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ABSTRACT

We study correlations in spatial orientation between galaxy clusters and their host superclusters using a Hubble
volume N-body realization of a concordance cosmology and an analytic model for tidally induced alignments. We
derive an analytic form for the distributions of alignment angle as functions of halo mass (M ), ellipticity (�), dis-
tance (r), and velocity (v) and show that the model, after tuning of three parameters, provides a good fit to the numer-
ical results. The parameters indicate a high degree of alignment along anisotropic, collapsed filaments. The degree
of alignment increases with M and �, while it decreases with r and is independent of v. We note the possibility of
using the cluster-supercluster alignment effect as a cosmological probe to constrain the slope of the initial power
spectrum.

Subject headinggs: cosmology: theory — large-scale structure of universe

1. INTRODUCTION

Superclusters are collections of galaxy groups and clusters
that represent the largest gravitationally bound structures in the
universe (Shapley 1930; Kalinkov et al. 1998). If the dark energy
is a cosmological constant, then the collapse of these systems
over the next few billion years of the cosmic future will mark the
end of hierarchical structure formation in our universe (Nagamine
&Loeb 2003; Busha et al. 2005).A conspicuous feature of locally
observed superclusters is the strong tendency of member clusters
to be elongated along their major-axis orientations (Plionis 2002,
2004), which is in turn closely related to their filamentary shapes
(see, e.g., Basilakos 2003). To describe the structure distribution
on the largest scale in the universe, it is quite essential to un-
derstand this effect of cluster-supercluster alignments from first
principles.

The effect of structure-substructure alignment is in fact ob-
served on all different scales in the universe. On the subgalactic
scale, galaxy satellites are observed to preferentially be located
near the major axes of their host galaxies (Valtonen et al. 1978;
Knebe et al. 2004; Brainerd 2005; Agustsson&Brainerd 2006).
On the galactic scale, the major axes of cluster galaxies are ob-
served to be aligned with those of their host clusters (Plionis &
Basilakos 2002; Plionis et al. 2003). The cluster galaxies are
also observed to have a strong tendency toward radial alignment
(Pereira & Kuhn 2005).

Although this alignment effect has been shown to be a natural
outcome in the currently favored concordance �CDM cosmol-
ogy (Onuora & Thomas 2000; Libeskind et al. 2005; Kang et al.
2005; Lee et al. 2005; Zentner et al. 2005; Kasun& Evrard 2005;
Basilakos et al. 2006), the details of its origin remain a subject of
debate between those who emphasize the importance of aniso-
tropic merging and those who stress tidal interaction.

The anisotropic-merging scenario explains the effect of
substructure-structure alignment as being induced by the aniso-
tropic merging and infall of matter along filaments (West 1989).
It has indeed been shown by N-body simulations that the merg-
ing and infall of matter to form bound halos occur preferentially
along filaments, which provides supporting evidence for this
scenario (e.g., West et al. 1991; van Haarlem & van deWeygaert
1993; Dubinski 1998; Faltenbacher et al. 2002; Knebe et al.
2004; Zentner et al. 2005).
The tidal interaction theory explains that the correlations be-

tween the substructure angular momentum vectors and the prin-
cipal axes of the host tidal fields induce the alignment effect.
Lee et al. (2005) constructed an analytic model for the effect of
substructure alignment in the frame of the tidal interaction theory
and showed that their analytic predictions are in good agreement
with the numerical results from N-body simulations.
In fact, the above two theories are not mutually exclusive,

since the anisotropic merging and infall itself is a manifestation
of the primordial tidal field (Bond et al. 1996). The difference
between the two scenarios, however, lies in the question whether
the connection to filaments is a major contribution or not.
Very recently, Atlay et al. (2006) have quantified the influences

of both the tidal interaction and the anisotropic infall through
analysis of data from recent high-resolutionN-body simulations.
What they confirmed is the following: (1) for the majority of
halos, the alignment effect is caused by the tidal field but not by
the anisotropic infall, and (2) only for cluster-size halos is the
alignment effect predominantly due to the anisotropic merging
and infall of matter along filaments. In other words, they made
it clear that the filaments are important markers of local orien-
tation on the cluster halo scale.
Now that cluster-supercluster alignment has turned out to be

due to anisotropic merging along filaments, it is desirable to have
a theoretical framework within which one can provide physical
answers to the remaining questions, such as how the alignment
effect depends on the cluster properties such as mass, shape, etc.
Our goal here is to construct such a theoretical framework by
using both analytical and numerical methods. Analytically we
adopt the standard cosmic-web theory, and numerically we use
data from a large Hubble volume simulation.
The organization of this paper is as follows: In x 2, we provide

a brief description of theHubble volume simulation and summarize
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the numerical results. In x 3, we present an analytic model and
compare its predictions with the numerical results. In x 4, we dis-
cuss our results and draw final conclusions.

2. NUMERICAL RESULTS

For the numerical analysis, we use a mass-limited sample of
cluster halos extracted from the Hubble volume simulation of
a �CDM universe (Evrard et al. 2002). The simulation models
dark matter structure resolved by particles of mass m = 2.25 ;
1012 h�1 M� in a periodic cube of linear size 3000 h�1 Mpc, as-
suming�m = 0.3,�� = 0.7, and �8 = 0.9. The z = 0 catalog con-
tains a total of 82,973 halos with massM above a limiting value
of 3 ; 1014 h�1 M�, with information on various properties such
as center-of-mass position, mass, inertia momentum tensor, and
redshift. We refer the readers to Evrard et al. (2002) and Kasun&
Evrard (2005) for the details of the cluster catalog, including the
algorithm for cluster identification.

The superclusters are identified in the catalog with the help of
the friends-of-friends algorithm with a linking length of 0:33l̄,
where l̄ = 69 h�1 Mpc is the mean spacing of the mass-limited
sample. The total number and the mean mass of the identified
superclusters are Ns = 14,007 and M̄ s = 1.26 ; 1015 h�1 M�, re-
spectively. This large number of superclusters allows us to study
the alignment effect with high statistical power.

Figure 1 shows orthogonal projections of the third-richest
supercluster in the volume. It contains 12 halos above the ap-
plied mass limit and a total mass of 5.3 ; 1015 h�1 M� associated
with these halos. The spatial distribution of the supercluster is highly
elongated, much closer to filamentary than spherical. In this ex-
ample, the major-axis orientations of the halos, taken from Kasun
& Evrard (2005), are shown as whiskers in the plot. The tendency
for these halos to be alignedwith their supercluster’s principal axis,
although arguably visible in this plot, is a weak effect.We therefore
seek a statistical measure using the entire supercluster sample.

For each supercluster, wemeasure its inertia momentum tensor,
Is � (I sij), as

I sij ¼
1

Ms

X
�

M�
c x

�
c; i x

�
c; j; ð1Þ

whereM�
c and x�c � (x�c;i) represent the mass and position of the

� th member cluster, respectively, andMs is the total mass of the
host supercluster. Then we compute the eigenvalues and eigen-
vectors through the diagonalization of Is and determine themajor-
axis direction as the direction of the eigenvector corresponding to
the largest eigenvalue.

It is however worth mentioning here that for a supercluster
that has fewer than five clusters, the orientation of its major axis
derived using equation (1) must suffer from considerable inac-
curacy. Themost idealistic technique would be to derive themajor
axis of a supercluster using all particles within it.

Nevertheless, given that the major axes of the superclusters
in real observations cannot be determined in this idealistic way,
because the positions of the dark matter particles are not mea-
surable, the advantage of our analysis based on equation (1) is
its practicality. That is, it can readily be repeated by observers
based directly on cluster catalogs.

At any rate, to overcome this limitation of our analysis, we
constructed a separate sample choosing only those superclusters
that have more than five clusters (Nc > 5, whereNc is the number
of clusters within the supercluster). It is found that 217 super-
clusters have more than five clusters and that a total of 1492 clus-
ters belong to those 217 superclusters.

First we measure the probability distribution of the cosines
of the angles, �, between the major axes of the superclusters and
their member clusters. Figure 2 plots the result as circles with
Poissonian error bars. The top panel corresponds to the case in
which all 14,007 superclusters are used, while the bottom panel
corresponds to that in which only those superclusters with more
than five clusters are used. The dotted line in each panel corre-
sponds to the case of no alignment. As can be seen, the distri-
bution, p(cos �), increases with cos � in both panels, revealing a
clear signal of the alignment effect. Although the result in the
bottom panel shows a less sharp increase, suffering from large
errors, the signal is robust at the 99% confidence level. This in-
dicates that the cluster-supercluster alignment effect is not a false
signal that originates from an inaccurate derivation of the super-
cluster major axes, but a real one. The mean values of cos � are
found to be 0.54 and 0.52 in the top and bottompanels, respectively.

Fig. 1.—Spatial distribution of the third-richest supercluster, shown in orthogonal projections. Circles show halo locations, with symbol size scaling asM1/3, while
the lines through each halo show the orientation of the major axis of its density field, taken from Kasun & Evrard (2005). The length of each line is proportional to the
halo’s major-to-minor axis ratio.
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Now that a robust signal of the cluster-supercluster alignment ef-
fect has been found, we may examine how the degree of align-
ment depends on the cluster properties. First we examine how the
average value of cos � depends on the cluster mass, Mc. Figure 3
plots the result versus the rescaled cluster mass, M̃ � Mc/Ms,

as circles with errors that are calculated as 1 standard deviation
of cos � for the case of no alignment. As can be seen in the top
panel, the degree of alignment increases with M̃ . A similar trend
is also shown in the bottom panel, although it suffers from the
large errors.
Second, we examine how the average of cos � depends on the

separation distance, r, from the supercluster center to the cluster
center. Figure 4 plots the result versus the rescaled distance r̃ �
r/Rs. As can be seen in the top panel, the degree of alignment de-
creases with distance. That is, the closer a cluster is located to
the supercluster center, the stronger the alignment effect is.
Third, we examine how the average of cos � depends on the

cluster ellipticity, �. Here we define the ellipticity of a cluster as
� � 1 � (% c

3 /%
c
1 )

1/2 assuming a prolate shape, where % c
1 and % c

3

are the largest and the smallest eigenvalues of the cluster inertia
momentum tensor, respectively. Figure 5 plots the result versus
the rescaled ellipticity �̃ � � /�0 (where �0 is the maximum clus-
ter ellipticity) and reveals that the degree of alignment increases
with cluster ellipticity. That is, themore elongated a cluster is, the
stronger the alignment effect.
Fourth, we measure the average of cos � as a function of the

cluster velocity, v. Figure 6 plots the result and reveals that the de-
gree of alignment depends veryweakly on the cluster velocity.We
provide physical explanations for these numerical results in x 3.

3. PHYSICAL ANALYSIS

3.1. Hypotheses

To construct an analytic model for the cluster-supercluster
alignment effect, we assume the following:

1. Superclusters form through anisotropic merging of clusters
along filaments. In consequence, the major axis of a supercluster
tends to be in the direction of the dominant filament. A filament
is defined as a one-dimensional object that is collapsed along the
major and intermediate principal axes of the local tidal tensor
(Zel’dovich 1970; Pogosyan et al. 1998). The direction of a fila-
ment thereby is aligned with the minor principal axis of the tidal

Fig. 3.—Average of the cosines of the angles as a function of cluster mass.
Top, the case in which all 14,007 superclusters are used; bottom, the case in which
only the 217 superclusters withmore than five clusters are used. In each panel, the
circles and solid curves represent the numerical and the analytic results, respectively.
The errors are calculated as 1 standard deviation of the cosines of the angles for
the case of no alignment. The dotted line corresponds to the case of no alignment.

Fig. 4.—Same as Fig. 3, but as a function of the distance from the super-
cluster center to the cluster center.

Fig. 2.—Probability density distributions of the cosines of the angles be-
tween the major axes of clusters and their superclusters. Top, the case in which all
14,007 superclusters are used; bottom, the case in which only the 217 superclusters
with more than five clusters are used. In each panel, the numerical result is rep-
resented by circles with Poissonian errors, while the analytic result (eq. [5]) cor-
responds to the solid curve. The dotted line corresponds to the case of no alignment.
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tensor. Therefore, the major axis of a supercluster tends to be in
the direction of the minor principal axis of the tidal tensor.

2. LetTs be the tidal tensor field smoothed on the supercluster
mass scale, and let �s � ��/�̄ be the linear density contrast of the
supercluster, where �̄ is the mean mass density. Let also k1, k2,
and k3 (with k1 > k2 > k3) be the three eigenvalues of T s. The
collapse conditions for a supercluster are

�s ¼ k1 þ k2 þ k3 ¼ 1:3; k1 > k2 > 0; k3 < 0: ð2Þ

Given that the supercluster has passed the moment of turnaround
but not yet virialized, we expect its linear density contrast, �s,
to be in the range (1, 1.68), where the values of 1 and 1.68 corre-
spond to the linear densities at the moments of turnaround and
virialization, respectively (Eke et al. 1996). Here we choose a
fiducial value of �s = 1.3. The other condition, k1 > k2 > 0 and
k3 < 0, in equation (2) represents the collapse along filaments
(Pogosyan et al. 1998).

3. The cluster-supercluster alignment is a reflection of the
anisotropic spatial distribution of cluster galaxies in a filament-
dominated, weblike cosmic structure. The correlation of the spa-
tial positions of galaxies with the local tidal field can be quantified
by the following quadratic equation, which was first suggested by
Lee & Kang (2006):

hxci x
c
j jT̂

si ¼ 1� s

3
�ij þ sT̂ s

ik T̂
s
kj; ð3Þ

where xc � (xci ) and T̂
s = (T̂ s

kj) � Ts
ik /|T

s| are the rescaled major
axis of a galaxy cluster and the unit tidal shear tensor smoothed
on the superclustermass scale,Ms. Here the parameter s 2 [�1, 1]
represents the strength of the correlation between x c and Ts. If
s = �1, there is the strongest correlation between x c and T̂ s. If
s = 1, there is the strongest anticorrelation between x c and T̂ s,
while if s = 0, there is no correlation between them.

4. The conditional probability distribution of x c provided
that the local tidal field is given by Ts can be approximated as
Gaussian:

P(x cjT̂ s) ¼ 1

½(2�)3 det M�1=2
exp

�
�

xci (M
�1)ij x

c
j

2

�
ð4Þ

(Lee&Kang 2006), where the covariancematrixMij � hxci xcj |T̂ si
is related to T̂ s by equation (3).

It is worthmentioning here the difference of cluster-supercluster
alignment from galaxy-cluster alignment. In the former case, the
primordial tidal field induces the anisotropy in the spatial dis-
tribution of galaxies along cosmic filaments, which results in align-
ment between the major axes of clusters and their superclusters.
In the latter case, the tidal field of a virialized cluster halo induces
the angular momentum of the cluster galaxies, whose minor axes
tend to be aligned with the major axis of its host cluster (Lee et al.
2005). In other words, the alignments between the major axes
of cluster galaxies and their host clusters are related to the gen-
eration of angularmomentum,while the alignments between the
major axes of clusters and their host superclusters are related to
the filamentary distribution of galaxies.

3.2. Analytic Expressions

Using the four hypotheses given in x 3.1, we first derive
p(cos �) analytically. According to the second hypothesis, this
amounts to deriving the probability density distribution of the
cosines of the angles between the major axes of clusters and the
minor principal axes of the local tidal tensors.

Let us express x c in terms of spherical polar coordinates in the
principal-axis frame of Ts as x c = (xc sin � cos �, xc sin � sin �,
xc cos �), where xc � |x c| and � and � are the polar and the
azimuthal angles of x c, respectively. Then the polar angle � is
nothing other than the angle between x c and the minor princi-
pal axis of Ts. Now, the probability density distribution of cos �

Fig. 6.—Same as Fig. 3, but as a function of cluster velocity.
Fig. 5.—Same as Fig. 3, but as a function of cluster ellipticity.
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can be derived by integrating equation (4) over xc and � as
p(cos �) =

R 2�
0

R1
0

P(xc, �, �)x c2 dxc d�, which leads to

p(cos �) ¼ 1

2�

Y3
i¼1

(1� sþ 3sk̂2
i )

�1=2

;

Z 2�

0

�
sin2 � cos2�

1� sþ 3sk̂21

þ sin2� sin2�

1� sþ 3sk̂2
2

þ cos2�

1� sþ 3sk̂2
3

��3=2

d�

ð5Þ

(Lee &Kang 2006), where fk̂ig3i¼1 are the unit eigenvalues of T̂,
related to fkig3i¼1 as k̂i � ki/(k21 þ k22 þ k23)

1/2.
It was in fact Lee&Kang (2006)who first derived equation (5),

as an analytic expression for the probability distribution of the
alignments between the positions of satellite galaxies in themajor-
axis orientations of their host galaxies. Here we derive it as an
analytic expression for the probability distribution of the align-
ments between the major axes of clusters and their host super-
clusters. It is important to note a key difference between the two
cases: For the case of galaxy satellites, it is the tidal fields of the
virialized galactic halos that cause the alignment effect. There-
fore, all the eigenvalues k1, k2, and k3 in equation (5) should be
positive. For the case of clusters in superclusters, it is the local
filaments that collapse, along only two principal axes of the pri-
mordial local tidal tensors. Therefore, k3 in equation (5) has a
negative value.

This probability distribution is characterized by three indepen-
dent parameters, s, k1, and k2. Once the values of k1 and k2 are
determined, then the negative value of k3 is automatically deter-
mined by equation (2). Since the values of these three parameters
depend on the properties of individual superclusters as well as
the local conditions of the initial tidal fields, it may be quite dif-
ficult to determine them analytically.

Instead, we determine their average values by fitting equa-
tion (5) to the numerical results obtained in x 2. When the nu-
merical result using all superclusters is fitted, the best-fit values
of the three parameters are found to be s = �0.71, k1 = 2.23, and
k2 = 0.53, which gives k3 = �1.46. When the numerical result
using only those superclusters with Nc > 5 is fitted, it is found
interestingly that the best-fit values of the parameters are s =
�0.5, k1 = 2.23, and k2 = 0.53. Note that the two numerical
cases yield the same best-fit values for k1 and k2, although the
best-fit values of the correlation parameters are different, s =
�0.71 and s = �0.5.

Figure 2 plots the analytic distributions with these best-fit
parameters (solid lines) and compares them with the numeri-
cal data points. In the top panel, the analytic distribution with
s = �0.71 is compared with the numerical result obtained in x 2
using all superclusters, while in the bottom panel the analytic
distribution with s = �0.5 is compared with the numerical re-
sult obtained using only those superclusters with more than five
clusters (Nc > 5). As can be seen, the analytic and the numerical
results are in good agreement with each other in both.

It is worth mentioning here that the best-fit values of the three
parameters are subject to our fiducial choice of �s = 1.3. As men-
tioned in x 3.1, there is no consensus on the critical linear density
of superclusters, unlike the case of clusters. Varying the value
of �s from 1.0 to 1.68, we repeated the fitting procedure and
found that although the best-fit values of k1 and k2 change by up

to 20%, the fitting result itself does not sensitively change with
the value of �s. Thus, we conclude that our fiducial model is a
stable choice.
Now that we have the probability density distribution, p(cos �),

we would like to find analytic expressions for hcos �i as a func-
tion of cluster mass, position, ellipticity, and velocity. The depen-
dence of the correlation parameter s on the cluster massMc may
be obtained by considering the difference in mass between the
cluster and its host supercluster. Strictly speaking, equation (3)
is valid when the tidal tensor Ts and the position vector x c are
smoothed on the same mass scale. In other words, the correla-
tion between x c and Ts is expected to be highest when the two
smoothing mass scales are the same. In reality, however, Ts is
smoothed on the superclustermass scaleMs, while x

c is smoothed
on the cluster mass scale Mc. The difference between the two
mass scales diminishes the correlation between xc and Ts.
Let sM0

be the value of the correlation parameter when the
tidal field is smoothed on the same cluster mass scale Tc. We
expect sM0

= �1. Given equation (3), we approximate s = s(M̃ )
as

s(M̃ ) � sM0

hT̂ s
ik T̂

s
kji

hT̂ c
ik T̂

c
kji

� sM0

�2
s

�2
c

: ð6Þ

Here �c and �s represent the rms linear density fluctuations
smoothed on themass scalesMc andMs, respectively. In deriving
equation (6), we used the approximation hT̂ c

ik T̂
c
kji�hTc

ikT
c
kji/|Tc|2,

which was proved to be valid by Lee & Pen (2001).
Now that the functional form of s(M̃ ) is found, the average of

cos � as a function of M̃ can be calculated from equations (5)
and (6) as

hcos �i(M̃ ) ¼
Z 1

0

cos � p(cos �; s(M̃ ))d (cos � ): ð7Þ

Figure 3 plots equation (7) with k1 = 2.23 and k2 = 0.53 (solid line)
and compares it with the numerical result (circles) obtained in x 2.
For the analytic distribution, the value ofMs is set to be the mean
mass of the superclusters found in x 2: 1.26 ; 1015 h�1 M� (top)
and 3.69 ; 1015 h�1 M� (bottom). As can be seen, in the top panel
the analytic and the numerical results agree with each other ex-
cellently. In the bottom panel, although the numerical result suffers
from large errors, the analytic prediction is still quite consistent
with the numerical result.
The dependence of the correlation parameter s on the distance

r between the centers of clusters and their host superclusters can
be obtained in a similar way. The correlation between x c and Ts

in equation (3) becomes strongest when r = 0. In reality, how-
ever, r always deviates from zero, which will diminish the cor-
relation strength.
Let sr0 be the value of the correlation parameter when r = 0,

which is expected again to be sr0 = �1. With a similar approx-
imation to that made for equation (6), we find the following
formula for s(r):

s(r) � sr0

2

�
1þ

hT̂ c
ij(xþ r)T̂ c

ij(x)i
hT̂ c

ij(x)T̂
c
ij(x)i

�
� sr0½1þ 	̃c(r)�

2
; ð8Þ

where 	̃c(r) represents the two-point density correlation re-
scaled to satisfy the condition that 	̃c(0) = 1. Since the distance
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r is an Eulerian quantity, unlike the massMs, we use the Eulerian
filtering radius of 2 h�1 Mpc, the typical cluster size, to con-
volve the correlation function 	̃c. Here the factor of 1

2
comes

from the average decreases of the correlation parameter due to
the mass difference between the clusters and their host super-
clusters.

Now that the functional form s(r) is known, the average of
cos � as a function of r can be calculated through equations (5)
and (8) as

hcos �i(r) ¼
Z 1

0

cos � p(cos �; s(r))d (cos � ): ð9Þ

Figure 4 plots equation (9) (solid line) as a function of the
rescaled distance, r̃ � r/Rs, and compares it with the numerical
result (circles) obtained in x 2. For the analytic distribution, the
value of Rs is set to be the mean Lagrangian radius of super-
clusters found in x 2, using the relation Rs = [3M̄s/(4��̄)]

1/3. As
can be seen, the analytic and the numerical results agree quite
well.

Regarding the dependence of s on the cluster ellipticity, �,
although it is predicted qualitatively in our theoretical model
that the degree of the alignment will increase with ellipticity, the
quantitative functional form of s(�) is quite difficult to determine
analytically, since the cluster ellipticities are sensitively vulner-
able to modifications caused by nonlinear merging and infall
processes.

Instead of the analytic approach, we use numerical fitting to
determine the functional form of s(�). Let s�0 represents the value
of s when the cluster ellipticity has the maximum value, �0. It is
expected again that s�0 = �1. We find that the following formula
gives a good fit to the numerical results:

s(�̃ ) ¼ s�0�̃
1=2: ð10Þ

Since �0 is defined as the maximum ellipticity, s(�̃) has the ex-
treme value of�1 at �̃ = 1. Note that the value of �0 is not fixed,
but sample-dependent. Here, the Millennium Run data we use
(Springel et al. 2005) yield �0 = 0.7, but a different sample could
yield a different value.

Now that the functional form of s(�̃ ) has been found, the aver-
age of cos � as a function of �̃ can be calculated from equations (5)
and (10) as

hcos �i(�̃ ) ¼
Z 1

0

cos � p(cos �; s(�̃ ))d (cos � ): ð11Þ

The comparison between the analytic result (eq. [11]) and the
numerical data points shows good consistency, as can be seen in
Figure 5.

Regarding the dependence of s on the cluster velocity v, no
strong dependence is expected in our model, since the primor-
dial tidal field is uncorrelated with the velocity field (Bardeen
et al. 1986). Therefore, we model it as having a uniform distri-
bution hcos �i(v) = hcos �i. The average value, hcos �i, is found
to be 0.54 when s = �0.71 (Fig. 6, top), while it is 0.52 when
s = �0.5 (bottom). As can be seen in Figure 6, the analytic and
the numerical results are consistent with each other.

4. DISCUSSION AND CONCLUSION

In the context of the standard cosmic-web picture of large-
scale structure, we have constructed a parametric model for the

alignment of cluster-sized halos with their host superclusters.
The underlying assumption is that cluster-supercluster align-
ment reflects the spatial distribution of matter as it is orga-
nized along filamentary structures by the primordial tidal field.
The parameters of the analytic model represent the domi-
nance of filaments and the spatial coherence of the initial tidal
field.

We showed that the analytic model provides a good fit to
orientation data derived from mass-limited halo samples of a
�CDM Hubble volume simulation. After fitting the three free
parameters using the overall distribution of cluster-supercluster
alignment angles, the model can simultaneously match the be-
havior of the mean alignments as a function of relative mass,
cluster position within the supercluster, and cluster ellipticity.
No trend with cluster velocity is predicted or measured in the
simulation.

It is worth discussing a couple of simplified assumptions
on which our theoretical model is based. First, we have used the
friends-of-friends algorithm to identify superclusters in theN-body
simulation data. Unlike the case of virialized clusters, however,
there is no established consensus on how to define superclusters.
Different supercluster identification algorithms could result in
differentmultiplicities,masses, and shapes of superclusters, which
would in turn affect our results.

Second, we assumed that the filaments correspond to the
Lagrangian regions where only the largest and the second-
largest eigenvalues of the local tidal tensor are positive. Although
this definition of a filament is consistent with the picture in the
Zel’dovich approximation, it is obviously an oversimplifica-
tion of reality. A more realistic definition and treatment of cos-
mic filaments will be necessary to refine the model.

Another issue that we would raise is the possibility of using
the cluster-supercluster alignment effect as a cosmological probe.
We have shown that the phenomena of cluster-supercluster align-
ments are closely related to the dominance of filaments—the
weblike distribution of galaxies on very large scales. The domi-
nance of filaments is in turn related to the spatial correlations of
the primordial tidal field, which depend sensitively on the slope
of the initial power spectrum on the supercluster scale. Thus, by
measuring the degree of cluster-supercluster alignment, it might
be possible to constrain the slope of the initial power spectrum in
a complementary way.

Finally, we conclude that our model for cluster-supercluster
alignments provides a theoretical framework within which the
distribution of cosmic structures on the largest scales can be
physically understood and quantitatively described.

We are grateful to the anonymous referee, who helped us im-
prove the original manuscript. We are also grateful for the warm
hospitality of Y. Suto and the University of Tokyo, where this
work was initiated. J. L. also thanks D. Park for useful help.
J. L. is supported by research grant R01-2005-000-10610-0
from the Basic Research Program of the Korea Science and
Engineering Foundation. J. L. was also supported by the Re-
search Settlement Fund for new faculty of Seoul National Uni-
versity. A. E. E. acknowledges support from the Miller Institute
for Basic Research in Science at the University of California,
Berkeley, from NSF Information Technology Research grant
ACI 01-21671, and fromNASAAstrophysics Theory Program
grant NAG 5-13378.

CLUSTER-SUPERCLUSTER ALIGNMENTS 35No. 1, 2007



REFERENCES

Agustsson, I., & Brainerd, T. G. 2006, ApJ, 644, L25
Atlay, G., Colberg, J. M., & Croft, R. A. C. 2006, MNRAS, 370, 1422
Bardeen, J. M., Bond, J. R., Kaiser, N., & Szalay, A. S. 1986, ApJ, 304, 15
Basilakos, S. 2003, MNRAS, 344, 602
Basilakos, S., Plionis, M., Yepes, G., Gottlöber, S., & Turchaninov, V. 2006,
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