z). The distinct regions are separated by free boundaries,
the loci of which are unknown and must be calculated simul-
taneously with the solution . The free boundaries are governed
by continuity or jump conditions imposed by force balance at
these boundaries. Free boundaries also separate regions where
the functional forms of p( ; z) and �( ; z) differ, e.g., a region of
potential or force-free magnetic field separated from a region of
full MHS force balance.

4. THE MODELS

4.1. Nonlinear Force-Free Fields

Before describing models with MHS force balance, we dis-
cuss force-free flux-rope solutions. The force-free case is the
one with p0( ) ¼ constant, so that all Maxwell stresses are con-
tained within the magnetic field and all electric currents are
aligned with the magnetic field. The simplest case, the potential
case f 2( ) ¼ 0, cannot have closed magnetic flux contours by
the maximum principle for the Laplacian differential operator.
Electric currents are necessary for a flux rope to be present. The
current associated with the magnetic field of equation (5) is de-
scribed by

j ¼ �9 2 ;
df ( )

d 

@ 

@z
;� df ( )

d 

@ 

@y

� �
; ð9Þ

and the linear case f ( ) ¼ �0 , for some constant�0, is seen to
yield the usual Helmholtz equation for linear force-free fields
(92 þ �2

0) ¼ 0 (see also eq. [6]). The general condition for the
nonlinear field to be force-free is that equation (6) is satisfied
with @p( y; z)/@z ¼ 0, in which case j ¼ � ( y; z)B with the non-
linear force-free parameter� ( y; z) ¼ df ( )/d . The field-aligned
currents are clearly associated with axial magnetic flux Bx which
is responsible for twist and shear in themagnetic field in these 2D
solutions.

If we insist that the ambient magnetic field be near-potential
then the current distributionmust be concentrated in the vicinity
of the flux rope. Therefore, in our examples f 2( ) is nonzero
only in regions bounded by a chosen closed flux contour (here
 ¼ 0:5). The observed increase of magnetic field strength and
emission intensity to maxima at the top of a prominence (Rust
1967; House & Smart 1982; Leroy 1989) suggest forms of f ( )
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and p0( ) with maxima at the flux rope center. In Low &
Hundhausen (1995) and Low & Zhang (2004), f 2 is of the form
1/2�  , taking ¼ 0 at themagnetic axis at the center of the flux
rope and  strictly positive elsewhere. This profile is shown in
Figure 2 as curve a. Outside the contour  ¼ 0:5, f 2( ) � 0.
Figure 2 also shows several profiles for f 2( ). Curves b, c, and d
are all of the form

f 2( ) ¼ 1

2
(1� 2 )2(1þ n ); ð10Þ

where n ¼ 2, 3, and �2, respectively. There functions are the
Hermite polynomials with double roots at  ¼ 0:5, and they
satisfy the conditions at  ¼ 0, f 2 ¼ 0:5, and df 2/d ¼ �1,
�1/2, and �3, respectively. The double root at  ¼ 0:5 allows
a smooth transition from the current-carrying flux rope to the
current-free ambient field. The corresponding flux contours for
the four cases are shown in Figure 3 and the angle of the mag-
netic field with respect to the magnetic axis is shown for each
case as functions of space in Figure 4. The angle must be zero
at  ¼ 0 since By and Bz must vanish there. Outside the  ¼ 0:5
contour, the angle must be 90� since Bx ¼ 0 there. Therefore, in
each case the angle must vary from 0� to 90� within the flux rope.
The value of angle that an observer would find from one of our
models depends on the nature of this variation from 0� to 90� and
on the distribution of plasma within the flux rope. Typical mea-
sured angles are of order 30

�
(Leroy et al. 1984; Leroy 1989;

Bommier et al. 1994).
Magnetic field models corresponding to the four f 2 profiles

of Figure 2 are shown in Figure 3. The boundary conditions are
given by equation (1) describing the solutions shown in Figure 1.
These boundary conditions are motivated by the fact that a (2D)
flux rope resembles, from a distance, a line current and because
of the relationship of this work to Low & Hundhausen (1995),
whose models the present work extends. The Iprom term has no
contribution to the photospheric boundary condition while its
influence on the flux rope solutions when applied at the distant

lateral and top boundaries is found to be effectively negligible
except in extreme cases. The solutions in this paper are there-
fore determined by the Iphot boundary condition, a simple bipole,
and the form of the governing equation. The subphotospheric
line current modeled by Iphot provides a convenient means of
producing the bipolar boundary conditions. Alternative bipo-
lar boundary conditions would produce similar results.
The four plots in Figure 3 are labeled a, b, c, and d to match

the four curves in Figure 2. Curve c has a shallower decrease
and curve d a steeper decrease in axial flux as one moves away
from the magnetic axis than curve a, while curve b has the same
decrease. Models a and b are very similar indeed. There are dif-
ferences but they are too small to see in the plots. Model c is
larger than a and b, while model d is smaller. These effects are
due to the different quantities of axial magnetic flux confined
close to the magnetic axes of the models. Figure 4 shows the
angle between the magnetic vector and the magnetic axis in each
model. Here, the difference between models a and b is much
more obvious. The magnetic angle of model b has a significantly
sharper change at the edge of the flux rope than is the case for
model a, and its angle is consistently smaller over much of the
flux rope volume, indicating a more sheared field. In model d
almost all of the angle changes are concentrated at the center
and the edge of the flux rope. Here there is a concentration of
highly sheared field at the center of the flux rope, outside which
the angle has a plateau between 60� and 70�, finally increasing
sharply to 90� at the edge. In the other models the distribution
of angle changes is more even. The clumping of angle contours
near the edge of each flux rope in models b, c, and d is an effect
of the total field strength there; small changes in f 2 cause large
changes in the angle there.
Chromospheric fibrils as observed in H� are believed to de-

lineate magnetic flux tube trajectories emanating from the pho-
tosphere. Over the neighborhood of an active region these fibrils
follow an organized pattern; approaching the filament from ei-
ther side, the fibrils become longer and aligned more parallel to
the filament axis. Far from the filament the fibrils are nearly per-
pendicular to the filament, while at either side of the filament
they are parallel. No fibrils close to the polarity inversion line are
observed to arc over it, and the fibrils indicate that magnetic flux
in the positive and negative magnetic regions is directed away
from and toward the inversion line, respectively. This is all con-
trary to what is expected of a near-potential magnetic field and
indicates the presence of significant electric currents in the vi-
cinity of as well as within the filaments. Low & Hundhausen
(1995) and Low & Zhang (2004) included photospheric mag-
netic shear in their models via their current-carrying flux rope
field. If this field is allowed to dip beneath the photosphere,
the solution has a sheared photospheric signature similar to the
sheared photospheric polarity inversion lines associated with
prominences in observations. The same effect can be produced by
our models by setting the photosphere to be just above z ¼ 0:5.
We also tried to find examples where the direction of the axial

flux reverses. One immediate motivation for doing this is the
observation by Lin et al. (1998) of a prominence in absorption
against the disk in midlatitude with axial field components of
opposite signs on opposite sides of the photospheric neutral line
below the prominence. Flux rope configurations resembling the
reversed-field pinch (Freidberg 1987; Biskamp 1993) familiar
to plasma laboratory physicists would exhibit precisely this pat-
tern. In Taylor’s (1986) theory of plasma relaxation to minimum
energy states under conservation of magnetic helicity, there ex-
ists a helicity threshold above which the relaxed field must ex-
hibit a reversal of its axial field across the tube cross section, a

Fig. 2.—Examples of f 2( ) functions applied in this paper. The quantity f ( )
is the axial component of B, Bx. For  > 0:5 the profiles are zero.
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result repeatedly confirmed by experiment. In the more complex,
open-state environment of the solar atmosphere it is not clear if
corresponding phenomena are to be expected. We were not able
to obtain to obtain cases with significant reverse axial flux con-
fined by a potential ambient field. The necessary decrease of
f 2( ) near the center of the flux rope causes the contour surfaces
to crowd near the magnetic axis and the consequent strength of
the nonaxial flux makes deviations of the magnetic vector from
the y-z plane of more than 10� very difficult to obtain. One sim-
ple way to construct a model with reversing axial flux would be

to include axial flux in the overlying bipolar arcade, of oppo-
site sign to the axial flux in the flux rope. A sheared flux rope
emerging beneath an arcade of opposite shear may be the like-
liest scenario for the creation of structures with reversing axial
flux in the open solar corona. We do not pursue this option here.

4.2. Case in Which Temperature T ¼ T ( ) Is a Flux Function

We now turn our attention to nonYforce-free MHS solutions.
For the present, we set f 2( ) to be as in equation (10) with n ¼ 2.
In the isothermal case, the hydrostatic scale height � ¼ p/(�g) is

Fig. 3.—Force-free equilibria of inverse-polarity prominence magnetic fields with f 2 given by the curve in Fig. 2 with label a (top left), b (top right), c (bottom left),
and d (bottom right).

MAGNETOHYDROSTATIC PROMINENCES 835No. 1, 2007



constant and we may set �(z) ¼ exp (�z/�). Now the condition
p/� ¼ constant gives p1( ) ¼ 0, and equation (8) integrates to give

p ¼ p0( ) exp (�z=�); ð11Þ

consistent with equation (3).
In the more general case, with T ¼ T ( ), equation (7) inte-

grates to give

p( ; z) ¼ p0( ) exp �z=�( )½ �; ð12Þ

where �( ) ¼ kBT ( )/(�g). The Grad-Shafranov equation (6)
becomes

92 þ f ( )
df ( )

d 

þ 4�
dp0( )

d 
þ p0( )z

�( )2
d�

d 

� �
exp � z

�( )

� �
¼ 0: ð13Þ

The isothermal case is T ( ) ¼ constant or �( ) ¼ constant,
which coincides with the case of Low (1975). The additional

Fig. 4.—Force-free equilibria of inverse-polarity prominence magnetic fields: angles between the field vectors and magnetic axes in the four models of Fig. 3. The
labels a, b, c, and d match those in Figs. 2 and 3.
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term for nonisothermal cases models the pressure gradient in-
troduced by temperature changes across field lines. In a system
including very different temperatures, such as a cool prominence
embedded in a much hotter coronal medium, this term may be
important. Neighboring plasmas with significant temperature
differences across field lines are likely to occur in the solar atmo-
sphere, whose cross-field heat conduction is known to be much
less efficient than its field-aligned conduction (Spitzer 1962).

The forms for p0( ) considered in this work are plotted in
Figure 5. Curve a is the form used by Low&Hundhausen (1995)
and Zhang & Low (2004): p0( ) ¼ 3/10�  . For  > 3/10,
p0 � 0, and the magnetic field is force-free there. Curve b is the
graph of

p0( ) ¼
1

90
(3� 10 )2(3þ 10 ): ð14Þ

Curve b is a smooth alternative to curve a, sharing its value
and derivative at  ¼ 0, but having a double instead of single
root at  ¼ 3/10. We adopt this form of p0( ) for the examples
plotted in Figure 6.

The examples shown in the top two panels of Figure 6 are
solutions to the same equation with the same boundary condi-
tions but with different values for the temperature. These first
two examples have no axial magnetic flux and have smaller
plasma � ¼ 8�p/ Bj j2 than the sheared examples plotted below
them. The examples of the bottom pictures the plasma � has
maximum of about 1/10 or 1/5. The �-parameter is infinite at
the unsheared solutions’ neutral points at the center of the flux
ropes, but a typical value for � in these solutions is about 10. The
Bernoulli integral along field lines is

Z
dp

�
þ gz ¼ �g log

�

�0

� �
þ gz ¼ constant; ð15Þ

where �0 is the density at z ¼ 0. This expresses the fact that the
thermal energy and gravitational potential energy must add to

give a conserved quantity, the total energy. Clearly the thermal
energy is directly proportional to the hydrostatic scale height
and therefore the temperature. The top pictures of Figure 6 show
that an increase of thermal energy of the plasma causes the ther-
mal pressure to be more effective in pushing out against the con-
fining forces of themagnetic field. Themore even spread of mass
across the concave-upward floor of the magnetic configuration
imposes less stress on the magnetic field at y ¼ 0, and allows the
prominence plasma to sit higher in the atmosphere than in cases
with lower temperature. The effect of this on the characteristic
scale length of both the plasma distribution and the magnetic
structure itself are clearly visible in the top two pictures.

The bottom two pictures show examples with colder plasma
but with significant axial magnetic flux density; they have axial
flux profiles derived from that of model b of x 4.1 while the
magnitudes of their p0 profiles are similar to those of the top pic-
tures. These stronger magnetic structures are able to accommo-
date cold plasma without significant changes in their magnetic
fields. In reality prominences have typical hydrostatic scale
height of a few hundred km while flux ropes are of order 10 Mm
across. The bottom left picture shows the model closest to these
parameter values.

To demonstrate the flexibility of the solutionmethod, we show
an example with two separate prominence concentrations in a
single flux rope. Curve c in Figure 5 is

p0( ) ¼
200;000

81

3

10
�  

� �2
3

20
�  

� �2
3

50
þ  

� �
: ð16Þ

This polynomial has double roots at  ¼ 3/10 and 3/20 and
has the same value and derivative at  ¼ 0 as 3/10 �  . The
corresponding prominence model is plotted in Figure 7. A nar-
row evacuated channel, corresponding to the first zero of p0( ),
separates a rounded blob of plasma above and a curved sheet
below.

Further complexity is introduced by an ambient atmosphere
populated by a hot plasma in a nonYforce-free magnetic field.
Figure 8 shows a model which exploits the nonisothermal aspect
of equation (13). A  -dependent temperature profile is imposed
so that a hot corona and a cool, dense prominence can be mod-
eled together in a self-consistent way. The variation of the hy-
drostatic scale height�( ), proportional to the temperature, with
 within the flux contour  ¼ 3/2 is described by

�( ) ¼ 3

20
þ 19

5
 2 1� 4

9
 

� �
: ð17Þ

This profile is graphed in the left panel of Figure 8. The scale
height therefore ranges from 3/20 to 3 between the magnetic
axis and  ¼ 3/2. Outside  ¼ 3/2, the temperature has a con-
stant value of 3. On the other hand, the plasma pressure is con-
trolled by choosing p0( ), which in this model is based on curve
d of Figure 5. Curve d is similar to curve b but has derivative�3
at  ¼ 0. The equation for curve d is

p0( ) ¼
1

90
3�10 ð Þ3; ð18Þ

so that this curve has a triple root at  ¼ 3/10. This p0( ) is zero
outside the contour  ¼ 0:3. In order to generate an ambient
atmosphere we add a small number, 0.0005, to p0( ) in all
space. Therefore, outside a certain contour, ¼ 1:5, the pressure

Fig. 5.—Examples of p0( ) functions applied in this paper. For  > 0:3 the
profiles are zero.
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contours are planes parallel to the photosphere.Within the contour
 ¼ 3/10 is a cool, dense prominence structure gravitationally
stratified with scale height about 1/20 of that in the ambient co-
rona. One result of this difference in stratification between the
interior and the exterior of the flux rope is that the prominence
plasma resides in a cavity: the portion of the flux rope not occu-
pied by dense prominence plasma is more sparsely populated
even than the corona. This is an essential part of the three-part
structure often observed in prominences and CMEs (Low &
Hundhausen 1995; Gibson & Low 1998; Gibson et al. 2006).

Low&Hundhausen (1995) emphasized and gave physicalmean-
ing to the three-part structure of the prominence flux rope/helmet
system often observed. For simplicity, the prominence is usually
studied without accounting for the low-density cavity in which it
is observed to be embedded. While the large-scale corona varies
in structural complexity with the solar cycle, the basic three-part
helmet structure seems to persist throughout this cycle. Here it is
seen as a natural feature of a low-density ambient atmosphere
containing a flux rope with a temperature minimum and a plasma
pressure maximum at the flux rope center.

Fig. 6.—Magnetohydrostatic isothermal equilibria of inverse-polarity prominence magnetic fields: unsheared examples with � ¼ 0:3 (top left) and 1.0 (top right),
and sheared examples with� ¼ 0:03 (bottom left) and 0.1 (bottom right). The flux contours, which coincide with magnetic flux trajectories projected onto the y-z plane,
are represented by solid lines. The plasma pressure is represented by the shading, with dark indicating high pressure.
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4.3. Case in Which Entropy s ¼ p/�� ¼ s( )
Is a Flux Function

In the polytropic case, equation (7) takes the form

�

� � 1

@���1

@z

����
 ¼const

¼ � g

s( )
; ð19Þ

where p( ; z) ¼ s( )�( ; z)� . In the special case of Low&Zhang
(2004), p0( ) ¼ �0( )g/n for n ¼ �/(1� �).

The Bernoulli integral along field lines is

Z
dp

�
þ gz ¼ �

� � 1

p

�
� p

�

����
z¼0

� �
þ gz ¼ constant; ð20Þ

expressing the fact that the thermal energy and gravitational
potential energy must add to give a conserved quantity. For
� < 1, p/�� ( p/�)jz¼0 must be >0, i.e., the temperature increases
with height while for � > 1, p/�� ( p/�)jz¼0 must be<0, i.e., the
temperature decreases with height. Note that along field lines the
temperature is a linear function of height, which must therefore
cross zero and become negative at some height. Such solutions
may still be used to model solar prominences since they are of
finite vertical extent. In the separable case, the plasma pressure
and temperature are given by

p( ; z) ¼ p0( ) � � � 1

�

(z� z0)

k

� ��= ��1ð Þ
; ð21Þ

T ¼� �

kB

(� � 1)

�
g(z� z0); ð22Þ

where k ¼ p0( )/�0( )g is a constant length scale. The Grad-
Shafranov equation (6) is

92 þ f ( )
df ( )

d 

þ 4� � � � 1

�

(z� z0)

k

� ��= ��1ð Þ
dp0( )

d 
¼ 0: ð23Þ

Fig. 7.—Flux contours and plasma pressure of a magnetohydrostatic iso-
thermal equilibriumwith an inverse-polarity prominence magnetic flux rope con-
taining a double prominence enhancement.

Fig. 8.—Cool, dense prominence plasma enhancement suspended in a hot, sparse corona. The left picture shows a highly nonisothermal scale height pro-
file. The right picture shows the flux contours and the plasma pressure. Note the evacuated cavity within which the dense plasma is embedded.
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Note that the temperature is independent of  in this separable
case, since p and � have common  -dependence, and the posi-
tion of this zero point is z ¼ z0 on all field lines. In order for the
plasma pressure and temperature to be well defined and positive
in the domain of interest, the factor �(� � 1)(z� z0) must be
positive throughout that domain. The gradient of the linear
variation of T with altitude is determined entirely by the poly-
tropic index �. The temperature T is an increasing function of
height for � < 1 and a decreasing function of height for � > 1.

Thus, for example, Low & Zhang (2004) chose their z0 to be
negative to keep this critical point out of the way beneath the
base of the corona, because they were working with values of
� < 1. For cases with � < 1, z0 must be placed above the domain
of interest and for � > 1, z0 must be placed beneath. If � > 1 this
introduces difficulties for the construction of solutions in which
all of space is populated by plasma, such as the one in Figure 8,
but for isolated prominence plasma enhancements in empty at-
mospheres these solutions are appropriate.

Fig. 9.—Hydrostatic 1D polytropic equilibrium: for a fixed temperature at z ¼ 0, the position of the critical point z ¼ z0 is graphed as a function of the polytropic
index � (top left). The resulting temperature (top right), pressure (bottom left), and density (bottom right) are shown as functions of height.
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For the general case �0 ¼ �0( ), the solution is not separable
and the pressure and temperature are given by

p( ; z) ¼ p0( ) 1� � � 1

�

� �
(z� z0)

�( )

� ��= ��1ð Þ
; ð24Þ

T ¼ � �

kB

(� � 1)

�
g(z� z0)þ T0( )

¼ � �

kB

(� � 1)

�
g z� z0 þ

�

� � 1
�( )

� �� �
; ð25Þ

where

T0( ) ¼
�

kB

p0( )

�0( )

is the temperature as a function of  at z ¼ z0, and �( ) ¼
p0( )/�0( )g is the hydrostatic scale height at z ¼ z0 on each
flux surface labeled  . These are both zero in the separable case

Fig. 10.—Magnetohydrostatic polytropic equilibrium: � ¼ 0:8 (top left), 1.1 (top right), 1.4 (bottom left), and 5/3 (bottom right). The critical point z0 is located at
z ¼ 0 for the � ¼ 0:8 case and at z ¼ 2 for the � > 1 cases.
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discussed above. The nonseparable Grad-Shafranov equation (6)
is

92 þ f ( )
df ( )

d 
þ 4� 1� � � 1

�

� �
(z� z0)

�( )

� �1= ��1ð Þ

;

(
1� � � 1

�

(z� z0)

�( )

� �
dp0( )

d 

þ p0( )(z� z0)

�( )2
d�( )

d 

)
¼ 0: ð26Þ

In this general case T still varies linearly with z on each in-
dividual field line with gradient unaffected by T0( ), but that
T can now vary across field lines via T0( ). The effect of T0( )
is therefore simply to shift the critical point z ¼ z00 ¼ z0 þ
½�/(� � 1)��( ) vertically by a distance ½�/(� � 1)��( ) on each
field line. This quantity can vary freely from field line to field line
but its physical effect is indistinguishable from the constant crit-
ical point of the separable case z ¼ z0; fixing the temperature to
be a given temperature at a given height fixes z00 exactly as z0 is
fixed in the separable case.

Some illustrative polytropic hydrostatic one-dimensional (1D)
solutions are shown in Figure 9. The location of a point z at
a particular chosen temperature (in this case 7000 K, a typical
temperature for prominence plasma) relative to the critical point
z0 is graphed as a function of � in the top left picture. As antic-
ipated earlier, for � < 1 (� > 1), z0 is below (above) the domain
of interest. Since the temperature gradient is larger for values of
� further from 1, the critical point must be positioned closer to
the domain of interest for these values of � and far from the
domain of interest for � close to 1. In the limiting case � ¼ 1, the
critical point asymptotes, crossing from �1 to 1.

In Figure 9 the plasma parameters p, �, and T for different
values of � are forced to be equal at z ¼ 0. Moreover, from the
balance of pressure gradient and weight, the vertical derivatives
of the pressures are also equal at z ¼ 0, so that all pressure curves
are tangential there. Among the pressure curves is the � ¼ 1 iso-
thermal curve, which has constant pressure scale height as dis-
cussed in the last subsection. Solutions with � > 1 are cooler
than the � ¼ 1 solution in z > 0, have smaller scale heights, and
therefore have a steeper appearance there. On the other hand,
solutions with � < 1 are hotter than the � ¼ 1 solution in z > 0,
have larger scale heights, and therefore have a flatter appearance.
Meanwhile, in z < 0 the opposite is true; solutions with � > 1
(� < 1) are hotter (cooler) and have flatter (steeper) pressure
curves.

The density gradients, on the other hand, are not equal at
z ¼ 0, since they are affected by the different temperature gra-
dients of the different solutions. Density gradients are larger
for small � values than for larger � values, since the plasma is
cooler. They are also larger within a scale height (�400 km) of
z ¼ 0 in the positive direction, where the temperature gradient
causes the density to fall off more quickly for � < 1 and more
slowly for � > 1 than in the � ¼ 1 case. Beyond a scale height,
the higher temperature of the � < 1 plasma causes these density
curves to become flatter than the � ¼ 1 curve, and the lower tem-
perature of the � > 1 plasma causes the density curves to become
steeper than the � ¼ 1 curve.

Figure 10 shows magnetohydrostatic 2D examples with a
range of values of �. The 1D hydrostatic solutions of Figure 9
and the 2Dmagnetohydrostatic solutions here are related in that
the 2D solutions restricted to flux contours  ¼ constant are 1D

hydrostatic solutions of the type described above. The 2D so-
lutions were all derived with the same boundary conditions as
those presented in earlier sections, and the differences between
the plots in Figure 10 are due only to the different values of �
and the locations of z0. In the � ¼ 0:8 case z0 must be below the
flux rope, while in the cases with � > 1 it must be above. In the
four examples shown, z0 is placed about a unit from the center
of the flux rope. This means that for � > 1, the temperature in-
creases as � increases, as can be seen in the plots. In these cases
the hotter plasma is at the bottom of the flux rope while the hotter
plasma is at the top in the � < 1 case. This makes the � > 1
plasma pressure distributions more bottom-heavy than the � < 1
case.

4.4. A Prominence with Normal Topology

In the nonYforce-free models of this paper calculated in the
Cartesian half-space z > 0, there are two current systems: one
centered at the center of the flux rope associated with the axial
magnetic flux and one associated with the body of plasma cen-
tered in the bottom half of the flux rope. From a distance, these
current systems resemble line currents to lowest order, and their
interaction determines the global field topology and far-field
structure of a solution. Thus, the topology can be controlled via
the signs and ratio of these currents. In inverse-topology cases
the shear- and plasma-induced currents are flowing in the same
axial direction. Normal-topology cases have additional complex-
ity because the axially directed currents associated with the shear
and the plasma forces are flowing in opposite directions.
An example is shown in Figure 11. FINESSE is less suited to the

calculation of normal prominences than of inverse prominences
because it is designed to find equilibria with  ¼ 0 at the mag-
netic axis and  > 0 everywhere else, with maximum on the
boundary. The flux function of a normal prominence has a local
minimum at the magnetic axis but, since the overlying bipolar
arcade and the lower half of the flux rope must have flux trav-
eling in the same horizontal direction, the flux function must
have a saddle point above the flux rope, above which the flux

Fig. 11.—Magnetohydrostatic isothermal equilibrium with normal topology.
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function must decrease with height (see Fig. 1). The example
in Figure 11 has such a saddle point far above the flux rope out-
side the field of view of the plot. It is not yet clear how to incor-
porate this and other topological complications in a controlled
way.

5. DISCUSSION

Amajor obstacle in the way of understanding solar activity is
the difficulty of capturing inmodels the complexity of the plasma
dynamics and of the magnetic field structure. For this reason,
most recent efforts to model the solar atmosphere have attempted
to recreate as far as practically possible the full 3D geometrical
complexity of the physical parameters (e.g., Amari et al. 2003a,
2003b; Roussev et al. 2003; Wiegelmann & Neukirch 2006).
Here we have adopted the alternative approach, following Low
& Hundhausen (1995) and Low & Zhang (2004), of studying a
simple generic physical system: a single solar prominence plasma
enhancement suspended in a near-potential coronal magnetic
field.

We have given new numerical magnetohydrostatic solutions
describing the gravitationally stratified, bulk equilibrium of cool,
dense prominence plasma embedded in the near-potential cor-
onal field. These solutions are calculated using the FINESSE
magnetohydrodynamic equilibrium solver, and they describe
the morphologies of magnetic field distributions in and around
prominences and the cool prominence plasma that these fields
support. The new solutions were not accessible by previous
analytical techniques. The numerical method allows us to pre-
scribe, in a controlled, way the temperature or entropy as a
function of the magnetic flux function, enabling flexibility of
choice of the physical parameter distributions. We focussed
on new solutions with a range of values of the temperature, the
magnetic shear, and the polytropic index, as well as with large
temperature variations perpendicular to the magnetic field. The
axial component of the magnetic field gave demonstrably in-
creased structural integrity to that field. With temperature a flux
function and a low-density ambient atmosphere, a temperature
minimum, and a plasma pressure maximum at the flux rope cen-
ter were found to produce a relatively evacuated cavity within
which the cool plasma was embedded. Such a cavity has been
seen many times in observations. For solutions with entropy a

flux function, the polytropic index, and the temperature distri-
bution were found to be related in a simple way for separable
cases.

The stability properties of these new equilibria can be deter-
mined in the form of a full resistive MHD spectrum by solving
the linearized MHD equations using a companion hyperbolic
stability solver, PHOENIX (Blokland et al. 2007b). Because of
the centrality of prominences and their fields to the most geo-
effective space weather phenomenon, the CME, precise knowl-
edge of these stability properties is very desirable. Measurement
of the spectrum of MHD waves, called MHD spectroscopy, in
analogy with quantum mechanical spectroscopy, is still in its
infancy, but may well lead to a firm knowledge of the internal
characteristics of plasmas structures (Goedbloed 2003). MHD
spectroscopy entails a separate study of the nonlinear static equi-
librium configuration on the one hand, and the various linear
wave structures that can occur on the other. The first study is the
subject of this paper, and the spectroscopy will be treated in a
sequel. The new equilibria also serve as suitable starting points
for time-dependent MHD simulations using, e.g., the Versatile
Advection Code (VAC).

A 3D extension of this work is possible via the study of he-
lically symmetric MHS configurations, which are also governed
by a Grad-Shafranov equation with a linear elliptic operator.
Bearing in mind the difficulty of calculating 3D MHS equilibria
of mixed elliptic-hyperbolic type, it is tempting to settle for a
simple option: that of abandoning the direct calculation of equi-
libria and their linear perturbation spectra and exclusively work-
ing on time-dependent MHD simulations instead. This would be
an inferior option since it passes up the precision and detail off-
ered by the equilibrium and spectral theory. Optimally, one would
hope to exploit both approaches in tandem.

We thank the referee for helpful and constructive comments.
This work was conducted while G. P. was a participant in the
National Aeronautics and Space Administration (NASA) Post-
doctoral Program at Goddard Space Flight Center, andwas based
at National Solar Observatory, Tucson. G. P. thanks R. K. for
kind hospitality during a research visit to Rijnhuizen.

APPENDIX

A1. NUMERICAL SOLUTION OF THE PROBLEM

Suppose we seek only separable solutions to equation (6). In this case solutions of equation (7) for p and � must have identical
 -dependence. Let

p( ; z) ¼ p0( )�p(z); ðA1Þ

where �p(z) describe the field-aligned variation of the pressure with height. Then equation (6) takes the form

92 ¼ �A F  ð Þ � B�p zð Þ�  ð Þ
� 	

; ðA2Þ

where

AF( ) ¼ 1

2

df 2( )

d 
; ðA3Þ

AB�( ) ¼� 4�
dp0( )

d 
; ðA4Þ

and A and B are constants; B is related to the plasma � ¼ 8�p/ Bj j and is specified at input, while A is to be determined by the numerical
algorithm as an eigenvalue of the problem.
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The weak form of equation (A2) is Z
V

	92 dV ¼ �A

Z
V

	 F  ð Þ � B�p zð Þ�  ð Þ
� 	

dV ; ðA5Þ

or Z
V

:	 = : dV ¼ A

Z
V

	½F( )� B�p(z)�( )� dV þ
Z
@V

	@n dS; ðA6Þ

for arbitrary test functions 	. Since this is true for any 	, we may transform 	! 
	 in the equation above to obtain the variational
form.

We represent y, z,  , and 	 by bicubic isoparametric elements defined in a rectangular coordinate system (s; t)2½�1; 1�2. Within a
cell, any function f ( y; z) has finite element representation

f ( y(s; t); z(s; t)) ¼
X
s0;t0

�
H00(s; t) f ( y0; z0)þ H10(s; t)

@f

@y
( y0; z0)

þ H01(s; t)
@f

@z
( y0; z0)þ H11(s; t)

@ 2f

@ y@z
( y0; z0)

�
; ðA7Þ

where H00;H10; : : : are the usual Hermite bicubic polynomials. The summation runs over corner points (s0; t0) of the cell and
y0 ¼ x(s0; t0), z0 ¼ y (s0; t0). Also,  , y, and z are approximated by the same locally defined interpolating functions

 (s; t) ¼
X
s0;t0

�
H00(s; t) (s0; t0)þ H10(s; t)

@ 

@s
(s0; t0)

þ H01(s; t)
@ 

@t
(s0; t0)þ H11(s; t)

@ 2 

@s@t
(s0; t0)

�
; ðA8Þ

and likewise for y(s; t ) and z(s; t ). The Picard iteration of the variational form of equation (A6) leads to an iterative matrix problem of
the form Kijx

(nþ1)
j

¼ b
(n)
i . Here

Kij ¼
Z 1

0

Z 1

0

:Hi(s; t) = :Hj(s; t)J ds dt; ðA9Þ

the x(nþ1) are the coefficients of the interpolating functions of the finite elements, and

b
(n)
i ¼ A

Z 1

0

Z 1

0

Hi F  nð Þ

 �

� B�p zð Þ�  nð Þ

 �h i

J ds dt; ðA10Þ

where J ¼ @( y; z)/@(s; t) and Hi are the finite elements, given single subscripts for simplicity.

A2. SCALING

We now introduce scale parameters which may be used to normalize the physical quantities. If B0 is a typical magnetic field
strength, all quantities can be made dimensionless as follows:

ȳ ¼ y=H ; ðA11Þ
z̄ ¼ z=H ; ðA12Þ
f̄ ¼ 
f =B0; ðA13Þ
p̄ ¼ 
 24�p=B2

0 ; ðA14Þ

where 
 ¼ HB0/ 0 is a dimensionless parameter that enters when we choose to normalize the magnetic flux  ̄ ¼  / 0, where  0 is a
typical  value. In practice we only work with dimensionless quantities and drop the bars without confusion.
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