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ABSTRACT

One of the challenges to increasing the mass of a white dwarf through accretion is the tendency for the accumu-
lating hydrogen to ignite unstably and potentially trigger mass loss. It has been known for many years that there is a
narrow range of accretion rates for which the hydrogen can burn stably, allowing for the white dwarf mass to increase
as a pure helium layer accumulates.We first review the physics of stable burning, providing a clear explanation for why
radiation pressure stabilization leads to a narrow range of accretion rates for stable burning near the Eddington limit,
confirming the recent work of Nomoto and collaborators. We also explore the possibility of stabilization due to a high
luminosity frombeneath the burning layer.We then examine the impact of the�-decay–limited ‘‘hot’’ CNOcycle on the
stability of burning. Although this plays a significant role for accreting neutron stars, we find that for accreting white
dwarfs, it can only increase the range of stably burning accretion rates for metallicities <0.01 Z�.

Subject headinggs: accretion, accretion disks — binaries: close — instabilities — novae, cataclysmic variables —
nuclear reactions, nucleosynthesis, abundances — white dwarfs

1. INTRODUCTION

The commonly accepted explanation for Type Ia supernovae
is the thermonuclear ignition of carbon in the core of a massive
white dwarf (see review of Hillebrandt & Niemeyer 2000). The
favored channel for mass growth of the white dwarf (WD) is ac-
cretion from a companion star, a topic that has been well studied
(e.g., Sienkiewicz 1975; Paczynski & Zytkow 1978; Sion et al.
1979; Nomoto 1982). However, thermal instabilities in the accret-
ing hydrogen/helium layer result in thermonuclear runaways that
may inhibit mass growth for accretion rates Ṁ below a critical
value of�10�7M� yr�1 (Paczynski & Zytkow 1978; Sion et al.
1979; Sienkiewicz 1980; Fujimoto 1982b; Paczynski 1983; Yoon
et al. 2004). It is clear that for much lower rates <10�9 M� yr�1,
the accumulation of the hydrogen layer always leads tomass ejec-
tion during a classical nova event (Fujimoto 1982a, 1982b;
Macdonald 1983; Gehrz et al. 1998; Townsley&Bildsten 2004).

Most studies of steadily burning and accreting atmospheres on
WDs have neglected the �-limited CNO cycle, whereas studies
of neutron stars find that the CNO cycle is strongly limited by
�-decays (Fujimoto et al. 1981; Bildsten 1998). When the rate-
limiting step is a �-decay, the nuclear energy generation rate is
independent of temperature, and thus the burning is stable to
thermal perturbations. What is not known is the metallicity of the
material accreted on the WD needed for the �-limited CNO cycle
to become important during stable burning. If the inclusion of the
full CNO cycle can meaningfully increase the range of accretion
rates that lead to thermally stable burning layers on accretingWDs,
it would substantially impact our understanding of Type Ia pro-
genitor scenarios.

We begin in xx 2 and 3 by rederiving the thermonuclear stabil-
ity criterion for hydrogen accretion onto a WD and providing an
explanation as to why the calculated range of Ṁ for stable burn-
ing is so narrow. In x 4 we incorporate the full CNO cycle, in-
cluding the temperature-insensitive �-decays, and show that this
canmodify the boundary for stable burning only at lowmetallici-

ties Z < 0:01 Z�. Thesemetallicities are so low that it is unlikely
they are relevant to most progenitor scenarios. We close in x 5 by
summarizing our work.

2. STEADY STATE HYDROGEN-BURNING SOLUTIONS

We follow the one-zone formalismof Paczynski (1983) inwhich
quantities such as temperature and pressure have a single value and
are defined at the bottomof the hydrogen-burning layer.We neglect
the effect of the underlying helium layer except as a source of lu-
minosity, but see José et al. (1993) for a numerical two-zone study
of unstable hydrogen and helium shell flashes onWDs andCooper
& Narayan (2006) for a two-zone model of X-ray bursts on neu-
tron stars. We assume a nondegenerate equation of state, and we
include radiation pressure. We also assume radiative energy trans-
port via Thomson scattering. These assumptions are justified in
Figure 1.
By energy conservation in steady state, the exiting radiative lu-

minosityL0 (the zero subscript denotes the steady state value)must
be equal to the sum of the luminosity emitted from the core, Lb,
plus the luminosity from nuclear burning. It is safe to ignore the lu-
minosity from compression of the accretingmaterial, as it is orders
ofmagnitude lower than the luminosity fromburning (see Townsley
&Bildsten [2004] for an analytic approximation to the compres-
sional luminosity). In steady state, material is burned as fast as it
is accreted, so

L0 ¼ ṀXE þ Lb; ð1Þ

where the hydrogen mass fraction is taken to be X ¼ 0:7 unless
otherwise specified and E ¼ 6:4 ; 1018 ergs g�1 is the energy re-
leased when a unit mass of hydrogen is converted to helium. The
radiative-zero solution gives the luminosity as

L ¼ 4�

3

GMc

�T

aT 4

P
; ð2Þ
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where the Thomson opacity is �T ¼ 1þ Xð Þ�T /2mp and M is
the mass of theWD. The envelope massMenv is very small and is
neglected in comparison with M.

The natural unit for the luminosity is the Eddington luminosity,

LEdd ¼
4�GMc

�T

: ð3Þ

Since stable nuclear burning on aWD releases muchmore energy
than gravitational infall, the accretion rate is given in units of the
nuclear Eddington accretion rate assuming complete hydrogen
depletion,

ṀEdd ¼
4�GMc

�TXE
: ð4Þ

Equations (1) and (2) are rewritten in terms of �, the ratio of
gas pressure to total pressure, as

1� �0 ¼ ȧþ f ; ð5Þ

where the dimensionless accretion rate and core luminosity are
ȧ ¼ Ṁ /ṀEdd and f ¼ Lb /LEdd, respectively. Equation (5) is an
extension of the Eddington standard model (e.g., Hansen et al.
2004). This relation is useful when we discuss the effect of radia-
tion pressure on stability. Since 0 < � < 1, a necessary condition
for steady state burning is ȧþ f < 1; that is, the sum of the con-

tributions to the luminosity from accretion and the core cannot ex-
ceed the Eddington limit.

The specific entropy s is governed by

T
ds

dt
¼ �� @L

@M

¼ �� L� Lb

4�R2

g

P
; ð6Þ

where � is the energy generation rate and the burning-layer mass
has been approximated as the mass contained in a scale height,
h ¼ P/�g. The gravitational acceleration at the base of the en-
velope is g ¼ GM /R2, with R the radius of theWD core. Using a
standard thermodynamic relation, equation (6) is rewritten in the
form

dT

dt
¼ 1

cP
�� L� Lb

4�R2

g

P

� �
þ T

P
9ad

dP

dt
: ð7Þ

The specific heat at constant pressure when nondegenerate is

cP ¼ 32� 24� � 3�2

2� 2

kB

�mp

; ð8Þ

where � is the mean molecular weight and

9ad ¼
@ ln T

@ ln P

����
s

¼ 2 4� 3�ð Þ
32� 24� � 3� 2

ð9Þ

is the adiabatic temperature gradient. The first term on the right-
hand side of equation (7) contains contributions from heating by
nuclear burning and core luminosity into the zone and cooling by
radiative luminosity out of the zone. The second term represents
a temperature change due to adiabatic expansion or compression
of the accreted matter.

In steady state, the time derivatives in equation (7) are equal to
zero, so

�0 ¼
L0 � Lb

4�R2

g

P0

: ð10Þ

Thus, givenLb and Ṁ , we canfind steady state (but not necessarily
stable) solutions for T0 and �0, as shown in Figure 1 for the case of
hydrogen-burning in the ‘‘cold’’ CNO limit.

2.1. The Cold CNO Limit

Hydrogen burning proceeds via the CNO cycle at the tempera-
tures (>107 K) relevant to accretion rates of Ṁ > 10�10 M� yr�1

(Fujimoto 1982b; Townsley & Bildsten 2004). The slowest step
in the CNO cycle for T < 108 K and � < 104 g cm�3 is
14N( p,�)15O, and so nearly all catalytic nuclei are in the form of
14N. In this ‘‘cold’’ CNO limit, the energy generation rate is

�cold ¼
QCNO

�

dn14N

dt

¼ 4:4 ; 1025�XZCNO

"
exp �15:231=T

1=3
9

� �
T
2=3
9

þ 8:3 ; 10�5 exp �3:0057=T9ð Þ
T
3=2
9

#
ergs g�1 s�1; ð11Þ

Fig. 1.—Temperature and density at the burning depth for varying WD mass
and accretion rate assuming steady burning. Shown are WDs burning hydrogen in
the cold CNO limit withM ¼ 0:5 (squares) and 1.35M� (circles), with metallic-
ities Z ¼ 10�2 (solid lines) and 10�4 (dashed lines); Z is not given in solar units.
Also shown are solutions for a 0.9M�WDaccreting pure helium ( pentagons). The
lower rightmost symbol of the hydrogen-burning solutions has Ṁ ¼ 10�8 M� yr�1,
while the lower rightmost helium-burning solution has Ṁ ¼ 10�7 M� yr�1. Con-
nected symbols moving toward the top left increase logarithmically with eight sym-
bols per decade of Ṁ . Filled symbols are thermally stable. Also shown are lines to
the left of which the layer is nondegenerate (long-dashed line), opacity is due to
Thomson scattering (long-dash–short-dashed line), and radiation pressure domi-
nates (dash-dotted line), and below which hydrogen burns in the cold CNO limit
(dotted line).
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where QCNO ¼ 4:0 ; 10�5 ergs is the energy released for one
loop of the CNO cycle, the reaction rate for 14N is obtained from
Lemut et al. (2006), andT9 ¼ T /109 K. Themass fraction ofCNO
isotopes is ZCNO, and we assume the total metallicity to be Z ¼
3ZCNO.

1 The first term in the square brackets is the nonresonant
reaction with an S-factor of 1.7 keV barns. The second repre-
sents the 259 keV resonant reaction, which dominates for T k
1:5 ; 108 K.

Shown in Figure 1 are the locations of the steadily burning hy-
drogen layer for WDs of mass 0.5 M� (squares) and 1.35 M�
(circles), accreting matter at Ṁ � 10�8 M� yr�1 with metallici-
ties Z ¼ 10�2 (solid lines) and 10�4 (dashed lines). The hydrogen
is assumed to burn in the cold CNO limit. Filled symbols are ther-
mally stable (see x 3). To the left of the long-dashed and long-
dash–short-dashed lines, the layer is nondegenerate and opacity
is set by Thomson scattering, respectively. The steady state solu-
tions are well within this region, so our approximations are valid.
Earlier examples of these solutions can be found in Sienkiewicz
(1975) and Nomoto et al. (2007). For completeness, we also show
the location where steady state helium burning (x 3.5) would oc-
cur for a 0.9 M� WD ( pentagons).

A few trends are clear. For a fixed Ṁ , increasing theWDmass,
and thus g, drives the steady state temperature and density higher.
The dotted line shows where the pþ14N reaction timescale is
equal to the 15O �-decay time of 176 s; above this line, the CNO
cycle is �-limited. At lowmetallicities of 10�2 Z� (dashed lines),
the layer is hot enough that the �-limited CNO cycle is nonneg-
ligible for the highest accretion rates and most massive WDs.
Since these are the WDs of direct interest to the Type Ia progen-
itor problem, we pursue this question further in x 4. However, we
first wish to carry out the analysis needed to determine the ther-
mal stability of the steadily burning solutions.

3. THERMAL STABILITY OF THE SHELL SOURCE

We begin by perturbing the temperature around its steady state
value via

T (t) ¼ T0 þ 	T et=
 ; ð12Þ

where 	T /T0T1. If the perturbation timescale 
j j is shorter than
the accretion timescale tacc ¼ Menv /Ṁ , thenMenv can be approx-
imated as constant during the perturbation.With this assumption,
the accompanying pressure perturbation can be related to the den-
sity perturbation by the parameterization

� ¼ @ ln P

@ ln �

����
Menv

; ð13Þ

as shown below. In our final results, the inequality 
j jTtacc is
indeed satisfied for essentially the entire parameter regime, so this
assumption is self-consistent.

3.1. Relations among Temperature, Pressure, and Density
Perturbations for a Constant-Mass Envelope

For a constant luminosity envelope with Thomson opacity,
P(r) / T (r)4, so �(r) / P(r)3/4, neglecting degeneracy. Since the

envelopemass is much smaller than that of theWD, integration of
hydrostatic equilibrium yields the density profile

�(r) ¼ �b 1� 1

x
1� Rb

r

� �� �3
; ð14Þ

where x ¼ 4h/Rb and the scale height is h ¼ Pb /�bg. (To avoid
confusion, in this section we explicitly label variables at the bot-
tom of the layer with the subscript ‘‘b.’’) The outer radius of the
envelope, where �(Ro) ¼ 0, is

Ro ¼ Rb=(1� x): ð15Þ

Thus, the scale height is constrained to be h < Rb /4. The thin
solid lines in Figures 2 and 4 are accretion rates above which this
constraint is not met, i.e., where hydrostatic envelope solutions
do not exist. This is a stronger bound than the nuclear Eddington
limit (Fig. 2, dotted line). This hydrostatic constraint is similar to
the ‘‘red giant luminosity’’ (Paczynski 1970; Fujimoto 1982b;
Hachisu et al. 1999) above which the envelope expands to red
giant dimensions and outflow may occur. The numerical results
of Nomoto et al. (2007) for this upper bound are shown in Fig-
ure 2 (thin dashed line). The discrepancy at lower WDmasses is
likely due in part to the approximation of the burning layer as the
mass within a scale height.
The mass of the envelope,

Menv ¼
Z Ro

Rb

4�r 2�(r) dr

¼ 4��bR
3
b

1

x3
ln

1

1� x

� �
� x� x2

2
� x3

3

� �
; ð16Þ

1 Although there is evidence for enhanced CNO abundances in nova ejecta
(Gehrz et al. 1998), we will presume that the metallicity in the accumulating layer
matches that of the accreted material.

Fig. 2.—Range of accretion rates for which the hydrogen-burning layer is
thermally stable, assuming Z ¼ 10�2 and no core luminosity. Above the thin
solid line, hydrostatic envelope solutions do not exist. Below the thick solid line, the
atmosphere is thermally unstable. Stable burning is only possible between the two
solid lines. Also shown are equivalent bounds (dashed lines) from a recent nu-
merical simulation (Nomoto et al. 2007), as well as the nuclear Eddington limit
(dotted line).
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is conserved during the perturbation, so 	Menv ¼ 0. Thus,

	 ln �b ¼
(
3� x4

1� x

� ��
ln

1

1� x

� �

� x� x2

2
� x3

3

��1
)
	 ln x

� D	 ln x: ð17Þ

From the definition of x, we have 	 ln x ¼ 	 ln Pb � 	 ln �b, so
	 ln Pb ¼ (1þ 1/D)	 ln �b and � ¼ (1þ 1/D). Thus, � is com-
pletely specified by the steady state burning conditions. Note
that x < 1 constrains � to be <1 as well.

The equation of state yields the density perturbation in terms
of the temperature perturbation,

	 ln �b ¼
@ ln �=@ ln Tð ÞP

1� � @ ln �=@ ln Pð ÞT
	 ln Tb: ð18Þ

For a nondegenerate gas, @ ln �/@ ln Pð ÞT ¼ 1/� and @ ln �/ð
@ ln TÞP ¼ 3� 4/�, so

	 ln �b ¼ � 4=� � 3

1� �=�

� �
	 ln Tb: ð19Þ

3.2. Thermal Stability Condition

We apply these perturbations to equation (7). The steady state
solutionswill be stable if R½
 �< 0.Keeping only first-order terms,
we arrive at the condition for stability,

A=B < 0; ð20Þ

where

A ¼ �� 4 1þ f

ȧ

� �
� 4� 3�

1� �=�

k
�
þ �

�
2þ f

ȧ

� �� �
;

B ¼ 1þ9ad

�

�

� �
4� 3�

1� �=�
: ð21Þ

The logarithmic derivatives of � are

k � @ ln �

@ ln �

����
T

; � � @ ln �

@ ln T

����
�

: ð22Þ

Stability can be achieved if either A or B is negative. The case
of A < 0 (the thick solid line in Fig. 2 is A ¼ 0) is the condition
where an increase in temperature causes a larger loss of energy
due to exiting radiation than gain from energy generation. The pa-
rameter B is the ratio of gravothermal specific heat c� to cP. Since
cP > 0, the inequality B < 0 is equivalent to c� < 0. Physically,
this is a situation in which the addition of heat to the shell causes a
loss of internal energy due to expansion work (Kippenhahn &
Weigert 1990). Note that the layer is unstable if both A and B are
negative, but with the assumption that k and � are nonnegative,
this case is ruled out.

Increasing the fraction of radiation pressure (thereby decreas-
ing � ) makes the layer more stable; this is radiation pressure sta-
bilization (Sugimoto & Fujimoto 1978; Fujimoto 1982b; Yoon
et al. 2004). In broad terms, this leads to a large drop in energy
generation as well as a large amount of expansion work, both of
which quench a thermal instability. From equation (5), decreas-

ing � can be achieved by increasing the accretion rate and/or core
luminosity. This helps to explain the requirement of high accre-
tion rates and/or very hot WDs for stability.

3.3. The Cold CNO Limit

The thick solid line in Figure 2 is the minimum accretion rate
(i.e., A ¼ 0 in eq. [20]) for which the hydrogen-burning layer is
thermally stable as a function of M, assumingZ ¼10�2 and no core
luminosity. The cold CNO limit is not assumed, although it is still
applicable. The slight upturn in the thick solid line for highmasses is
due to the 259 keV resonance in the 14N proton capture, which
begins to become nonnegligible nearT ¼ 1:5 ; 108 K. The nuclear
Eddington limit is shown for reference (dotted line). Nearly inde-
pendent of mass, the lowest stable accretion rate is’1

3
the limiting

accretion rate above which no hydrostatic envelope solutions are
found (thin solid line). Also plotted are equivalent bounds (dashed
lines) fromNomoto et al. (2007).Wenowderive the near constancy
of this narrow range of thermally stable accretion rates.

The upper bound (thin solid line) is where x ¼ 1, which gives

4kBTmax=�mp

GM=R
¼ �max; ð23Þ

where the subscript ‘‘max’’ refers to the quantity at themaximum
accretion rate. At the lower bound of stability (thick solid line),
hTR/4, and we expand � in powers of h/R to obtain

� ’ 16

5

h

R
: ð24Þ

Expanding equation (21) in terms of h/R, assuming cold CNO
burning and no core luminosity, and only keeping the first-order
term yields the condition at the lower bound,

� ¼ 1þ 4

�min

þ 16

5

kBTmin=�mp

�minGM=R
2þ 1

�min

� �
4

�min

� 3

� �
;

ð25Þ

where the ‘‘min’’ subscript refers to the value at the minimum ac-
cretion rate for stability. We have also set k ¼ 1, which is appro-
priate for the cold CNO limit. From Figure 1 we see that the
temperature does not change significantly over the range of sta-
ble accretion, sowe approximateTmin ¼ Tmax. Then, equation (23)
gives

� ¼ 1þ 4

�min

þ 4

5

�max

�min

2þ 1

�min

� �
4

�min

� 3

� �
: ð26Þ

Solving for the ratio of accretion rates yields

Ṁmax

Ṁmin

¼ 1

1� �min

1� 5�2
min

4

� � 1� 4=�min

� þ 4� 6�min

� �
: ð27Þ

Finally, we expand this ratio around �min ¼ 3
4
and, given that the

logarithmic temperature derivative of the cold CNO cycle is

� ¼ 5:077

T
1=3
9

� 2

3
ð28Þ
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for T P 1:5 ; 108 K, we assume � ¼ 10 to obtain

Ṁmax

Ṁmin

¼ 2:9 1þ 2:0 �min�
3

4

� �
þ O �min �

3

4

� �2
" #

: ð29Þ

The coefficient in front varies from 3.1 to 2.6 for � ¼ 9 12, and
since �min never falls below

1
2
, the ratio of accretion rates is tightly

constrained to be ’3, regardless of mass. This is the reason for
the nearly constant separation between the two solid lines in
Figure 2.

3.4. Importance of Including the Pressure Perturbation

To simplify the preceding analysis, one might be tempted to as-
sume a constant pressure perturbation (� ¼ 0), because the layer
is ‘‘thin’’—i.e., hTR—for the minimum thermally stable accre-
tion rate. However, this will result in significant errors, as we now
demonstrate.

Expanding equation (21) in terms of � and only keeping the
first-order term yields the revised stability condition

� � 4 1þ f

ȧ

� �
� 4

�
� 3

� �
kþ 2þ f

ȧ

� �
�

� �
< 0; ð30Þ

or with the assumption of cold CNO burning and negligible core
luminosity,

� < 4þ 4

�
� 3

� �
þ 2�

4

�
� 3

� �
: ð31Þ

Thus, even if the scale height is only 5% of the WD radius for
� ’ 1

2
, allowing a pressure perturbation changes the stability con-

dition from � < 9 to � < 10:5. Given the strong temperature de-
pendence of the cold CNO cycle, this is a significant change in the
minimum thermally stable accretion rate. For example, a 1.0 M�
WD can accrete stably down to 1:7 ; 10�7 M� yr�1, but if we in-
correctly assume a constant pressure perturbation, the minimum
accretion rate is 3:0 ; 10�7 M� yr�1, nearly a factor of 2 higher.

3.5. Pure Helium Accretion

In the case of a WD accreting pure helium, the fuel burns via
the triple-� reaction, given in Hansen et al. (2004) as

�3� ¼ 5:1 ; 108�2Y 3

T3
9

exp
�4:4027

T9

� �
ergs g�1 s�1; ð32Þ

so k ¼ 2 and

�3� ¼
4:4027

T9
� 3: ð33Þ

See Figure 1 for steady state conditions of a 0.9 M� helium-
accretingWD ( pentagons). For this mass, the range of stable ac-
cretion rates is 1:7 4:0ð Þ ; 10�6 M� yr�1.

3.6. Flux Stabilization

If theWD interior is hot and emits a core luminosity compara-
ble to that from the nuclear energy release of the accreted ma-
terial, the burning can be stabilized (Fujimoto & Truran 1982;
Paczynski 1983). The regions to the right of the solid lines in
Figure 3 are stabilized by thismechanism. For example, a 1.35M�
WDwith Lb ¼ 1036 ergs s�1 will stably burn accreting material at
a rate of 10�9 M� yr�1, orders of magnitude lower than the cases
presented earlier. As the core luminosity increases, a larger range

of accretion rates are stable. Our results differ from those of
Paczynski (1983) due to his assumption of a thin shell (P ¼
Menvg/4�R

2) and lack of inclusion of the full CNO cycle, among
other reasons.
While a large core luminosity seems an attractive possibility

for stabilizing the burning layer, it is difficult to identify an energy
source that would provide enough luminosity to affect stability
during the accretion of k0.1M� typically needed to ignite the car-
bon in the core for a Type Ia supernova. Themost obvious option,
the luminosity from the coolingWD itself, is orders of magnitude
too small. Even steady burning of the helium below the hydrogen
layer is inadequate to significantly increase the stable accre-
tion rate range. Complete and stable burning of the helium gives
a luminosity, L ¼ ṀEHe (Fig. 3, dotted line), where EHe ¼ 5:8 ;
1017 ergs g�1. For a 1.35M�WD, this additional luminosity only
lowers the minimum stable accretion rate by ’10%.
Recent work by Starrfield et al. (2004) finds stable hydrogen

burning on a hot (L ’ 1035 ergs s�1) accreting WD of M ¼
1:35 M� for accretion rates down to 1:6 ; 10�9 M� yr�1. Fig-
ure 3 shows that this high luminosity is not responsible for sta-
bilizing the hydrogen burning. The physics that stabilizes their
models at such low accretion rates remains unclear and is at odds
with the more recent efforts of Nomoto et al. (2007).

4. THE FULL CNO CYCLE

If the temperature and density at the burning depth are very
high, all fusion reactions in the CNO cycle occurmore rapidly than
the �-decays. The energy generation rate is then determined by the
�-decays of 14O and 15O, which are independent of temperature
and density, giving �hot ¼ 5:8 ; 1015ZCNO ergs g�1 s�1. (Even for
the lowestmetallicity caseswe considerwhereZ ¼ 10�6, p-p burn-
ing is still negligible for the relevant accretion rates.) In this
�-limited CNO cycle, hydrogen burning is stable to tempera-
ture perturbations. We now derive the conditions for which the

Fig. 3.—Critical accretion rates vs. core luminosity for a 1.35M�WDwith the
given metallicities (solid lines). The atmosphere is thermally stable to the right of
these lines. Also plotted is the luminosity from steady burning of the helium below
the hydrogen layer (dotted line). For a given accretion rate, this line represents the
maximum possible core luminosity for hydrogen accretion.
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temperature-independent �-decays of the full CNO cycle can
stabilize the burning layer.

The energy generation rate of the full reaction rate network is

� ¼
P

ij Qijni=tij

�
; ð34Þ

where i refers to the isotope, j differentiates between fusion and
�-decay reactions for a given isotope, and Qij is the energy re-
leased in the specified reaction. In particular, the CNO cycle has
a fork at 13N; when cold and/or diffuse, 13N nuclei preferentially
undergo a �-decay to 13C, and when hot and/or dense, they cap-
ture a proton to become 14O. The nuclear reaction timescales tij
are defined to satisfy the differential equations

dni

dt
¼

X
k

nk

tk
�
X
j

ni

tij
; ð35Þ

where k refers to the isotopes that can produce isotope i. With
this definition of nuclear reaction timescales, the proton capture
timescales are given as

tcapture ¼
1

nph�vi
¼ mp

X�

1

h�vi : ð36Þ

The reaction rates, h�vi, are only functions of temperature and are
obtained from NACRE (Angulo et al. 1999) and LUNA (Lemut
et al. 2006).

If the thermal perturbations occur on timescales much longer
than reaction timescales, the reaction rate network is always in
equilibrium for a given temperature and pressure. The time for a
given nucleus to go once around the CNO cycle is

tcycle ’
QCNOZCNO

14mp�
; ð37Þ

where we have chosen the mean molecular weight of the catalytic
nuclei to be 14mp. We find that this timescale is always much
shorter than the perturbation timescale for all metallicities and
thermally stable accretion rates. Thus, dni /dt ¼ 0. Then, at a given
temperature and pressure, we can solve for all abundances in terms
of one of the abundances, such as n12C. Defining the weighting
factor

fij(T ; �) �
ni=tij

n12C=t12C
; ð38Þ

we have

� ¼ Xn12Ch�vi12C
mp

X
ij

Qij fij(T ; �): ð39Þ

Defining another weighting factor, hi(T ; �) � ni=n12C, yields

�¼ XZCNO

m2
p

�h�vi12C

P
ij Qij fij(T ; �)P
i Aihi(T ; �)

¼ XZCNOG(T ; �); ð40Þ

where Ai is the atomic mass of the isotope and G(T ; �) is a func-
tion that depends only on the temperature and density. This im-
plies that � is also solely a function of temperature and density.

With the analytic form of the energy generation rate, finding
the steady state solutions is as before. Specifying the accretion
rate, the core luminosity, the CNOmetallicity, and the WDmass
fixes the temperature and density at steady state. These in turn fix
the value of �. Thus, given Lb, ZCNO, andM , we can analytically
find values of Ṁ for which the atmosphere will satisfy equa-
tion (20) and thus be thermally stable.

Metallicity-dependent ranges of accretion rates for which the
layer is thermally stable, with burning via the full CNO cycle, are
shown in Figure 4. For accretion rates above the thin solid lines,
hydrostatic envelope solutions do not exist, whereas below the
thick solid lines, thermal perturbations in the atmosphere grow
exponentially. Lowering the metallicity of the accreting material
and increasing the WD mass increase the temperature and den-
sity of the burning layer and lead to shorter timescales for proton
captures. This lowers theminimum accretion rate for thermal sta-
bility, because � decreases as the temperature-independent�-decays
of 14O and 15O becomemore important to energy generation. This
effect is also evident in Figure 3. The limiting case of hot CNO
stabilization occurs in the hydrogen-burning shells of neutron
stars, where burning proceeds via the �-limited CNO cycle for so-
lar metallicities at very sub-Eddington accretion rates (Bildsten
1998) due to the high gravity.

5. CONCLUSIONS

We have confirmed that stable burning of hydrogen on an ac-
cretingWD requires accretion rates within a narrow range for so-
lar metallicities (see Fig. 2) and shown that this is a robust result
set by radiation pressure stabilization. Increasing the range of ther-
mally stable accretion rates can be temporarily accomplished by
having a luminosity exiting the WD core of a magnitude compa-
rable to that released from nuclear burning of hydrogen at that ac-
cretion rate (see Fig. 3). However, there is no energy source

Fig. 4.—Ranges of thermally stable accretion rates assuming no core lumi-
nosity, as in Fig. 2, but with the given metallicities. Burning is via the full CNO
cycle. The upper bound is the rate above which hydrostatic solutions do not exist
(thin solid lines). The location of the upper bound has a weak dependence on
metallicity; upper bounds for metallicities between solar and Z ¼ 10�6 lie be-
tween the thin solid lines shown. The lower bound is the transition between
thermally stable and unstable burning layers (thick solid lines).
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available to the deep core of the WD that would allow for such
stabilization during accretion of the 0.1–0.2M� ofmaterial needed
to reach core ignition for a Type Ia supernovae. Thus, the challenge
of a narrow accretion rate regime for stable hydrogen burning of
solar metallicity material remains.

In the hopes of alleviating this bottleneck, we considered the
stabilizing effect of �-limited burning of hydrogen via the ‘‘hot’’
CNO cycle. This effect reduces the accretion rate needed for sta-
ble burning, but requiresmetallicities of <10�2Z� before it opens
up much parameter space (see Fig. 4). Such metallicities are rel-
evant to a few globular clusters in our Galaxy and others, and for
this reason, calculations such as those done byNomoto et al. (2007)
should be extended to lower metallicities, as they might prove rel-
evant to observations of accreting sources in globular clusters.

However, while very low metallicities can be found in these
systems, we know (Tremonti et al. 2004; Lee et al. 2006) that the

metallicity for most of the stellar mass in the nearby universe is
larger than 10�2Z�, making it appear unlikely that low-metallicity
environments will play a significant role in the overall Type Ia su-
pernova rate. Full resolution of the impact of the hot CNO cycle
awaits the combination ofmultizone calculationswith a population
synthesis code capable of assessing the contribution of stable burn-
ing at lower accretion rates to the Type Ia rate.
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