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ABSTRACT

The study of magnetic connectivity in the solar corona reveals a need to generalize the field line mapping technique
to arbitrary geometry of the boundaries and systems of coordinates. Indeed, the global description of the connectivity
in the corona requires the use of the photospheric and solar wind boundaries. Both are closed surfaces and therefore
do not admit a global regular system of coordinates. At least two overlapping regular systems of coordinates for each
of the boundaries are necessary in this case to avoid spherical-pole-like singularities in the coordinates of the foot-
points. This implies that the basic characteristic of magnetic connectivity—the squashing degree or factor Q of ele-
mental flux tubes, according to Titov and coworkers—must be rewritten in covariant form. Such a covariant expression
of Q is derived in this work. The derived expression is very flexible and highly efficient for describing the global
magnetic connectivity in the solar corona. In addition, a general expression for a new characteristicQ?, which defines a
squashing of the flux tubes in the directions perpendicular to the field lines, is determined. This new quantity makes it
possible to filter out the quasi-separatrix layerswhose large values ofQ are caused by a projection effect at the field lines
nearly touching the photosphere. Thus, the value Q? provides a much more precise description of the volumetric
properties of the magnetic field structure. The difference between Q and Q? is illustrated by comparing their distri-
butions for two configurations, one of which is the Titov-Démoulin model of a twisted magnetic field.

Subject headinggs: Sun: coronal mass ejections (CMEs) — Sun: flares — Sun: magnetic fields

1. INTRODUCTION

The structure of magnetic field is often an important factor in
many energetic processes in the solar corona. This especially re-
fers to the topological features of magnetic structure such as null
points, separatrix surfaces, and separator field lines. They serve
as preferred sites for the formation of current sheets and the cor-
responding accumulation of the free magnetic energy (Sweet
1969; Baum & Bratenahl 1980; Syrovatskii 1981; Lau & Finn
1990; Longcope & Cowley 1996; Priest & Titov 1996; Priest &
Forbes 2000; Longcope 2001). The magnetic reconnection pro-
cess induced in the current sheets at some critical parameters al-
lows the accumulatedmagnetic energy to convert into other forms:
thermal, radiative, and kinetic energy of plasma and accelerated
particles. This process is considered to be a driving mechanism of
many energetic phenomena in the solar atmosphere (Priest &
Forbes 2000; Parker 1979, 1994).

Over the last decade, it also became clear that the geometrical
analogs of the separatrices (Longcope & Strauss 1994a, 1994b;
Titov et al. 1999, 2002; Titov&Hornig 2002), the so-called quasi-
separatrix layers (QSLs; Priest &Démoulin 1995; Démoulin et al.
1996a, 1997), have similar properties. There are indications that
the QSLs are probably more ubiquitous than the true separatrices
(Titov et al. 2002). This increases the significance of the problem
of determining QSLs in a given magnetic configuration. In com-
parison with the separatrices, the determining of QSLs requires a
more sophisticated technique, which is based on a pointwise anal-
ysis of the magnetic field line connectivity. The basic quantity in
this technique is the squashing degree or factor Q of elemental
magnetic flux tubes. This quantity has previously been defined for
the planar geometry (Titov et al. 1999, 2002; Titov & Hornig
2002), which provides a good approximation for describing mag-
netic structures in active regions with the characteristic size smaller
than the solar radius R�.

Such an approximation, however, is hardly applicable for a
global description of magnetic connectivity in the solar corona

including the open magnetic field of the coronal holes. The cor-
responding large-scale structure of magnetic fields is also of sub-
stantial interest for solar physics, especially for understanding
solar eruptions. So the respective generalization of the above
technique must allow us to determineQ for the coronal volume
bounded by the photospheric and solar wind surfaces. This
immediately raises technical problems, which do not exist in
the case of the planar geometry. First, both these boundary sur-
faces are closed, and therefore, none of them admits a global reg-
ular system of coordinates. To avoid a coordinate singularity of a
spherical-pole type, at least two overlapping coordinate systems
(coordinate charts) must be used in this case for describing the lo-
cations of the field line footpoints on each of the boundaries. Sec-
ond, the solarwind boundary surface generally cannot be a sphere,
but some other curvilinear surface whose geometry depends on
the coronal magnetic field (Levine et al. 1982). These two re-
quirements of the technique can be satisfied only by using a co-
variant approach to the description of Q with the coordinate
systems that are generally different for each of the boundaries. The
derivation of such a covariant expression for the squashing factor
is one of the goals of the present work.

The second goal of the work is tomake an essential refinement
of the squashing factor itself. The problem is that the large values
of Q may be caused not only by the squashing of elemental flux
tubes in the volume but also by a projection effect at the bound-
ary surfaces. The latter occurs at the field lines which are nearly
touching the boundary at least at one of the footpoints. This ef-
fect, in particular, takes place in the vicinity of the bald patches
(BPs; Titov et al. 1993), which are the segments of the photo-
spheric polarity inversion line (PIL), where the coronal field lines
touch the photosphere. When analyzing magnetic connectivity,
it is important to discriminate between the projection effect and
volumetric squashing. For this purpose we derive a covariant ex-
pression for the perpendicular squashing factor Q?, which de-
scribes the squashing of elemental flux tubes only in the directions
orthogonal to the field lines.
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Sections 2 and 3 present the derivations ofQ andQ? and dem-
onstrate on the examples of planar and spherical geometry how
to apply these general expressions. The difference betweenQ and
Q? is considered in detail in x 4 by calculating and comparing
these quantities for two particular magnetic configurations. The
obtained results are summarized in x 5.

2. COVARIANT FORM OF THE SQUASHING FACTOR

Consider a plasma magnetic configuration in a finite volume
with a smooth boundary of an arbitrary shape. It may generally
consist of two or even more surfaces, for example, the photo-
sphere and the solar wind surface form a boundary for the entire
solar corona. Each of the two footpoints of a givenmagnetic field
line may belong in general to any of these surfaces. We will use
the designations ‘‘launch’’ and ‘‘target’’ for the footpoints and
parts of the boundary surfaces at which the field lines start and
end up. Let (u1; u2) and (w1;w2) be the systems of curvilinear
coordinates at the launch and target boundaries, respectively.
The magnetic field lines connecting these boundaries define a
mapping (u1; u2) ! (w1;w2) determined by some vector func-
tion W 1(u1; u2);W 2(u1; u2)½ �. The local properties of this map-
ping are described by the Jacobian matrix

D ¼ @Wi

@u j

� �
: ð1Þ

For each field line, this matrix determines a linear mapping from
the tangent plane at the launch footpoint to the tangent plane at the
target footpoint, so that a circle in the first plane is mapped into an
ellipse in the second plane (Fig. 1a). The aspect ratio of such an
ellipse defines the degree of a local squashing of elemental flux
tubes, which means that any infinitesimal circle centered at a
given launch point is mapped along the field lines into an infini-
tesimal ellipse with this aspect ratio at the target footpoint. This
generalizes a coordinate-free definition of the squashing factor to
the case of curvilinear boundaries, whose tangent planes are gen-
erally not the same, as is in the case of plane boundaries consid-
ered in Titov et al. (1999, 2002) and Titov & Hornig (2002).

To derive an analytical expression for the aspect ratio of the
above ellipse, let us introduce first a vector function R(u1; u2)
that describes in a three-dimensional Cartesian system of coor-
dinates the locations of the footpoints at the launch boundary.
Then the vectors

ek ¼
@R

@uk
; k ¼ 1; 2 ð2Þ

determine at this boundary the covariant vector basis tangent to
the u-coordinate lines. Thus,

glk ¼ el = ek ; l; k ¼ 1; 2 ð3Þ

is the corresponding covariant metric tensor, which determines
local lengths and angles at the launch boundary. The dot here
stands for the usual scalar product in three-dimensional Euclidean
space.

Using equation (2) and the standard Gramm-Schmidt proce-
dure, one can construct an orthonormal basis

e1 ¼
e1ffiffiffiffiffiffi
g11

p ; ð4Þ

e2 ¼
g12ffiffiffiffiffiffiffiffiffi
gg11

p e1 �
ffiffiffiffiffiffiffi
g11
g

r
e2: ð5Þ

Hereafter g � det glk½ � is a determinant of the covariant metric
tensor. Now, any point of a circle of unit radius in the plane tan-
gent to the launch boundary is represented by the vector

o ¼ cos #e1 þ sin #e2; ð6Þ

whose angle parameter #2½0; 2�).
Suppose that the vector function R̃(w1;w2) defines the points

at the target boundary, then

õ ¼ ok @W
i

@uk
ẽi ð7Þ

is the field line mapping image of o at the tangent plane of the
target boundary, where the corresponding covariant basis vectors,
parallel to the w-coordinate lines, are

ẽi ¼
@R̃

@wi
: ð8Þ

Hereafter a summation over repeating indices with their values
running from 1 to 2 is assumed.
With varying #, the vector õ traces in this plane an ellipse such

that

õ2 � g�ijõ
iõ j ¼ 1

2
g�ij

@Wi

@uk

@Wj

@ul

h
ek1 e

l
1 þ ek2 e

l
2 þ cos 2#

; ek1 e
l
1 � ek2 e

l
2

� �
þ sin 2# ek1 e

l
2 þ el1e

k
2

� �i
; ð9Þ

where the asterisk indicates that g�ij(u
1; u2) is a result of evaluat-

ing g̃ij(w1;w2) at the target footpoint (w1;w2) ¼ W 1(u1; u2);½
W 2(u1; u2)�.
After some simple trigonometry and lengthy algebra using

equations (2)Y (5), equation (9) is reduced to

õ2 ¼ 1

2
N 2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N4 � 4� 2

p
sin 2#̃

� �
; ð10Þ

where N 2 and � are determined by

N 2 ¼ @Wi

@uk
g�ij

@Wj

@ul
g lk ; ð11Þ

� ¼

ffiffiffiffiffi
g�

g

s
@(W 1;W 2)

@(u1; u2)
; ð12Þ

Fig. 1.—Linearized field line mapping of a circle into an ellipse between tan-
gent planes at the launch and target boundaries (a) and between the planes per-
pendicular to the field line at its footpoints (b). In general, different and arbitrary
coordinates (u1; u2) and (w1;w2) with covariant bases (e1; e2) and (ẽ1; ẽ2), respec-
tively, are assumed at the launch and target boundaries.
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in which g and g� denote the determinants of covariant metric
tensors at the launch and target footpoints, respectively. The com-
ponents of the contravariantmetric tensor g lk can be viewed here
as elements of the inverted matrix glk½ ��1

of the covariant metric.
The value #̃ is simply # plus an additional value, which is inde-
pendent of# andwhose expression does not matter for the present
consideration.

What actually matters is that sin 2#̃ runs values from�1 to +1
when o(#) and õ(#) are tracing, respectively, the above circle and
ellipse. The minimum �1 and maximum +1 correspond here to
the minor and major axes of the ellipse, respectively, so that its
aspect ratio is

õmax

õmin

¼ N 2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N4 � 4�2

p
N 2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N4 � 4�2

p
 !1=2

¼ N 2

2j�j þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N 2

2j�j

� 	2

�1

s
:

ð13Þ

The large values of this ratio do not differ much from its asymp-
totic value

Q ¼ N 2=j�j: ð14Þ

Note also that Q � 2, since inverting equation (13) yields Q ¼
õmax/õmin þ õmin/õmax and õmax/õmin � 1. Therefore, equation (14)
will be used as a covariant definition of the squashing factor.

It is evident from the derivation ofQ that this value is invariant
to the direction of field line mapping. Indeed, the inverse map-
ping implies locally that 1/õmin is a maximum stretching coef-
ficient and 1/õmax is a minimum shrinking coefficient. Such
coefficients will coincide with the lengths of the major andminor
axes of the ellipse obtained from a circle of a unit radius due to
this inverse mapping. Thus, although this new ellipse has differ-
ent lengths of axes, their ratio is the same as for the previous one,
which proves the statement. A formal proof of the statement is
also not difficult to obtain by using the derived expressions ofN 2

and� in a similar way as in the case of plane boundaries (Titov
et al. 1999). The invariance of Q to the direction of field line
mapping justifies its status as a correct measure for the magnetic
connectivity.

Note also that� for a given infinitesimal flux tube is a ratio of
its cross section areas at the target and launch points. Therefore,
since the magnetic flux is conserved along the tubes, this value
coincides with the corresponding inverse ratio of the normal field
components, so that

� ¼ Bn=B
�
n; ð15Þ

where Bn and B
�
n are normal components of the magnetic field to

the boundaries at the conjugate launch and target footpoints. In
practice, the numerical calculation of� through this ratio is more
precise than that given by equation (12), and therefore, it should
be used for computing � in equation (14).

The above mathematical construction is related to the Cauchy-
Green deformation tensor (Marsden et al. 2002) known in the
theory of elasticity. It can be written in our notations as

Ckl ¼
@Wi

@uk
g�ij

@Wj

@ul
; ð16Þ

where W 1(u1; u2);W 2(u1; u2)½ � and gij represent, respectively,
a finite deformation and covariant metric tensor of an elastic
two-dimensional body. The contraction of the Cauchy-Green

tensor with a pair of orthonormal vectors em and en yields the
tensor

C̃mn ¼ Ckle
k
me

l
n ð17Þ

such that its eigenvalues coincide with the squared semiaxes õ2
max

and õ2
min of the above ellipse. The square root of their ratio defines,

in accordance with equations (13) and (14), the squashing factorQ.
It should be emphasized that this analogy is possible only in

our general approach, where two independent systems of coordi-
nates are used for describing the location of the conjugate foot-
points. This allows us to apply coordinate transformations only
at the launch boundary, while keeping the coordinates at the tar-
get boundary unchanged. With respect to these transformations,
the object defined by equation (16) does behave as a covariant
second-rank tensor. The latter is not valid, however, if one global
three-dimensional system of coordinates is used for describing the
entire field configuration, and so both boundaries are subject then
to coordinate transformations.

This has only a methodological meaning and does not exclude,
of course, an application of the derived expressions to such par-
ticular cases. For example, consider a closed magnetic configura-
tion in the half-space x3 � 0 with the global Cartesian coordinates
(x1; x2; x3) � (u1; u2; x3) � (w1;w2; x3) and the photospheric
boundary plane x3 ¼ 0. The field line mapping is then given by
X 1(x1; x2);X 2(x1; x2)½ �. There are no more differences between
upper and low indices and contravariant g lk and covariant g�ij met-
rics; the latter simply turn into Kronecker symbols � kl and �ij. So
equations (11), (12), and (15) are reduced to

N 2 ¼ @X i

@xk
@X i

@xk
; ð18Þ

� ¼ @(X 1;X 2)

@(x1; x2)
¼ B3

B�
3

; ð19Þ

as required in this case (Titov et al. 2002).
Consider now a more complicated class of configurations,

where both open and closed magnetic field lines are present. Let
the configuration be described in one global system of coordinates
(r; �; �), where r ¼ R� corresponds to the photospheric launch
boundary, while r ¼ R� represents the target boundary. For the
open field lines reaching the spherical solar wind boundary of
radius Rsw, we put R� ¼ Rsw, while for the closed ones we take
R� ¼ R�. Thus, u

1 ¼ w1 ¼ �, u2 ¼ w2 ¼ �, and the field line
mapping is �(�; � );�(�; � )½ �, which yields

½g�ij� ¼
R2
� sin

2� 0

0 R2
�

 !
; ð20Þ

½g lk � ¼
R�2
� sin�2� 0

0 R�2
�

 !
; ð21Þ

where the contravariant metric g lk at the launch boundary is ob-
tained from the corresponding covariant metric by inverting
it simply as a 2 ; 2 matrix. Using these expressions and equa-
tion (11), we obtain

N 2 ¼ R2
�

R2
�

"
sin�

sin �

@�

@�

� 	2

þ sin�
@�

@�

� 	2

þ 1

sin �

@�

@�

� 	2

þ @�

@�

� 	2
#
: ð22Þ
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Equations (12) and (15) in this case become

� ¼ R2
�

R2
�

sin�

sin �

@(�;�)

@(�; �)
¼ Br

B�
r

: ð23Þ

The obtained expressions for N 2 and� have seeming singu-
larities at the poles, where they actually reduce in the generic
case to resolved indeterminacies with �(�; �) and �(�; �) pro-
portional to sin �. These indeterminacies are artificial and un-
related to some special properties of the magnetic structure; they
are caused by the pole singularities inherent in the used global
spherical system of coordinates.Moreover, their appearance is un-
avoidable in any other global system of coordinates on a closed
spherelike surface because of its intrinsic topological properties.
Therefore, thismay generally reduce precision of a numerical eval-
uation ofQ near the polelike points. To avoid such indeterminacies,
at least two overlapping coordinate charts on each of the spherical
boundaries are required. For this purpose, it is sufficient to use
two systems of spherical coordinates turned with respect to each
other on the right angle in the �-direction. Switching from one
of such systems in its polar regions to the other, as suggested,
for example, by Kageyama & Sato (2004), makes it possible
to resolve the problem of the pole indeterminacies. The re-
quired expressions for such calculations of Q can be obtained
again from equations (11) and (12) with properly modified metric
tensors.

3. PERPENDICULAR COVARIANT
SQUASHING FACTOR

To find the perpendicular squashing factor Q?, we need to
know the field line mapping between infinitesimal planes or-
thogonal to the field lines at the conjugate footpoints (Fig. 1b).
Note first that the projection effect at the boundaries is local,
because it depends only on the orientations of the tangent planes
at the boundaries with respect to the vectors of magnetic field at
the footpoints. So the required mapping between the indicated
orthogonal planes can be obtained from the respective mapping
between the tangent planes by correcting it only at such foot-
points. This implies thatQ? can be expressed in terms of the same
values as Q and, in addition, the field vectors B and B̃, respec-
tively, at the launch and target footpoints.

Wewill deriveQ? by using the same procedure as forQ, while
modifying it in accordance with the above comments. The vector
o tracing the circle of unit radius is given by the same equation
(6). However, since it lies now in the plane perpendicular to the
field line at the launch point, the corresponding orthonormal
basis is chosen to be orthogonal to B, so that

e1 ¼
B< e1
B< e1j j ; ð24Þ

e2 ¼
B< e1
B< e1j j : ð25Þ

This vector o is mapped along the field lines into a vector õ lying
in the plane perpendicular to the local field B̃ at the target foot-
point. The respective mapping dW? can be represented as a com-
position P�1 � dW � P of three others according to the following
diagram:

o dW?

�! õ

# P " P�1

o dW
�! õ

ð26Þ

Here the mapping P projects the vector o alongB onto the plane
tangential to the launch boundary to yield the vector

o ¼ o� o = e1 < e2ð Þ
B = e1 < e2ð Þ B; ð27Þ

which has a vanishing component along the vector e1 < e2 per-
pendicular to such a plane. Then this vector o is mapped by the
differential of the field line mapping dW determined by the
Jacobian matrix from equation (1) into the vector

õ ¼ ok @W
i

@uk
ẽi; ð28Þ

which lies in the plane tangential to the target boundary. Finally,
the obtained vector õ is projected by P�1 along B̃ at the target
footpoint onto the plane perpendicular to B̃ to result in

õ ¼ õ�
B̃ = õ
� �
B̃2

B̃: ð29Þ

Eliminating now õ and o from equations (27)Y (29) and using
equation (6) with the basis from equations (24)Y (25), we ex-
press õ in terms of e-basis and magnetic field vectors at the
conjugate footpoints. This allows us to calculate õ2 and thenQ?
in a similar way as done before when deriving Q. The result is

Q? ¼ N 2
?=j�?j; ð30Þ

N 2
? ¼ @Wi

@uk
g�?ij

@Wj

@ul
g? lk ; ð31Þ

�? ¼

ffiffiffiffiffiffi
g�?
g?

s
@(W 1;W 2)

@(u1; u2)
; ð32Þ

where the asterisk has the same meaning as in equations (9),
(11), and (12). Thus, the obtained Q? differs from Q only in the
form of the metric tensors, which are determined now by

g�?ij ¼ gij �
BiBj

B2

� 	�
; ð33Þ

g?lk ¼ g lk þ gBlBk

B = e1 < e2ð Þ2
: ð34Þ

The asterisk here implies automatically that the corresponding
values refer to the target footpoint; therefore, the tilde used for
indicating this fact in intermediate equation (29) is omitted in
the final expression from equation (33). One can also check
that g? lk


 �
¼ g?lk½ ��1

and

g? � det g?lk½ � ¼ B = e1 < e2ð Þ2

B2
; ð35Þ

so that equation (32) reduces to

j�?j ¼
jBj
jB�j ð36Þ

if, in addition, the magnetic flux conservation is taken into ac-
count. This expression should be used instead of equation (32)
for computing j�?j in equation (30) for the same reason that
equation (15) should be used in equation (14). Thus, equa-
tions (30)Y (36) completely define the covariant expression for
Q?.
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Let us see now how these formulas work in the case of a closed
magnetic configuration described in a global Cartesian system
of coordinates (x1; x2; x3) � (u1; u2; x3) � (w1;w2; x3) with the
photospheric boundary plane x3 ¼ 0. The formulas are signifi-
cantly simplified in this case to yield

N 2
? ¼ @X i

@xk
�ij �

B�
i B

�
j

B�2

� 	
@X j

@x l
�lk þ BlBk

B3ð Þ2

" #
; ð37Þ

where the values of the corresponding covariant and contra-
variant components of vectors and tensors do not differ from
each other.

Note also that equation (37) apparently diverges near the PIL,
where the normal field component B3 vanishes. This is actually
not a true singularity but rather an indeterminacy, which is re-
solved to give a low limit ofQ?

��
PIL ¼ 2 if the PIL has no BPs. At

the BPs, such an indeterminacy is also resolved, but it may gen-
erally have different limits ofQ? > 2 at the left and right sides of
BPs. Thus, Q? may experience a jump when crossing BPs, un-
less the configuration is symmetric as in the example of x 4.2.

Similar to x 2, consider also a more general class of configura-
tions, where both open and closed field lines are present and
bounded by a spherical solar wind surface of radius Rsw and the
photosphere of radius R� as before. It is convenient in this case
to use matrix notations, in which equation (31) is written as

N 2
? ¼ tr DTG�

?DG
?� �

; ð38Þ

where

D ¼

@�

@�

@�

@�

@�

@�

@�

@�

0
BB@

1
CCA ð39Þ

is the Jacobian matrix of the field line mapping. The covariant
and contravariant metrics at the target and launch boundaries,
respectively, are determined by the matrices

G�
? � g?ij


 ��

¼ R2
�

sin2� 1�
B�2
�

B�2

 !
� sin�

B�
�B

�
�

B�2

� sin�
B�
�B

�
�

B�2 1� B�2
�

B�2

0
BBB@

1
CCCA; ð40Þ

G? � g?lk

 �

¼ R�2
�

sin�2� 1þ
B2
�

B2
r

 !
B�B�

sin �B2
r

B�B�

sin �B2
r

1þ B2
�

B2
r

0
BBBB@

1
CCCCA; ð41Þ

where R� ¼ R� if a given footpoint belongs to a closed field line
and R� ¼ Rsw otherwise.

The matrix G? has two types of singularities, which actually
lead only to indeterminacies in equation (38). The first indeter-
minacies take place at the poles of spherical coordinates (� ¼ 0,
�). They are already discussed above in connection with equa-
tion (22). The second indeterminacies take place at the PIL, where
Br ¼ 0. They are resolved in much the same way as occurred in
the previous case of Cartesian geometry to give a finite value
ofQ?

��
PIL

. If the PIL has no BPs, the length of the field lines van-
ishes near the PIL, so thatD ! I andG�

? ! G?�1, which results
inN 2

? ! 2. The presence of BPs implies, however, a strong projec-

tion effect in their neighborhood and the corresponding singular-
ities in the Jacobian matrix D at the BPs. These singularities are
exactly of the same type and value as those in G? but opposite in
signs. So they cancel each other in equation (38) to generally pro-
vide different limits at the different sides of the BPs, as discussed
above for the case of the plane boundaries.

It should be also noted that there is one more type of plausible
singularity not yet discussed. These singularities have to appear
if a given configuration has null points of magnetic field and the
corresponding separatrix field lines. In this case, the elemental
flux tubes enclosing the separatrix field lines split at each of
the null points to produce singularities in the derivatives of the
Jacobian matrix. Such singularities are due to volumetric rather
than surface properties of magnetic configurations. Therefore, if
present, they appear in both Q and Q? distributions thereby in-
dicating the existence of magnetic nulls in the corona. Since the
numerical derivatives are estimated as a ratio of finite coordinate
differences, their absolute values may not exceed the ratio of the
coordinate range at the target boundary to a chosen increment of
coordinates at the launch boundary. The presence of this upper
bound on possible values of the numerical derivatives prevents
an overflow error in computations of the squashing factors at the
footpoints of the null-point separatrices. A more detailed consid-
eration of this type of singularity requires a special study, which
goes far beyond the scope of the present work.

4. COMPARISON OF Q AND Q?

To see the difference betweenQ andQ?, their distributions are
compared below for several magnetic configurations. An em-
phasis is made on their potentiality for determining so-called
hyperbolic flux tubes (HFTs). They are defined as two intersect-
ing QSLs with extended and narrow photospheric footprints char-
acterized by very large values of Q. Neglecting the possible
curving and twisting of an HFT, its cross section variation in the
longitudinal direction can be represented as

ð42Þ

In other words, the width of one of the QSLs is shrunken to the
thickness of the other in the process of the mapping of their
cross sections along magnetic field lines. This is possible because
the field lines in HFTs exponentially converge in one transversal
direction and diverge in the other. Such a property is typical for
hyperbolic flows in the theory of dynamical systems (Arnold
1988), which was coined in the termHFT (Titov et al. 2002). The
examples below demonstrate thatQ? is a more accurate quantity
thanQ for characterizingHFTs, althoughQ also provides valuable
complementary information on the magnetic structure.

4.1. The Simplest Possible Hyperbolic Flux Tube

The most simple magnetic configuration in which one would
expect the presence of an HFT is the so-called X-line configura-
tion, whose field B is determined in Cartesian coordinates (x; y; z)
by

B ¼ (�hx; hy; 1) ¼ :�<:�; ð43Þ

where h ¼ h̄L/Bk is a dimensionless field gradient characterizing
the strength of the transverse field h̄L compared to the longitudinal
field Bk on a characteristic length scale L. The right-hand side
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of equation (43) represents the same field in terms of the Euler
potentials

� ¼ xehz; ð44Þ
� ¼ ye�hz; ð45Þ

which are constant along the field lines. The use of � and � sig-
nificantly simplifies the calculation of the squashing factors in
this configuration. Suppose that its volume is restricted by jzj � 1,
so that the planes z ¼ 	1 are the corresponding boundaries. The
constancy of � and � means that the boundary points (x�; y�) and
(xþ; yþ) are related by x�e

�h ¼ xþe
h and y�e

h ¼ yþe
�h. In terms

of the notations used in equation (18) for the plane boundaries, this
means that X1 ¼ e2hx1 and X2 ¼ e�2hx2. Since Bz ¼ 1 every-
where, equation (19) reduces simply to j�j ¼ 1, so that the re-
sulting squashing factor is

Q ¼ 2 cosh (4h): ð46Þ

Thus, Q is constant over the entire planes z ¼ 	1, and hence, it
does not determine any QSL in the X-line configuration with
the plane boundaries. Priest & Démoulin (1995) have arrived at
the same conclusion by using the normN defined by equation (18),
since Bz ¼ 1, j�j ¼ 1, and so N ¼ Q1=2 in this configuration.
However, they have found with the help of N some evidence of
the presence of QSLs in the X-line configuration, if it is bounded
by cubic, hemispheroidal, and spherical surfaces.

On the other hand, it is clear from the general point of view
that there should be an HFT in such a configuration irrespective
of the shape of the boundary surfaces. Indeed, this configuration
has in the unbounded space two genuine separatrix planes x ¼ 0
and y ¼ 0, which can be regarded as a limiting case of the
bounded configuration with the boundaries moved off to infinity.
Taking into account also that h 
 L, one could expect that the
proper measure for QSLs must be growing with h near the planes
x ¼ 0 and y ¼ 0 much stronger than in the remaining volume to
indicate the corresponding QSLs near these planes. This would
provide in the limit of large h an expected continuous transition
of such bounded configurations with QSLs to the unbounded
configuration with the genuine separatrices. The failure of Q in
determining an HFT in this simple case looks very surprising in
light of its remarkable success in other more complicated field
configurations (see x 4.2). The reason for this failure lies actually
in the above-mentioned projection effect, which is extremely large
for the chosen type of boundaries. The transverse component here
grows linearly with the distance from the X-line x ¼ y ¼ 0, while
the longitudinal component remains constant. So the farther a
given field line meets the boundary from the X-line, the more
they become aligned with each other.

Such an explanation is fully confirmed by calculations of the
perpendicular squashing factorQ? in this case. To derive an ana-
lytical expression of Q?, let us choose (�; �) as coordinates on
both boundary surfaces, so that u1 ¼ w1 ¼ � and u2 ¼ w2 ¼ �
in equations (30)Y (36). Assume for generality that the boundaries
are defined by z ¼ Z	 (�; �), then according to equations (44) and
(45), the vector functions

R �; �ð Þ ¼ �e�hZ� ; �ehZ� ; Z�
� �

; ð47Þ
R̃ �; �ð Þ ¼ �e�hZþ ; �ehZþ ;Zþ

� �
ð48Þ

define, respectively, the launch and target boundary surfaces.
These formulas are needed for calculating equations (2), (3),

(8), (31), (33), (34), (36), and (43) in the chosen coordinates
(�; �). With the help of such calculations, equation (30) yields

Q? ¼
2 cosh 2h Zþ � Z�ð Þ½ � þ h2 X 2

þ þ Y 2
þ þ X 2

� þ Y 2
�

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h2 X 2

þ þ Y 2
þð Þ½ � 1þ h2 X 2

� þ Y 2
�

� �
 �q ;

ð49Þ

in which

X	 ¼ �e�hZ	 ; ð50Þ
Y	 ¼ �ehZ	 ð51Þ

determine (x; y) coordinates of the conjugate footpoints at the
defined boundaries.
These expressions determineQ? as a function of the Euler po-

tentials � and �. Note also that � ¼ x and � ¼ y at z ¼ 0, so equa-
tions (49)Y (51) define, in addition, the distribution of Q? in the
plane z ¼ 0, to whichQ? is mapped along the field lines from the
boundaries. More generally, the combination of these expressions
with equations (44) and (45), resolved with respect to x and y as

x ¼ �e�hz; ð52Þ
y ¼ �ehz; ð53Þ

provides a parametric representation of Q?, with � and � as pa-
rameters, in any plane z ¼ const between the boundaries.
In the particular case of plane boundaries, we have to put

Z	 (�; �) ¼ 	1 in equations (49)Y(51). Using then equations
(44), (45), (50), and (51), equation (49) for Q? can be rewritten
even as an explicit function of (x; y; z). By comparing equa-
tions (49) and (46), one can see also that the terms containing X	
and Y	 are responsible in this case for eliminating the projection
effect. As a result of this, the distribution ofQ? in the z ¼ 0 plane
shows very pronounced ‘‘ridges’’ along the x- and y-axes (Fig. 2a)
by revealing an expected HFT with a characteristic X-type inter-
section of QSLs along theX-line. According to equations (52) and
(53), such a structure shrinks and expands along these axes ex-
ponentially fast with z to give a typical HFT variation of its cross
section (see diagram [42]). With growing h, the ridges of the Q?
distribution, and so the corresponding QSLs, become thinner and
thinner by extending on larger and larger distances from the
X-line. Thus, the perpendicular squashing factor Q? defines in-
deed an HFT such that it continuously transforms in the limit of
large h into the separatrix planes x ¼ 0 and y ¼ 0.
However, the peripheral field lines in this HFT are still nearly

parallel to the boundaries z ¼ 	1, which causes too strong of a
variation of the HFT cross section. Aesthetically more pleasing
HFT in the X-line configuration can be obtained by using the
boundaries which are orthogonal to the field lines. These are iso-
surfaces of magnetic potential F ¼ h x2 � y2ð Þ/2� z having the
shape of hyperbolic paraboloids. It is natural to chose them
passing through the points (x ¼ y ¼ 0; z ¼ 	1), which means
that F ¼ �1 for such isosurfaces. This condition using equa-
tions (50) and (51) yields

h2

2
� 2e�2hZ	 � � 2e2hZ	
� �

� Z	 	 1 ¼ 0; ð54Þ

which is a transcendental equation for the Z	 functions entering
in equation (49). This equation is not difficult to solve numer-
ically for given � and � and to use the respective solution for the
calculation of Q?. An example of the resulting Q? distribu-
tion in the plane z ¼ 0 at h ¼ 2 is shown in Figure 2b. The
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corresponding HFTwith the magnetic surface defined byQ? ¼
100 and boundaries F ¼ �1 is presented in Figure 2c. For the
chosen type of boundaries, Q? ¼ Q, so both squashing factors
define the sameHFT. Themagnetic field for this HFT has the sim-
plest analytical form; the hyperbolic paraboloids are also relatively
simple boundary surfaces. So we believe that this example pro-
vides the simplest possible HFT relevant for theoretical studies
of basic magnetohydrodynamic (MHD) processes, such as mag-
netic pinching and reconnection, in three dimensions.

4.2. HFT in Twisted Magnetic Configuration

The considered X-line configuration with z ¼ 	1 boundaries
is an important example, whereQ?, in contrast toQ, succeeds in
determining an expected HFT. However, this example is not rep-
resentative enough to make a general conclusion on the poten-
tialities of Q and Q? for detecting QSLs. Because the field lines
in such a configuration behave in a rather artificial way over a ma-
jor part of the boundaries. A better comparison ofQ andQ? can be
done by using a more realistic field.

For this purpose, we have chosen the analytical model of a
twisted magnetic field (Titov & Démoulin 1999), hereafter called
the T&D model. It describes approximate equilibria of a circular
magnetic flux rope whose interior force-free field is continuously
embedded into a potential background field. The latter is produced
by fictitious subphotospheric sources consisting of two magnetic
monopoles of opposite signs and a line current, all located at the

axis of symmetry of the rope. The axis itself is placed some depth
below the photospheric plane, and theminor radius of the rope a is
assumed to be much smaller than the major one Rc and the dis-
tance between the monopoles L.

To compare Q and Q? in detail, we have computed their dis-
tributions for three sets of parameters which differ only in values
of Rc. Two of these values (Rc ¼ 85 and 98 Mm) and all the
remaining parameters are chosen to be exactly the same as in the
T&D model. By growing Rc but keeping other parameters fixed,
we imitate an emergence of the flux rope from below the photo-
sphere. In this process, the configuration passes continuously
through three distinct topological phases. For sufficiently small
Rc, there is a single BP separatrix surface (Titov & Démoulin
1999)—the configuration with Rc ¼ 85 Mm represents one of
these topological states. The corresponding distributions of Q
andQ? are shown in Figures 3a and 3d, respectively.With grow-
ing Rc, this BP and the associated separatrix surface bifurcate
into two parts to give birth to a BP separator field line (Titov &
Démoulin 1999)—the configuration with Rc ¼ 98 Mm repre-
sents this second topological phase. The corresponding distribu-
tions of Q and Q? are shown in Figures 3b and 3e, respectively.
The points Sa and Sd on these figures are the footpoints of the BP
separator, while Sb and Sc are its photospheric contact points.

Further growing of Rc leads to a complete disappearance of
the bifurcated BP and the associated separatrix surfaces—the
configuration with Rc ¼ 110 Mm represents this last phase. The
corresponding distributions ofQ andQ? are shown in Figures 3c
and 3f, respectively. Themagnetic field at these parameters becomes
topologically trivial, since its field line mapping is continuous
everywhere. Thewhole structure can be continuously transformed
to a simple arcadelike configuration with the help of a suitable
photospheric motion. Thus, with growing Rc or emerging of the
flux rope, the topological complexity of the configuration first in-
creases and then abruptly decreases.

On the contrary, the geometrical distortion of the field line
mapping gradually increases in the configuration during this pro-
cess. Both squashing factorsQ andQ? continue to grow with Rc

in narrow strips of the photospheric plane. It is clearly seen from
the Q and Q? distributions plotted with the same grayscaling
(Fig. 3) that Q > Q? everywhere and the difference between Q
and Q? becomes smaller with growing Rc. The most significant
difference between them is seen at the first two phases near the
BPs and the footprints of the associated separatrix surfaces. As
previously anticipated,Q always rises in these regions, whileQ?
does not, except near the contact points Sb and Sc of the BP
separator (Fig. 3e). The valueQ? does rise there but only to give
birth to a part of HFT footprints, which are matured eventually in
the third phase (Fig. 3f ). As concerned with the indicated rise of
Q, it is mainly caused by the projection effect; the field lines
which are close to the BP separatrix surfaces approach the pho-
tosphere near the BPs at a small angle to the horizontal, which
strongly distorts the footprints of the corresponding elemental flux
tubes. ComparingQ andQ? at Rc ¼ 110 Mm reveals that the lat-
ter is valid for the central part of the PIL as well.

The discussed features of the distributions becomemore trans-
parent if one saturates the gray shading in the plots at the values
�2.5 times the logarithm of the squashing factors (Fig. 4). These
new plots show that the QSLs based on the Q? distribution are
characterized by a thinner and more uniform thickness. Their
footprints acquire at Rc ¼ 110 Mm a clear fishhook-like shape
in each of the photospheric polarities with maximums ofQ reach-
ing 
108. The QSLs rooted at such ‘‘fishhooks’’ intersect each
other by combining themselves into an HFT (Titov et al. 2003).

Fig. 2.—Distributions of logQ? in the plane z ¼ 0 for the X-line configura-
tion from eq. (43) at h ¼ 2. The boundaries are (a) two parallel planes z ¼	1 or
(b) two hyperbolic paraboloids h(x2 � y2)/2� z ¼ �1. In the second case,
Q? ¼ Q, since the field lines are strictly orthogonal to the paraboloids. The
contours in both distributions correspond to Q? ¼ 100. In the second case,
such a contour represents also the cross section of the HFT by the plane z ¼ 0,
so that the field lines passing through this contour form the lateral surface of the
HFT (c) bounded from the top and bottom by the hyperbolic paraboloids.
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This structural feature seems to be very robust, because it appears
even in twisted configurations which are not in force-free or mag-
netostatic equilibrium (Démoulin et al. 1996b). One can see from
Figure 5a that, except for an essential twisting distortion, the cross
section of such an HFT varies exactly according to diagram (42).

It has yet to be proved, but it seems to be quite natural that this
HFT is pinched into a vertical current sheet below the flux rope by
its upward movement when the kink or torus instability is de-
veloped in the configuration at a sufficiently large twist of the field
lines in the rope (Török et al. 2004; Roussev et al. 2003). This
interpretation is very important for understanding the properties of

sigmoidal structures in flaring configurations (Kliem et al. 2004).
Figure 5a suggests that the sigmoids in such configurations are sim-
ply pinching HFTs illuminated by a hot plasma material which ap-
pears there due to the reconnection process in the above-mentioned
vertical current sheet. This seems to be valid at least for the third
topological phase of the flux rope emergence, while an additional
interaction with the photosphere must be involved at the first and
second topological phases, where the BPs are present (Titov &
Démoulin 1999; Fan & Gibson 2003). Panels (d )Y( f ) in Fig-
ures 3 and 4 demonstrate that the footprints of the BP separatrix
surfaces followvery close to theHFT footprints emerging gradually

Fig. 3.—Distributions of logQ (a, b, and c) vs. logQ? (d, e, and f ) at different values of the major radius Rc of the flux rope and with other parameters of the model
fixed. The contours of the photospheric normal magnetic field Bz ¼ 0, 	100, 	200, and 	400 G (and additionally Bz ¼ 	300 G for [c] and [ f ]), the BPs (thick solid
segments of the PIL), and footprints of the BP separatrices (dotted thin lines on [a], [b], [d ], and [e]) are also shown. The footprints Sa and Sd and touch points Sb and Sc of
the BP separator field line are indicated on (b) and (e).
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with growing Rc. This implies the corresponding similarity in the
shapes of such separatrix surfaces andHFTs. So the explanations
of the sigmoids that rely on either the presence of the BPs (Titov
&Démoulin 1999; Fan&Gibson 2003) or the HFTs (Kliem et al.
2004) are not alternative but rather complementary, since they
refer to different phases of the flux rope emergence.

It should be noted also that bothQ andQ? distributions (Fig. 4)
contain at the border of the flux rope two less pronounced
horseshoe-like features with maximums
102. The QSL rooted
at these ‘‘horseshoes’’ has a helical shape (Fig. 5b) with a slightly
varying cross section along the field lines. So this QSL has a struc-
ture qualitatively different from those two which form the HFT.

The comparison ofQ andQ? shows that the squashing of the flux
tubes in this helical QSL is only in part due to the projection effect.
The Q? distribution demonstrates that the major contribution to
Q comes from the shearing of the twisted field lines in the rope.
Thus, both distributions reveal a helical QSLwhich is a part of the
inner border layer of the flux rope. In this respect, the considered
example demonstrates that our squashing factors help identify
flux ropes themselves. It is not a problem, of course, to locate the
flux rope in the T&D model, where its parameters are known
from the construction of the model. Yet identifying flux ropes in
more complicated configurations obtained, for instance, numerically
from magnetogram data is a real problem. If such configurations

Fig. 4.—Same as Fig. 3, but with the shading saturated at the level 2.5 to reveal the difference between the distributions at moderate values.
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are topologically trivial, like those in the third phase of our ex-
ample, the determination of QSLs seems to be the only method
for identifying flux ropes.

As shown above, both squashing factors allow us in the case
of the T&D model to determine similar QSLs, except that Q? is
more advanced thanQ nearBPs,whenever they appear. Therefore,
we think that, in general, if the numerical grid used for com-
puting Q? is fine enough for detecting possible BP separatrix
surfaces by sudden spikes in the Q? distribution, the use of only
Q? would be sufficient for the structural analysis of configura-
tions. In practice, however, the required resolution of the grid
cannot be always easily foreseen. In addition, the computational
cost forQ is not really high, since the same input data as forQ? can
be used. So it is sensible to compute both these distributions at a
time and compare them in the same way as we did in the consid-
ered example. Some redundancy of the information contained in
such distributions is not superfluous but useful, especially in the
case of complicated real magnetic configurations. Thus, from the
practical point of view, the value Q should not be considered as
obsolete but rather as a complementary characteristic of magnetic
connectivity.

5. SUMMARY

We have derived a covariant form of the squashing factor Q,
which enables us to determine quasi-separatrix layers (QSLs) in
both closed and open magnetic configurations with an arbitrary

shape of boundaries. The corresponding expression forQ assumes
that the Jacobian matrix of the field line mapping and the metric
tensors at the footpoints are known. The expression admits also
that such ‘‘input data’’ can be represented with the help of two
different coordinate systems for determining location of the con-
jugate footpoints on the boundaries. This provides a firm theo-
retical basis for a global description of the field line connectivity in
the solar corona.
To eliminate the projection effect at the field lines which are

nearly touching the boundary, the perpendicular squashing fac-
tor Q? is also derived in a similar covariant form. The value
Q? defines the degree of squashing of elemental magnetic flux
tubes only in the directions orthogonal to the field lines. In
the definition ofQ?, the boundaries enclosing the magnetic con-
figuration constrain only the length of the flux tubes, while not
affecting their cross sections at the footpoints. For calculating
Q?, the vectors of magnetic field at the footpoints are required in
addition to the same input data as for Q. The use of both co-
variant squashing factors is demonstrated by calculating them for
the boundaries with the planar and spherical geometries. Then
the properties of Q and Q? are compared by considering two
examples of magnetic configurations.
The first example is a classical X-line configuration of poten-

tial magnetic field in a plasma volume restricted by two boundary
surfaces. It is easy to show that for the plane boundaries perpen-
dicular to the X-line, the valueQ is constant. So theQ distribution

Fig. 5.—HFT (a), the helical QSL (c), and their cross sections, for the HFT (b) and for the QSL (d ), in the T&D twistedmagnetic configuration atRc ¼ 110 Mm.Other
parameters of the model, as well as the contours of the photospheric normal magnetic field Bz, are the same as in Figs. 3c and 3f ; the white stripes on the photosphere
represent the HFT and QSL footprints, whose contours correspond to Q ¼ 100.
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does not allow us to define any QSLs in such a configuration. The
reason for this failure lies in the projection effect, which is very
strong for the field lines distant from the X-line. We have also
calculated an analytical expression of Q? for the same field but
with the boundaries of an arbitrary shape. In the case of the
plane boundaries, this new value Q?, in contrast to Q, has a
nonuniform distribution, which does reveal the expected two
QSLs. These QSLs intersect each other by combining themselves
into a hyperbolic flux tube (HFT). A more elegant HFT is ob-
tained for the X-line configuration with the boundaries orthogonal
to the field lines.

To make a better comparison of the properties of Q and Q?, a
second magnetic configuration more relevant for solar physics is
considered. The respective field is defined by using the Titov-
Démoulin (1999) model of a force-free flux rope embedded into
a potential background field. Contrary to the case of the X-line
configuration restricted by the plane boundaries, both the Q and
Q? distributions reveal QSLs in the twisted configuration. These
distributions are similar everywhere except near bald patches

(BPs) and footprints of the associated separatrix surfaces, when-
ever the BPs exist. By definition, the value Q? is free of the pro-
jection effect, so thatQ? rises near BPs only if the corresponding
flux tubes are subject to a volumetric squashing. This is not the
case, of course, for the value Q, which always rises in such re-
gions of the photosphere. So, in comparison withQ, the valueQ?
shows itself to be again a superior characteristic for analysis of
magnetic connectivity.

Nevertheless, we have argued that it is more practical in gen-
eral to compute both squashing factors for analyzing the struc-
ture of a given magnetic configuration. This does not require
additional significant effort, while making it easy to discriminate
between the volumetric squashing of elemental flux tubes and
the surface projection effect at the boundaries.

This research was supported byNASA and the Center for Inte-
grated SpaceWeatherModeling (anNSF Science and Technology
Center).
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