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ABSTRACT

We present a measurement of the velocity flow of the local universe relative to the CMB rest frame, based on the
recent Jha et al. sample of 133 low-redshift Type Ia supernovae. At a depth of 4500 km s�1 we find a dipole am-
plitude of 279 � 68 km s�1 in the direction l = 285

� � 18
�
, b = �10

� � 15
�
, consistent with earlier measurements

and with the assumption that the local velocity field is dominated by the Great Attractor region. At a greater depth of
5900 km s�1, we find a shift in the dipole direction toward the Shapley Concentration. We also present the first
measurement of the quadrupole term in the local velocity flow at these depths. Finally, we have performed detailed
studies based onN-body simulations of the expected precision with which the lowest multipoles in the velocity field
can be measured out to redshifts of order 0.1. Our mock catalogs are in good agreement with current observations
and demonstrate that our results are robust with respect to assumptions about the influence of local environment on
the Type Ia supernova rate.

Subject headings: galaxies: distances and redshifts — galaxies: statistics — large-scale structure of universe —
supernovae: general

Online material: color figures

1. INTRODUCTION

Distant Type Ia supernovae (SNe Ia) have been used to probe
the expansion rate of the universe out to redshifts of order 1.5
(see, e.g., Riess et al. 2004). These measurements were crucial in
establishing the current standard model of cosmology, in which
roughly 30% of the energy density is in the form of nonrelativ-
istic matter whereas roughly 70% is in the form of a dark energy,
a component with negative pressure.

The power of supernova surveys as cosmological probes de-
pends on precise measurement of the luminosity distances to
the individual supernovae—but the supernova host galaxies do
not follow the Hubble flow. They have peculiar velocities, in-
duced by the underlying gravitational potential, and themeasured
luminosity distances and redshifts are perturbed in correlation
with the large-scale structure (see, e.g., Miller & Branch 1992).

The measured fluctuations in the luminosity distances from
surveys of nearby supernovae can be related to the local vari-
ation in the Hubble parameter (Riess et al. 1995) and the local
large-scale structure, and they can be quantified in terms of their
correlation functions. This possibility has been studied in sev-
eral recent papers (Bonvin et al. 2006a, 2006b; Hui & Greene
2006; see also Sugiura et al. 1999) using analytical methods.
Bonvin et al. (2006b) detected the dipole term with respect to
the cosmic microwave background (CMB) at roughly 2 � con-
fidence. The variation of themonopole contribution with redshift
was studied by Zehavi et al. (1998) using the same supernova
sample as Riess et al. (1995).

In contrast to measurements of the density field, velocity field
measurements are much less sensitive to selection bias, since
the field is measured directly instead of being summed up from
number counting, but it is very sensitive to uncertainties in the

measured luminosity distance. Because of this, SNe Ia are par-
ticularly useful as probes of the velocity field, thanks to the very
small inherent uncertainty in their luminosity distance. Com-
pared with measurements using galaxies as standard candles,
much fewer supernovae are needed in order to obtain a reliable
estimate of at least the lowest multipoles in the velocity field.
The purpose of the present paper is twofold. The first is to

perform a theoretical study of the problem of extracting the ve-
locity field from supernova data. The second is to use the devel-
oped formalism on the best available data set to extract precise
values of the dipole and quadrupole terms in the local velocity
field.
We first use large-scale dark matter N-body models to predict

the observed angular power spectrum of the peculiar radial ve-
locity field as a function of redshift and to explore its utility as a
probe of the local velocity field. By using this method, we are
able to quantify the effect of various error sources as well as
cosmic variance.
We also use the Jha et al. (2007) sample (hereafter the JRK

sample) of nearby SNe Ia to calculate the lowest multipoles
of the local velocity field. We find that both the dipole and the
quadrupole terms are well measured by this sample. Higher mul-
tipoles cannot be reliably estimated with the JRK sample be-
cause of sparse sampling. In Jha et al. (2007) this sample was
also used to probe the monopole term in an analysis similar to
that of Zehavi et al. (1998). Similar evidence of a local void
was found, even taking a data set that is completely disjoint
from that of Zehavi et al. In the following, we concentrate on
the dipole and quadrupole terms in the JRK sample, since the
monopole has already been exhaustively discussed in Jha et al.
(2007).
In x 2, we discuss the formalism used to derive the velocity

field from magnitude measurements. In x 3, we present the
analysis tools used to extract the multipole components of the
velocity field from a finite sample of supernovae. In x 4, we use
catalogs from N-body simulations to study the expected prop-
erties of the velocity field, including the precision with which
it can be probed by supernova surveys. We apply the same
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formalism to the JRK sample and provide a detailed discussion
of the results in x 5. Finally, x 6 contains a comparison with
other measurements of the local velocity field, and in x 7 we
provide our conclusions. In the following, we take c = 1.

2. DISTANCE MEASURES AND RADIAL VELOCITIES

The luminosity distance, dL, to a supernova at redshift z is
defined by

dL ¼
ffiffiffiffiffiffiffiffiffi
L

4�F

r
; ð1Þ

where F is the observed flux and L is the luminosity, or, equiv-
alently, by

m ¼ 5 log

�
dL

1 Mpc

�
þM þ 25; ð2Þ

where m is the apparent and M is the absolute magnitude. The
angular diameter distance, dA, to the same supernova is defined
as

dA ¼ dL

(1þ z)2
: ð3Þ

In a homogeneous and isotropic universe, the two distance
measures, dL and dA, are given by

dA(1þ z) ¼ dL

1þ z

¼ 1

H0

1ffiffiffiffiffiffiffiffiffiffiffiffi
�� 1

p sin (
ffiffiffiffiffiffiffiffiffiffiffiffi
�� 1

p
I ); if � > 1;

I ; if � ¼ 1;

1ffiffiffiffiffiffiffiffiffiffiffiffi
1� �

p sinh (
ffiffiffiffiffiffiffiffiffiffiffiffi
1� �

p
I ); if � < 1;

8>>>><
>>>>:

ð4Þ

where

I ¼ H0

Z z

0

dz

H(z)
¼
Z 1þz

1

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�mx3 þ �Kx2 þ ��

p : ð5Þ

By taking the logarithmic derivative of equation (4) with respect
to 1 þ z in the special case of a flat universe (� = 1), we obtain

�L(z)� 1 ¼ �A(z)þ 1 ¼ 1

H(z)dA(z)
¼ (1þ z)2

H(z)dL(z)
; ð6Þ

where

�L ¼ d ln dL

d ln (1þ z)
; �A ¼ d ln dA

d ln (1þ z)
: ð7Þ

However, in a perturbed universe the luminosity distance de-
pends on the detailed trajectory of the individual photons from
the supernova to the observer. At moderately high redshifts
(zk 0.5), the contribution arising from lensing by intervening
matter dominates, while at low redshifts (z P 0.5) the contribu-
tion from the peculiar velocities of the supernova host galaxies
relative to the observer dominates. In this paper we are only con-
cerned with the local universe. From now on, we will therefore
only consider the contribution from the peculiar velocities in

determining distances. For a given supernova and observer, each
with some peculiar velocity, the measured redshift z, angular di-
ameter distance dA, and luminosity distance dL are modified ac-
cording to

1þ z ¼ (1� v0 = n)(1þ z̄)(1þ vr); ð8Þ
dA ¼ d̄A(z̄)(1þ v0 = n); ð9Þ

dL ¼ d̄L(z̄)(1þ v0 = n)(1þ vr � v0 = n)
2 ð10Þ

(Hui & Greene 2006; Bonvin et al. 2006b), where by definition

dL � dA(1þ z)2; d̄L(z̄) � d̄A(z̄)(1þ z̄)2: ð11Þ

Overbars indicate quantities as measured in a homogeneous and
isotropic cosmology, and vr = ve = n is the velocity of the super-
nova projected along the direction from the observer to the
supernova. Having measured the redshift z and the flux F of
the supernova, we can calculate the luminosity distance dL and
the angular diameter distance dA to within a scatter determined
by the cosmic variance on its luminosity, L. As we know the
peculiar velocity, v0, of the observer with respect to the CMB
with great accuracy, it is useful to collect all known quantities
on the left-hand side of the three equations:

1þ ẑ ¼ (1þ z)(1þ v0 = n) ¼ (1þ z̄)(1þ vr); ð12Þ
d̂A ¼ dA(1� v0 = n) ¼ d̄A(z̄); ð13Þ

d̂L ¼ dL(1þ v0 = n) ¼ d̄L(z̄)(1þ 2vr): ð14Þ

The three quantities ẑ, d̂A, and d̂L are the redshift, angular di-
ameter distance, and luminosity distance as measured and cal-
culated by an observer at rest with respect to the CMB. In the
following we assume that the measured quantities all have been
corrected to a frame at rest with respect to the CMB. The mea-
sured redshift, ẑ, is most transparently split into the cosmo-
logical redshift, z̄, and the radial velocity of the supernova, vr,
by inverting equation (13) to find z̄, which is then inserted into
this alternative form of equation (12):

vr ¼ ln (1þ ẑ)� ln (1þ z̄): ð15Þ

It is also possible to begin with equation (15) to obtain the
cosmological redshift, z̄, in terms of the measured redshift ẑ and
the radial velocity vr of the supernova:

ln (1þ z̄) ¼ ln (1þ ẑ)� vr: ð16Þ

We now expand the natural logarithm of the angular diameter
distance, ln d̄A(z̄), to first order around the measured redshift ẑ,
and by using equation (13) we obtain

lnd̂A ¼ lnd̄A(z̄) ¼ lnd̄A(ẑ) � �A(ẑ)vr; ð17Þ

where �A(z) for a flat universe is given by equation (6). This
equation applies equally well for the luminosity distance, so we
can give a common formula for both distance measures:

ln

�
d̂L

d̄L(ẑ)

�
¼ ln

�
d̂A

d̄A(ẑ)

�
¼ ��A(ẑ)vr: ð18Þ

This expression can easily be transformed into an equation
between the measured apparent magnitude, m̂, the calculated
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apparent magnitude, m̄(ẑ), at the measured redshift, ẑ, and the
peculiar radial velocity, vr, of the supernova:

m̂� m̄(ẑ) ¼ 5 log

�
d̂L

d̄L(ẑ)

�
¼ � 5

ln 10
�A(ẑ)vr: ð19Þ

Inverting this equation for the special case of a flat universe, we
obtain

vr ¼ � ln 10

5

�
H(ẑ)d̄A(ẑ)

1� H(ẑ)d̄A(ẑ)

�
½m̂� m̄(ẑ)�: ð20Þ

For low-redshift supernovae, the Hubble parameter, the angular
diameter distance, and the luminosity distance can all be ex-
panded in terms of the deceleration parameter, q0:

H(z) ¼ H0½1þ (1þ q0)z�; ð21Þ

d̄A(z) ¼
z

H0

½1� (3þ q0)z=2�; ð22Þ

d̄L(z) ¼
z

H0

½1þ (1� q0)z=2�: ð23Þ

When we insert these values into equation (20), we obtain the
radial velocity of a low-redshift supernova,

vr ¼ �( ln 10=5) ẑ½1þ (1þ q0) ẑ=2�½m̂� m̄(ẑ)�: ð24Þ

In this approximation the distance modulus,m � M, is given by

m̄(ẑ)�M ¼ 42:3841� 5 log h

þ 5 log ẑþ (2:5=ln 10)(1� q0) ẑ; ð25Þ

where the Hubble constant as usual is given as H0 = 100 h km
s�1 Mpc�1. The distance modulus defined in equation (25)
should be compared with the distance modulus m̂ � M as mea-
sured in a frame at rest with respect to the CMB. The difference
between the apparent magnitude m̂ and that measured by the
observer, m, is, according to equation (14),

m̂� m ¼ (5=ln 10)v0 = n ¼ 2:17v0 = n: ð26Þ

The approximate equation (24) is sufficient for the low redshifts
that we are considering, while at higher redshifts one has to use
the correct form, equation (20), and also take into account other
contributions to m̂ � m̄(ẑ), such as lensing.

3. ANALYSIS USING AN ANGULAR EXPANSION
OF THE RADIAL VELOCITY FIELD

We analyze both the mock catalogs discussed in the next sec-
tion and the real data set (see x 5) using the same technique. In
practice, we decompose the field into spherical harmonics.

The radial velocity is a real scalar field, and on a spherical
shell of a given redshift it can be decomposed into spherical
harmonics,

vr ¼
X1
‘¼0

X‘

m¼�‘

a‘mY‘m

¼
X1
‘¼0

�X‘

m¼1

(a‘;�mY‘;�m þ a‘mY‘m) þ a‘0Y‘0

�
: ð27Þ

Using a‘;�m = (�1)ma�‘m for the expansion of a real function and
Y‘;�m = (�1)mY �

‘m , we obtain

vr ¼
X1
‘¼0

�X‘

m¼1

½2<(a‘mY‘m)� þ a‘0Y‘0

�

¼
X1
‘¼0

�X‘

m¼1

½2<(a‘m)<(Y‘m)

� 2=(a‘m)=(Y‘m)� þ a‘0Y‘0

�
: ð28Þ

However, this applies strictly only if the field can be measured
on the entire sphere. In our case the radial velocity field is mea-
sured for a finite number of directions, so we can only hope to
determine a finite number of coefficients a‘m by fitting a trun-
cated multipole expansion by the method of weighted linear
least squares using {Y‘0, [2<(Y‘m), �2=(Y‘m)], m = 1, . . . , ‘}
as basis functions. Specifically, we solve the problem by a sin-
gular value decomposition.
We follow the procedure of Copi et al. (2006) and represent

the ‘th multipole in terms of a scalar, A(‘), and ‘ unit vectors,
{v̂(‘;m), m = 1, . . . , ‘}:

fl(�; �) ¼ A(‘ )

�Y‘
m¼1

(v̂(‘;m) = ê)� T ‘

�
; ð29Þ

where ê = (sin � cos �, sin � sin �, cos �) and T ‘ is the sum of
all possible traces of the first term. In this representation the
multipole expansion up to and including the quadrupole term
takes the following form:

vr(ê) ¼ A(0) þ A(1)(v̂(1;1) = ê)

þ A(2)
�
(v̂(2;1) = ê)(v̂(2;2) = ê)� 1

3
(v̂(2;1) = v̂(2;2))

	
: ð30Þ

Note that v̂(2;1) and v̂(2;2) are ‘‘headless’’ vectors only defining a
line, not a direction. Equivalently, they define a plane, but they
do not define a rotation in that plane, so the normal to the plane
is also headless. By convention we choose as the first vector, ê1,
the one with the largest absolute z-coordinate. We can choose
ê1 to point to the hemisphere near the pole without introducing
a negative amplitude A(2) if both ê1 and ê2 have their sign
changed. Finally, we define the normal to the plane spanned by
the two vectors as ê1< ê2. This is the polar quadrupole vector.
From the a‘m coefficients, the monopole amplitude can be

found as

A(0) ¼ a00=
ffiffiffiffiffiffi
4�

p
; ð31Þ

and the dipole amplitude and direction can be found as

A(1) ¼ (a210 þ 2ja11j2)1=2; ð32Þ
� ¼ �tan�1½=(a11)=<(a11)�; ð33Þ

� ¼ cos�1(a10=A
(1)): ð34Þ

This is the direction of the maximum of the dipole. All the
higher order multipole vectors are found by using the program
mpd_decomp by Copi et al. (2006).
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For the lowest ‘-values, the amplitudes in the multipole vector
expansion are related to the usual power C‘ as

C0 ¼ 4�(A(0))2; C1 ¼
4�

9
(A(1))2; ð35Þ

C2 ¼
4�

75
(A(2))2

�
1þ 1

3
(v̂(2;1) = v̂(2;2))

�
ð36Þ

(Copi et al. 2006). It should be noted that in general the indi-
vidual multipole coefficients obtained in the fit to data can be
strongly dependent on the number of modes included. The rea-
son for this is that the window function does not cover the entire
sky; rather, there are patches with zero coverage. This means
that the spherical harmonics are no longer orthogonal and shows
up as a leakage of power between different ‘’s. In fact, this is
predicted to be a significant problem for any harmonic analysis
with limited sampling, because the higher order multipoles do
contribute significantly to the rms velocity. In x 5.1, we discuss
the implications of sampling for the JRK sample.

4. SYNTHETIC SUPERNOVA SURVEYS
FROM MONTE CARLO SIMULATIONS

Before analyzing existing data, we make mock catalogs of
supernova data based on dark matter N-body simulations. This
is done in order to obtain an estimate of the various sources of
error in such measurements. The N-body simulations were per-
formed with the GADGET-2 code (Springel 2005; Springel et al.
2001) with a box size of 800 h�1 Mpc and 5123 and 7683 par-
ticles, respectively, to make synthetic realizations. The box size
is chosen large enough that the periodic nature of the box does not
impact the simulation at the scales (zP 0.1, or P300 h�1 Mpc)
we are interested in, and the high-resolution run is made in order
to ensure that our results are not dependent on the numerical

resolution. In Figure 1 is shown a typical all-sky map in
Mollweide projection of the peculiar velocity field at redshifts
z = 0.01Y0.04, computed in the CMB rest frame.

The formation rate of SNe Ia as a function of the environment
is not well known, although there are indications that at low
redshifts the rate is directly proportional to the stellar mass and
insensitive to the metallicity (Neill et al. 2006; but see Sharon
et al. 2007, Sullivan et al. 2006, and references therein for in-
dications of a bimodal distribution). On the other hand, the semi-
analytic estimates in the literature (e.g., Bonvin et al. 2006b; Hui
& Greene 2006) assume a rate that is uniform on the sky. This is
clearly not realistic, but to test the effect on the luminosity dis-
tance distributions, we have made synthetic data sets using both
a rate proportional to the mass and a uniform distribution. In
Figure 2, we show the distribution of peculiar radial velocities
in the twomodels. The differences between the two scenarios are
at the few-percent level. Looking at Figure 1, one can see that the
radial velocity field is smooth across voids, in contrast to, for
example, scalar fields such as the density field. This is because
it is only a pseudoscalar, and the underlying vector field can be
transported efficiently (i.e., it is easier to change the direction of a
vector than to transport a scalar quantity).

4.1. Making a Mock Supernova Survey

Real measurements rely on a tracer of the matter distribution,
whether it is galaxies or SNe Ia. In any case, only a finite num-
ber of objects will be available. Furthermore, there will be a se-
lection bias coming from the presence of Galactic foregrounds,
etc. In this work we generate a mock supernova survey using the
following strategy:

1. The total number N of measured SNe in a redshift bin is
chosen.

Fig. 1.—Variation in the peculiar velocity at z = 0.01Y0.04. [See the electronic edition of the Journal for a color version of this figure.]
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2. Each SN is generated by sampling one of the two prob-
ability distributions described in the previous section.

3. To each SN a noise component is added, resulting from
scatter in the (stretch-corrected) intrinsic luminosity, uncertainty
in extinction correction, measurement errors, etc. We describe the
errors as a Gaussian error with a spread of �m on the measured
apparent magnitude of the SN.

From this data set, the angular power spectrum is calculated. For
each type of simulated survey, this task is performed 500 times
for 27 different observers, to find the mean and variance of the
angular power spectrum.
We choose a set of N = 100 SNe per bin in 16 redshift bins at

redshifts of 0.005Y0.08, or equivalently with Hubble flow ve-
locities 1500Y24,000 km s�1. This conforms roughly to the ex-
pectations from local supernova searches conducted today (Li
et al. 2003; Krisciunas et al. 2004; Jha et al. 2006) or in the near
future (Aldering et al. 2002; Frieman et al. 2004; Hamuy et al.
2006), if they are divided into three or four redshift bins. In
Figures 3Y4, we show the evolution of the lowest multipoles as
a function of z for both models of the supernova distribution.
The black line and error bars show how a hypothetical survey
without any external error sources, �m = 0, would perform.
Hence, the error here is only due to the finite number of SNe that
are used to probe the velocity field. The gray line shows the
same, but including a Gaussian scatter of �m = 0.08. Using
the 27 different realizations, we can estimate the size of cosmic
variance (dark gray shaded area).
From the figures, it is clear that with 100 homogeneous dis-

tributed SNe per redshift bin, both the dipole and the quadrupole
can be measured out to a redshift of about 0.1. Furthermore, for

Fig. 2.—Peculiar velocity distribution of supernovae for two different scenarios
and at different redshifts. Sampling with an SN Ia rate proportional to the density
compared with uniformly on the sky only biases the velocity distribution by a few
percent. [See the electronic edition of the Journal for a color version of this figure.]

Fig. 3.—Uniform distribution of supernovae: amplitudes of themultipole vec-
tors and the different errors in an SN Ia survey with 100 SNe per redshift bin and
an intrinsic scatter in magnitude of�m = 0.08. [See the electronic edition of the
Journal for a color version of this figure.]
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the synthetic observations we know the underlying cosmology
and the real Hubble constant, and we can determine the mono-
pole. In the case of real observations we can only measure the
relative change. In other words, the zero point is in principle only
measurable asymptotically at high redshifts. Looking at the
black curve, one can see that for all multipoles the power goes
to zero at higher redshift, as the flow approaches the back-
ground Hubble flow. We also note that cosmic variance is very
large in the monopole term. This indicates that local ‘‘Hubble
bubble’’ phenomena, such as found in Zehavi et al. (1998) and
Jha et al. (2007), are not unlikely.

The velocity amplitudes are positive definite, and including a
Gaussian scatter in the velocities adds uncorrelated noise to the
(synthetic) observations. Therefore, the amplitudes of the mul-
tipoles, when errors are included, are overestimated. This error
is per se hard to separate from the signal but can trivially be
beaten down with better control of the intrinsic errors or by
increasing the number of SNe per redshift bin. Given an ob-
servational data set, synthetic observations with a realistic sky
distribution should be used to separate the noise amplitude from
the underlying velocity field.

In accordancewith the underlying velocity distribution (Fig. 2),
on average there is a 5% overestimation of the radial velocity
amplitudes when one assumes the SN Ia rate is proportional to
mass, compared with a uniform distribution.

5. RESULTS FROM THE JRK SAMPLE
OF NEARBY SUPERNOVAE

We apply the analysis technique described in x 3 to the sam-
ple of 133 nearby supernovae obtained by Jha et al. (2007). The
JRK sample includes 95 Type Ia supernovae in the Hubble flow,
with an intrinsic dispersion of less than 7% in distances. This is
the best sample available with distances derived in a homoge-
neous way, using the multicolor light-curve shape method
(MLCS2k2) described in Jha et al. (2007). This method is one
of several used to standardize supernova distances, but it is par-
ticularly powerful in that it allows a disentangled correction for
host galaxy extinction and also provides a statistically reliable
way to estimate the errors.

The entire JRK sample comprises 133 supernovae. We have
selected three subsamples of these for our analysis. We followed
Jha et al. (2007) in selecting as the first subsample 95 Hubble
flow supernovae, the HF sample, a selection based on distance
cut, requirement of an acceptable light-curve fit, and exclusion of
objects with very high extinction. The SNe in this sample have
redshifts between 0.0085 and 0.021 and a weighted average red-
shift of z = 0.0196, or 5900 km s�1. The second subsample, the
4500 sample, includes 74 SNe and is similar to the HF sam-
ple, but without the highest-redshift SNe and including a few
with lower redshift. It has a weighted average of z = 0.015, or
4521 km s�1, and contains SNewith redshifts between 0.007 and
0.035. The last subsample, the 3500 sample, includes 42 SNe and
is similar to the 4500 sample, but without the highest-redshift
SNe. It has a weighted average of z = 0.0118, or 3550 km s�1,
and contains SNe with redshifts between 0.007 and 0.017.

To the uncertainties in the distance moduli, we also add in
quadrature an additional error of 0.08 mag in order to properly
represent the final uncertainties, following Jha et al. (2007). In
addition, we add 50 km s�1 in quadrature to the errors in the ra-
dial velocity in order to take the velocity dispersion around the
local anisotropic Hubble flow into account. Karachentsev et al.
(2003) find that the radial velocity dispersion around the local
(anisotropic)Hubble flowwithin 5Mpc amounts to only 41 kms�1,
when distance errors are taken into account. For further details
on the samples, we refer the reader to Jha et al. (2007).

5.1. The Effective Window Function

In Figure 5 we show the distance to the nearest supernova on
the sky, measured in degrees, for all points on the sphere. The
sample has good coverage, except for a few ‘‘holes,’’ mainly
defined by the Galactic disk. The mean distance to the nearest
supernova is 12.8�, but the maximum distance is 40.5� at l =
230.4�, b = �12.7�. There are three areas with distance larger
than 30

�
, roughly centered on coordinates (l, b) of (0

�
, 0

�
),

(80�, �5�), and (230�, �10�), respectively. For a given ‘, the
distance between zero points in the field is 180�/‘. If the largest
holes in the sample have a size of ��, then the multipole de-
composition becomes problematic around ‘ � 180�/��. For the
present sample this corresponds to ‘ � 2.5, so that the quadru-
pole can be robustly fitted, but not the octupole. We have tested
this in practice. When the quadrupole is added, the monopole
and dipole amplitudes and the dipole direction hardly change.
However, when the octupole is included there is serious leakage
of power from the lower ‘’s to ‘ = 3 and the results change
substantially. The reason is that the fit in the well-sampled re-
gions can be improved by adding the additional seven coef-
ficients a3m to the fit, but this happens at the expense of very
large changes in the unsampled regions. In order to probe the
higher order multipoles, it is essential to reduce the size of the

Fig. 4.—Same as Fig. 3, but for a supernova rate proportional to density.
[See the electronic edition of the Journal for a color version of this figure.]
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voids in the sample. For a uniformly distributed sample of 95
supernovae, the average distance to the nearest supernova is
10.4�, nearly the same as in the JRK sample. However, the av-
erage maximum distance is 30.1

�
, significantly lower than in

our sample. A uniform sample of 95 supernovae could be used
to probe ‘ = 3 robustly. For a uniform sample, the average dis-
tance to the nearest supernova scales as N�1/2, and the average
maximum distance in the sample roughly as N�0:4.

5.2. Results

On top of a map of the local universe (see Fig. 6 for coor-
dinates and indications of superstructures), Figures 7Y9 show
the obtained 68% and 95% contours for the direction of the
dipole and quadrupole vectors in Galactic coordinates. The
corresponding best-fit values with their formal 68% errors are
shown in Tables 1 and 2 and Figures 10Y12. This result can be
compared with other velocity surveys based on galaxy sam-
ples. The recent review by Sarkar et al. (2007) summarizes
these surveys. At an effective depth of 4000 km s�1, they find
that the dipole amplitude is 330 � 101 km s�1 in the direction
l = 234

� � 11
�
, b = 12

� � 9
�
.

5.2.1. Dipole

The 3500 and 4500 samples both show a dipole in a direction
compatible with the Great Attractor region at (l, b) � (300

�
, 0

�
).

For the HF sample, the direction shifts to slightly higher b,

compatible with a shift in the motion toward the Shapley Con-
centration (which lies at an average distance of 14,000 km s�1;
Bardelli et al. 1994) at slightly higher Galactic latitude. Fur-
thermore, the amplitude of the dipole decreases, as is expected
from the Monte Carlo simulations.

Fig. 5.—Shortest distance on the sky to a supernova (in degrees) using the
‘‘Hubble flow’’ sample. [See the electronic edition of the Journal for a color
version of this figure.]

Fig. 6.—The local universe as seen by 2MASS. The galaxy distribution im-
age is courtesy of T. H. Jarrett ( IPAC/Caltech) and the 2MASS team. The com-
plete image can be found at: http://spider.ipac.caltech.edu /staff /jarrett /papers/
LSS. The arrows indicate important superclusters. [See the electronic edition of
the Journal for a color version of this figure.]

Fig. 7.—Dipole vector (top) and polar quadrupole vector (bottom) calculated
from supernova data with a weighted average velocity of 3500 km s�1. The
ellipses show the 1 and 2 � errors. [See the electronic edition of the Journal for a
color version of this figure.]

Fig. 8.—Same as Fig. 7, but calculated from SN Ia data with a weighted
average velocity of 4500 km s�1. [See the electronic edition of the Journal for
a color version of this figure.]
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5.2.2. Quadrupole

For all three subsamples we find a relatively large contribu-
tion from the quadrupole, showing that the local flow has a sig-
nificant shear component. This result is consistent in magnitude
with the expectation from the Monte Carlo simulations. From
the figures it can also be seen that there is a change in quadru-
pole direction with redshift, and that the distributions for the
3500 and 4500 samples are bimodal. This could be because the
quadrupole is pointing in different directions at the lower and
higher ends of the included redshift range of the SNe, and hence
for the 3500 sample the bimodality would be more apparent.
Even though we quote formal 68% errors in Table 2, the distri-
bution is highly non-Gaussian (see Figs. 10 and 12) and the error
bars should be taken as indicative only.

6. COMPARISON WITH OTHER RESULTS

6.1. SNe Ia

The Tonry et al. (2003) data set of 98 SNe was analyzed by
Hudson et al. (2004) in order to find the local dipole. For the
part of the sample with vr < 6000 km s�1, they found a dipole
of vr = 376 � 81 km s�1 toward l = 285

�
, b = �14

�
. They do

not quote error bars on this result, but for the part of the sample
with vr > 6000 km s�1, the stated errors are �17� for l and

�13� for b. This result is completely compatible with our result
for the dipole. However, Hudson et al. quote no results for the
higher order terms.

Jha et al. (2007) also provide a crude estimate of the dipole
amplitude and direction from a subset of 69 supernovae in their
sample that is roughly compatible with our 4500 sample. In the
coordinate system of the Local Group, they find a velocity of
541 � 75 km s�1 toward a direction of l = 258� � 18�, b =
51

� � 12
�
. If we transform our dipole term from the HF sample

to the same coordinate system, using the Local Group velocity
derived by Rauzy & Gurzadyan (1998), we find a velocity of
516 km s�1 toward (l, b) = (248

�
, 51

�
). Both the amplitude and

direction are compatible with the JRK value at 1 �. Our derived
amplitude is slightly lower (although not significantly so), be-
cause in our fit the quadrupole term accounts for part of the
velocity.

As noted above, we do not discuss the local monopole term.
By subdividing supernovae into low- and high-redshift bins
(Zehavi et al. 1998; Jha et al. 2007), a significant variation in the
local Hubble parameter has been detected. This does not have
any impact on our results (see x 5.1), and since it was discussed

Fig. 9.—Same as Fig. 7, but calculated from the JRK ‘‘Hubble flow’’ sample.
[See the electronic edition of the Journal for a color version of this figure.]

TABLE 2

Amplitude of the Quadrupole and Direction of the Polar

Quadrupole Vector for the Three Samples

Sample

vr
( km s�1)

l

(deg)

b

(deg)

3500......................... 654þ129
�144 68þ49

�55 �5þ45
�36

4500......................... 575þ116
�137 43þ46

�44 10þ36
�34

HF ........................... 522þ127
�159 56þ35

�41 3þ30
�28

TABLE 1

Amplitude and Direction of the Dipole Vector

for the Three Samples

Sample

vr
( km s�1)

l

(deg)

b

(deg)

3500...................... 280þ67
�88 289þ23

�25 �11þ24
�17

4500...................... 279þ57
�79 285þ15

�20 �10þ15
�14

HF ........................ 239þ70
�96 281þ21

�24 14þ16
�15

Fig. 10.—One-dimensional distributions of velocity amplitude for the dif-
ferent samples, with 68% limits indicated by dashed lines and the median value
by a dotted line.
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thoroughly in Jha et al. (2007), we refer the reader to that paper
for further details.

6.2. Galaxy Surveys

Results from galaxy velocity surveys on scales of �4000Y
6000 km s�1 generally agree that the magnitude of the dipole is
on the order of 300 km s�1 in the direction (l, b) � (300�, 20�)
(see, e.g., Zaroubi 2004 and references therein). This result is
compatible with the SN Ia dipole direction and magnitude
within 2 �.

A reconstruction of the very local velocity field (<3000 km s�1)
was done by Tonry et al. (2000) by measuring surface brightness
fluctuations in 300 early-type galaxies, predominantly in groups
and clusters. They used an explicit flow model with a Virgo At-
tractor and a Great Attractor, which contain the main local mass
concentrations. Furthermore, they added dipole and quadrupole
terms to account for the gravitational pull and shear from large-
scale structure farther away. They find a very low value for the di-
pole (�150 km s�1) and the quadrupole polar vector (�50 km s�1),
but this may be related to having the dipole in the same direction
as the attractors, and the attractors’ accounting for the major part
of the shear (quadrupole term) in the model.

The dipole has also been measured using velocity field re-
construction from the density field of galaxies. Using the Two
Micron All Sky Survey (2MASS) catalog, at a distance of
4000Y6000 km s�1 the dipole direction is found to be roughly
l � 250�, b � 35��40�, again compatible with our result within
2 � (Erdoğdu et al. 2006a, 2006b; Pike & Hudson 2005).
Radburn-Smith et al. (2004) compared the reconstructed ve-
locity field from the PSCz catalog (Saunders et al. 2000) with
peculiar velocities of 98 SNe Ia to constrain the gasYtoYdark
matter density contrast. They find excellent agreement between

the two data sets, and a dipole of 206 � 97 km s�1 toward l =
290� � 25�, b = 0� � 18�.

6.3. Clusters

Cluster samples such as SMAC (Streaming Motions of Abell
Clusters) probe larger distances and find directions that are gen-
erally compatible with the SN Ia result. For example, Hudson
et al. (2004) find l = 260

� � 13
�
, b = 0

� � 11
�
. However, they

find an amplitude of 687 � 203 km s�1, significantly higher than
our result (although again compatible at 2 �).

7. DISCUSSION

We have analyzed mock supernova surveys in order to study
the number of supernovae needed to probe the large-scale ve-
locity field of the local universe, quantified in terms of the an-
gular power spectra as a function of redshift. We then proceeded
to use the best available database of low-redshift supernovae,
the JRK sample, to probe the local dipole and quadrupole of the
velocity field at three different distances. The present method
has several advantages over galaxy surveys. The uncertainty
on each individual supernova luminosity is much smaller than
the systematic uncertainties in determining galaxy luminosi-
ties, so that a much smaller sample is sufficient. We find the
following:

1. With two different models for the Type Ia supernova
rate, the resulting mock surveys only differ at the few-percent
level. Hence, using SNe Ia to probe the underlying velocity
field is robust with respect to assumptions about the supernova
environment.
2. For the dipole, we find a result that is consistent with gal-

axy surveys at the same Hubble flow depths.

Fig. 11.—Same as Fig. 10, but for the dipole vectors. Fig. 12.—Same as Fig. 10, but for the polar quadrupole vectors.
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3. The quadrupole is comparable in value to the dipole, indica-
tive of a significant shear in the local velocity field, in accordance
with our mock catalogs. It has, to our knowledge, not been mea-
sured before at these distances.

4. With the present sample size of almost 100 supernovae,
the precision of the dipole measurement is comparable to that in
galaxy surveys using thousands of galaxies.

Finally, we note that new surveys such as Pan-STARRS,
SkyMapper, and LSST will measure about 10,000 Type Ia
supernovae at z < 0.1 per year, and if proper light curves and

redshifts can bemeasured for even a small fraction of these events,
they will provide an extremely powerful tool for studying the
dynamics of the local universe.

We thank the Danish Centre of Scientific Computing for grant-
ing the computer resources used. T. H. thanks the Dark Cosmol-
ogy Centre for hospitality during the course of this work. S. J. is
grateful for support at KIPAC and SLAC through the Panofsky
Fellowship. The Dark Cosmology Centre is funded by the Danish
National Research Foundation.
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