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ABSTRACT

The clustering properties of dark matter halos are a firm prediction of modern theories of structure formation. We
use two large-volume, high-resolution N-body simulations to study how the correlation function of massive dark
matter halos depends on their mass, assembly history, and recent merger activity. We find that halos with the lowest
concentrations are currently more clustered than those of higher concentration, the size of the effect increasing with
halo mass; this agrees with trends found in studies of lower mass halos. The clustering dependence on other char-
acterizations of the full mass accretion history appears weaker than the effect with concentration. Using the integrated
correlation function, marked correlation functions, and a power-law fit to the correlation function, we find evidence
that halos that have recently undergone a major merger or a large mass gain have slightly enhanced clustering relative
to a randomly chosen population with the same mass distribution.

Subject headinggs: cosmology: theory — dark matter — galaxies: clusters: general — methods: numerical
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1. INTRODUCTION

The observed universe contains order on all scaleswe can probe.
It is generally believed that the largest structures arose via the am-
plification of primordial (quantum) fluctuations during a period
of accelerated expansion, processed by the subsequent 13 Gyr of
gravitational instability. The pattern of clustering of objects on
large scales is a calculable prediction of cosmological models and
thus comprises one of the fundamental cosmological statistics.

Within modern theories of structure formation, the clustering
of rare, massive dark matter halos is enhanced relative to that of
the general mass distribution (Kaiser 1984; Efstathiou et al. 1988;
Cole & Kaiser 1989; Mo &White 1996; Sheth & Tormen 1999),
an effect known as bias. Themoremassive the halo, the larger the
bias. As a result, the mass of halos hosting a given population of
objects is sometimes inferred bymeasuring their degree of cluster-
ing, allowing a statistical route to the notoriously difficult problem
of measuring masses of cosmological objects (e.g., Cooray &
Sheth 2002).

Since halos of a given mass can differ in their formation his-
tory and large-scale environment,6 a natural question arises: do
these details affect halo clustering? In currently viable scenarios
for structure formation, objects grow either by accretion of smaller
units or bymajor mergers with comparable-sized objects. The for-
mation history of a halo can thus be characterized by its mass ac-
cumulation over time, such aswhen it reached half of itsmass, had
a mass jump in a short time, or last underwent a (major) merger.

Theoretically, the simplest descriptions of halo growth and
clustering (Bond et al. 1991; Bower 1991; Lacey & Cole 1993,
1994; Kitayama & Suto 1996a, 1996b) do not give a dependence
on halo formation history (White 1996; Sheth & Tormen 2004;
Furlanetto & Kamionkowski 2006; Harker et al. 2006). To re-
prise these arguments, pick a random point in the universe and

imagine filtering the density field around it on a sequence of suc-
cessively smaller scales. The enclosed density executes a random
walk, which in the usual prescription is taken to be uncorrelated
from scale to scale. The formation of a halo of a given mass cor-
responds to the path passing a certain critical value of the density,
�c, at a given scale. The bias of the halo is the ‘‘past’’ of its random
walk and its history the ‘‘future’’ of the walk. All halos of the same
mass at that time correspond to random walks crossing the same
point and thus have the same bias. (Note that the derivation, using
sharp k-space filtering, does not match the way the prescription is
usually applied, and this has been suggested by some of the above
authors as a way to obtain history dependence. Introducing an en-
vironmental dependence through, e.g., elliptical collapse will also
give a history dependence.)

The lack of dependence on halo history in the simplest de-
scriptions does not close the discussion theoretically or otherwise.
While these analytic methods work much better than might be
expected given their starting assumptions, the Press-SchechterY
based approaches still suffer many known difficulties (e.g., Sheth
& Pitman 1997; Benson et al. 2005). Other analytical ways of
estimating the clustering of mergers have been explored. For ex-
ample, Furlanetto & Kamionkowski (2006) defined a merger ker-
nel (not calculable fromfirst principles) and assumed that all peaks
within a certain volume eventually merged. Such an Ansatz im-
plies that recently merged halos are more clustered forM > M�
and less clustered for M < M�, with some dependence on prede-
cessor mass ratios and redshifts. [Here M�(z) is the mass at which
� (M ), the variance of the linear power spectrum smoothed on
scaleM, equals the threshold for linear density collapse �c(z); see,
e.g., Peacock1999.]Using close pairs as a proxy for recentlymerged
halos, they found a similar enhancement of clustering for M > M�
and reduction for M < M� in several (analytic) clusteringmodels.
To foreshadow our results, the signals we see are consistent with
this trend.

Simple analytic models cannot be expected to capture all of
the complexities of halo formation in hierarchical models, and
full numerical simulations are required to validate and calibrate
the fits. Fortunately, numerical simulations are now able to produce
samples with sufficient statistics to test for the dependence of clus-
tering on formation history. Early work by Lemson & Kauffmann
(1999) showed that the properties of darkmatter halos, in particular
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formation times, are little affected by their large-scale environment
if the entire population of objects is averaged over. They interpreted
this as evidence against formation history and environment affect-
ing clustering. As emphasized by Sheth & Tormen (2004), how-
ever, this finding, plus thewell-known fact that the typical mass of
halos depends on local density, implies that the clustering of ha-
los of the same mass must also depend on formation time. Using
a marked correlation function, Sheth & Tormen (2004) found that
close pairs tend to have earlier formation times than more distant
pairs, work that was extended and confirmed by Harker et al.
(2006). Gao et al. (2005) found that later forming, low-mass halos
are less clustered than typical halos of the same mass at the pre-
sent; a possible explanation of this result was given byWang et al.
(2006).Wechsler et al. (2006) found a similar dependence on halo
formation time, showing that the trend reversed for more massive
halos and that the clustering dependedon halo concentration.How-
ever, in order to probe to highermasses, these authors assumed that
the mass dependence was purely a function of the mass in units of
the nonlinear mass and then used earlier outputs to probe to higher
values of this ratio. It should be noted that scaling quantities by
M /M� gives a direct equality only if clustering is self-similar. Since
P(k) is not a power law and �mat 6¼ 1, a check of this approxi-
mation, as is done here, is crucial.

These formation time dependencies are based on (usually
smooth) fits to the accretion history of the halo. However, halo as-
sembly histories are often punctuated by large jumps frommajor
mergers that have dramatic effects on the halos. Major mergers
can be associatedwith awide variety of phenomena, ranging from
quasar activity (Kauffmann & Haehnelt 2000) and starbursts in
galaxies (Mihos & Hernquist 1996) to radio halos and relics in
galaxy clusters (for phenomena associated with galaxy cluster
mergers see, e.g., Sarazin 20057).Majormergers of galaxy clusters
are the most energetic events in the universe. It follows that major
merger phenomena can either provide signals of interest or cause
noise in selection functions that depend on a merger-affected
observable. If recently merged halos cluster differently from the
general population (merger bias), and this is unaccounted for, con-
clusions drawn about halos on the basis of their clustering would
be suspect. The question of whether such merger bias exists re-
mains unresolved, as previous work to identify a merger bias
throughN-body simulations and analytic methods yields mixed
results (Gottlöber et al. 2002; Percival et al. 2003; Scannapieco
& Thacker 2003; Furlanetto & Kamionkowski 2006).

In this paper we consider the clustering of themostmassive dark
matter halos, measured from two large-volume (1.1 h�1 Gpc)3

N-body simulations described in x 2. We concentrate on massive
halos, as most previous simulations did not have the volume to ef-
fectively probe this end of the mass function, and furthermore, for
the largest mass halos the correspondence between theory and ob-
servation is particularly clean. We first examine the long-term
growth history of halos, calculating the ‘‘assembly bias’’ as a func-
tion of growth history in x 4, extending previous resultsmentioned
above to higher masses. We then look to short-term history effects
(i.e., events), measuring the ‘‘merger bias’’ as a function of recent
major merger activity or large mass gain in x 5, where we find a
weak, but statistically significant, signal for both cases. We con-
clude in x 6.

2. SIMULATIONS

To investigate the effects of formation history on clustering sta-
tistics, we use two high-resolution N-body simulations performed

with independent codes: the HOTcode (Warren & Salmon 1993)
and the TreePM code (White 2002). Both simulations evolved
randomly generated, Gaussian initial conditions for 10243 par-
ticles of mass 1011 h�1M� from z ¼ 34 to the present, using the
same �CDM cosmology (�M ¼ 0:3 ¼ 1� ��, �B ¼ 0:046,
h ¼ 0:7, n ¼ 1, and �8 ¼ 0:9) in a periodic, cubical box of side
1.1 h�1 Gpc. For the HOT simulation a Plummer law with soft-
ening 35 h�1 kpc (comoving) was used. The TreePM code used
a spline softened force with the same Plummer equivalent soft-
ening. The TreePM data were dumped in steps of light crossings
of 136 h�1 Mpc (comoving), producing 30 outputs from z � 3 to
z ¼ 0. The HOT data were dumped from z � 1 (look-back time
of 5.3 h�1 Gyr) to z ¼ 0 in intervals of 0.7 h�1 Gyr, with the last
interval at z ¼ 0 reduced to 0.4 h�1 Gyr. The outputs before z � 1
had so few high-mass halos that the statistics were not useful for
themerger event calculations. For comparisons of how using light
crossings versus fixed time steps inGyr changesmerger ratios, see
Cohn&White (2005). The TreePM simulations were used for the
assembly histories and the HOT simulations for the merger bias
calculations, although the results from the two simulations were
consistent so either could have been used in principle.
For each output we generate two catalogs of halos via the

friends-of-friends (FoF) algorithm (Davis et al. 1985), using link-
ing lengths b ¼ 0:2 and 0.15 in units of the mean interparticle
spacing. These groups correspond roughly to all particles above
a density threshold 3/(2�b3); thus, both linking lengths enclose
primarily virialized material. Henceforth halo masses are quoted
as the sum of the particle masses within FoF halos; thus, a given
halo’s b ¼ 0:15 mass will be smaller than its b ¼ 0:2 mass (for
more discussion see White 2001). We consider halos with mass
M > 5 ; 1013 h�1 M� (more than 500 particles); at z ¼ 0 there
are approximately 96,000 such halos in each box for the b ¼ 0:15
catalog and 120,000 for the b ¼ 0:2 catalog. The mass functions
and merger statistics from the two simulations are consistent
within Poisson scatter.
Given a child-parent relationship between halos at neighbor-

ing output times, construction of themerger tree is straightforward
since we are tracking massive halos rather than, e.g., subhalos.
Progenitors are defined as those halos at an earlier time that con-
tributed at least half of their mass to a later (child) halo. Of the ap-
proximately 105 halos at z ¼ 0 we find only 14 for which our
simple method fails. In these cases a ‘‘fly-by’’ collision of two ha-
los gives rise to a halo at z ¼ 0 with no apparent progenitors. Ex-
cluding these halos does not change our results. For the TreePM
run,we use all 30 outputs to construct themerger tree, which stored
all of the halo information (mass, velocity dispersion, position,
etc.) for each halo at each output. Each node of the tree pointed to a
linked list of its progenitors at the earlier time, enabling a traversal
of the tree to find mass accretion histories and mergers. The HOT
run produced outputs for each time interval of child and parent
halos.

3. MEASURING CLUSTERING

A basic measure of clustering is the two-point function, which
in configuration space is the correlation function, �(r). To com-
pute �(r), we use the method of Landy & Szalay (1993):

�(r) ¼ hDDi � 2hDRi þ hRRi
hRRi ; ð1Þ

where D and R are data and random catalogs, respectively, and
the angle brackets refer to counts within a shell of small width
having radius r. In computing hDRi and hRRiwe use 10 times as7 Available at http://www.aoc.nrao.edu/events/xraydio.
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many random as data points. To compute errors, we divide the
simulation volume into eight octants and compute �(r) within each
octant. Since we probe scales much smaller than the octants, we
treat them as uncorrelated volumes, and we quote the mean �(r)
and error on themean under this assumption. These errors tend to
be�1.4Y2 times larger than the more approximate (Npair)

1/2 error
estimates used in some previous work.

Our goal is to test the dependence of the clustering of objects
associatedwith some history-dependent property. A relevant quan-
tity for comparison is the (mass dependent) bias of the halos rela-
tive to the underlying dark matter, which we define as

�(r) ¼ b2�dm(r): ð2Þ

Analytically, the large-scale bias is related to a derivative of
the halo mass function (Efstathiou et al. 1988; Cole & Kaiser
1989;Mo&White 1996; Sheth & Tormen 1999). For the Sheth-
Tormen form of the mass function one finds

bST M180�b

� �
¼ 1þ � 02 � 1

�c
þ 0:6

�c 1þ � 00:6ð Þ ; ð3Þ

where � 0 ¼ 0:841�c/�(M180�b ) and �c ¼ 1:686. This has been im-
proved on using the Hubble volume simulations (Colberg et al.
2000; Hamana et al. 2001); see also Seljak & Warren (2004) for
discussion of the bias defined through P(k) on similar scales.
Hamana et al. (2001) used FoF halos with b ¼ 0:164 and found

b M ; R; zð Þ ¼ bST M108; zð Þ
; 1:0þ bST M108; zð Þ�R R; zð Þ½ �0:15: ð4Þ

The subscripts on the massM indicate which overdensity thresh-
old is being used to define the halo mass. We tookM ¼ 0:93M108

andM ¼ 1:07M180b, calculating the conversion using the profile
of Navarro et al. (1997) assuming a concentration c ¼ 5. The
change in conversion factor was less than a percent for the range
of concentrations of interest. See White (2001) for more details,
discussion, and definitions.

We show the bias b ¼ ½�(r)/�dm(r)�1/2 at r ¼ 18 h�1 Mpc as a
function of mass in Figure 1. The bias for halos with M > 5 ;
1013 h�1 M� changed less than 5% on scales r � 15 h�1 Mpc.
We include the two bias fits given above for r ¼ 18 h�1 Mpc at
z ¼ 0. The Hamana et al. (2001) fit was derived from a larger sim-
ulation volume; Figure 1 is included to illustrate the mass depen-
dence of the global bias, to provide a comparison context for the
sizes of the additional biases of concern in this paper.We now turn
to estimates of bias effects due to the history of the halos.

4. ASSEMBLY BIAS

We begin by considering parameterizations of the formation
history of halos that emphasize the global properties, i.e., those
related to the halomass growth over a long period of time.We con-
sider three parameterizations of halo histories that have previously
been used with lower mass halos: c, a1/2, and af (Wechsler et al.
2006; Gao et al. 2005; Sheth&Tormen 2004).Using these param-
eterizations, Sheth & Tormen (2004), Harker et al. (2006), Gao
et al. (2005),Wechsler et al. (2006), andCroton et al. (2006) have
shown that the clustering of halos of fixed mass is correlated with
‘‘formation time,’’ a result that has come to be termed assembly
bias. The effect is strongest for smaller halos, and this has been
the focus of earlier work. For the extremely massive halos that
we consider, halo identification is simpler, as none of our halos are
subhalos. However, since massive halos are rarer, the statistics are
poor even for a simulation volume as large as ours.

The concentration, c, is a parameter in anNFWfit to a halo den-
sity profile (Navarro et al. 1997).8 We perform a least-squares fit
of theNFW functional form to the radialmass distribution of all of
the particles in the FoF group, allowing c andM200 to vary simul-
taneously. This is in order to be similar to the procedure of Bullock
et al. (2001) to allow ready comparison. The concentration is ex-
pected to correlate with the time bywhichmost of the halo formed
(earlier forming halos are more concentrated; see Navarro et al.
1996; Wechsler et al. 2002; Gao et al. 2004). There is also a weak
dependence of concentration on halomass.We have tried to mini-
mize this effect by dividing out the average concentration for each
mass (calculated from the data) to get a ‘‘reduced’’ concentration,
which is essentially uncorrelated with mass (correlation is less
than 0.2%).

The second parameter encapsulating the formation history is
a1/2, the scale factor at which a halo accumulates half of its final
mass. We find a1/2 by linearly interpolating between the two
bracketing times. Analytic properties of this definition have been
studied in Sheth&Tormen (2004), and a1/2 is often used as a proxy
for formation epoch. The third parameter, af , the formation scale
factor, is also a formation time proxy. It is defined through a fit to
the halo mass accretion history (Wechsler et al. 2002):9

M (z) ¼ M0 exp �2af z
� �

; ð5Þ

whereM0 is the mass of the halo at z ¼ 0.We calculate this from
the history by doing a least-squares fit of ln (Mi/M0) against zi
for all of the zi steps. Although this form does not fit the mass

Fig. 1.—Bias b(r) ¼ ½�(r)/�dm(r)�1/2 at r ¼ 18 h�1 Mpc for two different bin-
nings in mass. The horizontal error bars on each point show the range of masses
used. The bias was approximately scale invariant in this mass regime from 15 to
30 h�1 Mpc.We show two fits to b(M ) proposed in the literature: that of Hamana
et al. (2001) (dashed line) and that of Sheth & Tormen (1999) (dotted line), each
plotted for both mass binnings. [See the electronic edition of the Journal for a
color version of this figure.]

8 We follow NFW and take c ¼ r200/rs; note that Wechsler et al. (2006) use
cvir ¼ rvir/rs, where rvir ’ r100 for our cosmology. At z ¼ 0, cvir ’ 1:25c.

9 Miller et al. (2006) present an analytic justification for this form based on
extended Press-Schechter theory.

CLUSTERING OF MASSIVE HALOS 141No. 1, 2007



accretion history of massive halos particularly well due to their
frequent mergers, the fit is well defined and, as shown below, af
nonetheless appears to be correlated with clustering.

The correlations10 for many of the above parameters were pre-
sented in Cohn &White (2005). Some of these correlations have
been compared in different combinations inWechsler et al. (2002,
2006), Zhao et al. (2003a, 2003b), and Croton et al. (2006). Ex-
cept for Zhao et al. (2003a, 2003b), these were for galaxy-scale
halos rather than galaxy clusterYscale halos. The formation his-
tories for low-mass halos tend to be smoother and better fitted to
the form of Wechsler et al. (2002) since they undergo fewermerg-
ers than high-mass halos at late times. Wechsler and Zhao give a
formula for the concentration in terms of the formation time of
Wechsler et al. (2002); our correlation coefficient is characterizing
the scatter around any such correlation. For the current sample the
strongest correlation (0.69) is between the formation redshift, zf ¼
1/af � 1, and the half-mass redshift, z1/2 ¼ 1/a1/2 � 1, consistent
with the 0.70 found by Cohn&White (2005) with a sample about
1
7 the size. The formation redshift, zf , and reduced concentration
have a correlation of 0.53. The full concentration and z1/2 (zf) have
a correlation of 0.56 (0.54). These correlations increase as the
lower mass limit is decreased from 1014 to 5 ; 1013 h�1 M�.

To highlight any effects of assembly bias, we take the highest
and lowest quartiles of the distribution of each of these three
parameterization values and compare the resulting �(r) to that
of the full sample (similar to Wechsler et al. 2006). We show
examples for 1014 h�1 M� < M < 3 ; 1014 h�1 M� and 5 ;

1013 h�1 M� < M < 8 ; 1013 h�1 M� in Figure 2. For the
higher mass halos we see a strong dependence of clustering on
concentration. We see a similar, but noticeably smaller, depen-
dence on af , indicating that more recently formed objects cluster
more strongly. As all of the objects we consider have M > M�,
our results are in linewith the expectation of Wechsler et al. (2006)
and the theoretical model of Furlanetto & Kamionkowski (2006).
Specifically, this confirms the result found by Wechsler et al.
(2006) at z ¼ 0, without needing to make the approximation
that b(c; M ; z) ¼ b(c; M /M�).
The ratio of their correlation function at their top c quartile to

the total sample for halos�10M� was�1.25. This is larger than
our ratio, which does not reach 1.2 for any of the radii considered
in Figure 2, although it is well within our (and their) errors. This
is mirrored for the lowest c quartile where our effect is similarly
reduced but within the errors. We are using reduced concentra-
tion, while they divide each halo’s concentration by the average
concentration in its mass bin, c̃vir. For the lower mass sample a
much weaker trend is seen (e.g., the ratios for the quartiles when
selected on concentration barely reach 10%), agreeing with the
expectation that the signal decreases asM ! M�. At fixed mass,
the trend of b with c is consistent with the fit of Wechsler et al.
(2006), but the trend is soweak relative to the noise that the result
is of marginal significance.
Gao et al. (2005) and Harker et al. (2006) found bias forM >

M� based on z1/2, where both the lowest and highest quartiles of
z1/2 tended to bemore clustered than the full sample.We see a hint
of this as well, but the fluctuations are large. Croton et al. (2006)
also found more dependence of clustering on z1/2 (their formation
time) than on concentration, once luminosity-dependent bias was

10 Defined as (habi � haihbi)/½h(a� hai)2ih(b� hbi)2i�1/2; see, e.g., Lupton
(1993).

Fig. 2.—Correlation function of the lowest ( filled triangles) and highest (open squares) quartiles of (reduced) concentration, c (left), half mass scale factor, a1/2
(middle), and formation scale factor, af (right). The solid line is �(r) for the full halo sample. Top panels: 1014 h�1 M� � M � 3 ; 1014 h�1 M� (31,551 halos). Bottom
panels: 5 ; 1013 h�1 M� � M � 8 ; 1013 h�1 M� (43,638 halos). A clear signal is seen for concentration and formation scale factor for the more massive halos. [See
the electronic edition of the Journal for a color version of this figure.]
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taken out. Note that their luminosity dependence might include
some of the history measured by concentration or z1/2 and their
focus was on galaxies populating the halos rather than the halos
themselves.

Note also that even though zf and z1/2 are correlated, the cor-
relation is not strong enough so that bias in one implies bias in the
other. The overlap of the upper and lower quartiles for these quan-
tities forM > 1014 h�1 M� is 62% and 54%, respectively. As the
rest of the clusters differ, the overall biases can be quite different,
as seen in Figure 2.

Another formation timeYrelated quantity, the redshift of last
mass jump by 20% or more in a time step corresponding to the
light crossing time of 136 h�1 Mpc comoving, had correlations
with z1/2 (0.70), zf (0.61), and c (0.40). We found a small sign of
bias in the correlation functions of its highest and lowest quartiles
as well, leading us to expect a merger bias signal, as examined
in x 5.

In summary, we confirm and extend previous results to lower
redshift and highermass for concentration-dependent bias.We see
a smaller signal for formation time bias, and we see very little (if
any) signal for bias based on when halos reach half of their mass.
Bias in concentration and half-mass redshift have been seen in pre-
vious work for smaller masses at higher redshift; our results show
a smaller bias, but well within errors, at least for the concentration-
dependent bias.

5. MERGER BIAS

In the previous section we demonstrated the dependence of �(r)
on halo formation history, characterized by an average property
such as the ‘‘formation time.’’As halo assembly histories are punc-
tuated by large jumps frommajormergers, we can also askwhether
the clustering of recently merged halos differs from that of the
general population.

Although the concept of a major merger is intuitively easy
to understand, there is no standard definition in the literature
of ‘‘merger’’ or ‘‘major merger’’ (these terms will be used inter-
changeably henceforth). In simulations, where the progenitors can
be tracked and masses measured, major mergers can be defined in
terms of masses of the progenitors and the final halo.Wedefine pro-
genitors as those halos at an earlier time that contributed at least
half of their mass to a later halo at the time of interest. The three
most common ways to define a halo merger are (1) the mass ratio
of the two largest progenitors,M2/M1 < 1; (2) the same ratio, but
using the contributingmass of the twomostmass-contributing pro-
genitors; and (3)Mf /Mi, the ratio of the current halo mass to the
total mass of its largest progenitor at an earlier time.We also con-
sider (4) Mf /M1, the ratio of the current halo mass to the larg-
est contributed mass. In our simulations the merger fraction per
0.7 h�1 Gyr with M2/M1 > 0:3 increases by more than a factor
of 3 from z ¼ 0 to 1.

One way to quantify how well the two-body criteria (M2, M1

and Mf, Mi) describe the halo growth is to consider the ratio
(M1 þM2)/Mf . This ratio is 1 for a halo formed only from its two
largest predecessors: a two-body merger with no other accretion.
It is lowered by accretion or multibody mergers. Figure 3 shows
the cumulative distribution of (M1 þM2)/Mf for halos withM >
1014 h�1 M� satisfying a variety of merger criteria. We consid-
ered both cases where M1 and M2 are the full and contributing
progenitor masses. As can be seen on the right, for all halos with
M > 1014 h�1 M� at z ¼ 0, considering mass gains within the
last 0.4 h�1 Gyr, at least 5% of the final halo mass is not from the
two largest contributors. As themerger criteria are hardened (i.e.,
the merger is more ‘‘major’’), the two largest progenitors con-
tribute less and less of the final mass. As can be seen on the left,

the same amount of mass as found in the two largest progenitors
makes up the entiremass of the final halo in�25%of the full sam-
ple of halos. Lengthening the time step or looking to higher red-
shift also increases the fraction of halos getting their mass from
halos other than the two largest progenitors. For simplicity, our
subsequent analysis uses only the two-body criteria to definemerg-
ers, so the accuracy of this assumption as examined above should
be kept in mind.

Previous work to identify a merger bias through N-body sim-
ulations and analytic methods gives a mixed picture. Gottlöber
et al. (2002) found a clustering bias for recently (�t ¼ 0:5 Gyr)
merged objects withMf /Mi > 1:25 andM � M� at z ¼ 0. These
authors, however, did not try to match the mass distribution of
the comparison sample to that of the merged halos, which is a
problem since mergers occur more often for more massive halos
and the bias is known to increase with halo mass. To isolate the
effects due to merging, the comparison sample needs to have the
samemass distribution as themerged sample, andmost subsequent
work has ensured this. Percival et al. (2003) found no bias be-
tween the correlation functions of recently merged (�t ¼ 108 yr,
M2/M1 > 0:3) and general samples at z ¼ 2 for halos withM �
M�, 25M�, and 150M�. Scannapieco&Thacker (2003) confirmed
the Percival et al. (2003) results for major mergers in a z ¼ 3
sample for a smaller range of masses but surprisingly found an
enhancement of clustering for halos with recent (�t ¼ 5 ; 107,
108 yr) large total mass gain, Mf /Mi > 1:20. That is, they find a
biaswhen selecting haloswith recent largemass gains, but notwhen
selecting on recently merged halos’ parent masses. Their signal was
weak due to limited statistics.

That the previous literature is inconclusive is to be expected,
given that the effects of merger history on clustering are small and
extremely difficult to measure numerically. We expect the larg-
est signal when M3M�, but this is where the number density of
objects is smallest. In addition, the most extreme mergers are the

Fig. 3.—Cumulative distribution of (M1 þM2)/Mf for different subsamples
of our b ¼ 0:15 halos at z ¼ 0. Looking back 0.4 h�1 Gyr the subsamples are
defined by Mf /Mi > 1:5, 1.2 or M2/M1 > 0:3, 0.1. The lines are in the same or-
der, top to bottom, with the lowest line being the full sample. At leftM1,M2 are
the full masses of the two largest progenitors; at right M1, M2 refer to the con-
tributing mass. [See the electronic edition of the Journal for a color version of
this figure.]
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rarest, increasing the shot noise in the measurement of �(r). If we
include more common events, the ‘‘merged’’ and ‘‘comparison’’
samples become more similar, washing out the signal of interest.
At higher redshift, the merger rate increases; thus, the merged and
comparison samples have more overlap unless the merger ratio is
increased, leading toworse statistics. To try to overcome these sta-
tistical effects, we use our very large samples of simulated halos
to search for a merger, or temporal, bias.

To define a ‘‘recent major merger’’ requires both a choice of
threshold for one of the merger ratios and a choice of time inter-
val. As we expect the halo crossing time to be�0.7 h�1 Gyr (e.g.,
Tasitsiomi et al. 2004; Gottlöber et al. 2001; Rowley et al. 2004),
we expect that outputs at this separation or shorter are small
enough to catch recently merged halos while they are still ‘‘unre-
laxed.’’ That is, a ‘‘recent merger’’ might be expected to corre-
spond to a dynamically disturbed halo.

We consider the four merger criteria mentioned above, as well
as a wide range of samples and merger definitions. We used nine
different time intervals from z � 1 to z ¼ 0 as given in x 2.We con-
sidered four different thresholds for bothM2/M1 andMf /Mi using
both total and contributing mass of the progenitors: M2/M1 >
0:1, 0.2, 0.3, 0.5 andMf /Mi > 1:2, 1.3, 1.5, 2.0. Furthermore, we
used two minimum masses, 5 ; 1013 and 1014 h�1 M�, and two
FoF linking lengths, b ¼ 0:15 and 0.2. Combinations of each of
these criteria resulted in over 700 different pairs of ‘‘merged’’ and
‘‘comparison’’samples. Although this data set is very rich, system-
atic trends are difficult to identify. This is in part because increasing
the merger ‘‘strength’’ simultaneously increases the noise (due to
lower numbers of events).

Evidence of bias is very slight in the binned �(r). We used three
methods to try to isolate the signal: themarked correlation function,
the integrated correlation function, and a likelihood fit to a power
law for the correlation function. The clustering andmerger criteria
influence these three quantities in distinct ways. We now describe
each method and our corresponding results in turn.

5.1. Marked Correlation Function

One problem with computing merger effects in terms of �(r) is
that, to compute the difference in clustering of merged and ran-
dom samples, one must define a Boolean merger criterion: a halo
is either in the merged sample or not. As halo histories are com-
plex, a more nuanced measure of merger clustering is useful, and
this can be provided by using the marked correlation function
(Beisbart & Kerscher 2000; Beisbart et al. 2002; Gottlöber et al.
2002; Sheth&Tormen2004;Harker et al. 2006; Sheth et al. 2005).
Each of N objects gets assigned a mark, mi, for i ¼ 1; : : : ; N.
Denoting the separation of the pair (i, j) by ri; j, the marked
correlation function, M (r), is defined by

M (r) ¼
X
ij

mimj

n(r)m̄2
; ð6Þ

where the sum is over all pairs of objects (i, j) with separation
rij ¼ r, n (r) is the number of pairs, and the meanmark, m̄, is cal-
culated over all objects in the sample. The marked correlation
function ‘‘divides’’ out the clustering of the average sample, and
thus a difference in clustering is detected for M (r) 6¼ 1.

We consider fivemarks:M2/M1 (for both total and contributed
masses), Mf /Mi, Mf /M1 (where M1 is contributed mass), and
1
2
(1þM2/M1). The last case had a smaller range of marks and

thus tests sensitivity to extreme events. The results for this mark
were similar to the others, suggesting that we are not dominated
by outliers. Halos are chosenwithmass in a narrow range,Mmin <
M <

ffiffiffi
2

p
Mmin, to minimize the previously mentioned bias due to

merged halos being more massive. The global bias changes less
than a percent over the mass ranges we consider.
In our combined sample of several output times and mass

ranges, the largest signal comes from using as a mark the max-
imum value ofM2/M1 within�t of the present, as shown in Fig-
ure 4. As�t was increased the signal went smoothly to zero. We
find similar behavior forM2/(M1 þM2), which suggests that any
bias is contributed by the systems whereM2TM1. The signal is
extremely weak for the other marks we considered. By stacking
the signal across multiple output times (see x 5.3 for details), we
are able to find small, but statistically significant, detections of
excess power for the marks M2/M1, M2/(M1 þM2), and Mf /Mi,
for halos near 5 ; 1013 h�1 M�. At higher masses there is weak
evidence for an effect, but the large error bars weaken the statis-
tical significance.
As the marked correlation function approach finds only a weak

signal, typically an enhanced clustering of order 5%Y10%, we
also explore two indicators that characterize the correlations by
fewer parameters: the integrated correlation function observed
at a single scale, and a likelihood fit to a power-law correlation
function.

5.2. Integrated Correlation Function

Given an object at some position, the integrated correlation
function

�̄(r) 	 3

r3

Z r

0

x2�(x) dx ð7Þ

is the probability, above random, that a second object will be
within a sphere of radius r. This quantity enhances any increased
clustering at short distances but gives error bars that are evenmore
highly correlated than those of the correlation function, �(r), itself.
A typical result is shown in Figure 5, where a significant signal
can be seen. As in the previous section, we find a weak signal re-
gardless of merger definition in our 700 plus samples. Consider-
ing all of the samples and all of the separations r, more than 2

3
of

the time the difference �̄merge(r)� �̄all(r) was positive.
This method separates the data into radial bins, requiring us to

estimate the clustering at many locations. Since the errors on the
binned correlation points are highly correlated, we reduced �̄(r)
to a single measurement by fixing a preferred scale. The signal

Fig. 4.—Marked correlation function for halos in the range (5Y7) ; 1013 h�1M�
at z ¼ 0. The mark is the maximum progenitor mass ratio, M2/M1, within the last
1 h�1 Gyr. The error bars come from dividing the sample into eight octants.
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tends to be largest near r ¼ 20 h�1Mpc (although the signal is larg-
est at r ¼ 30 h�1Mpc in the examples in Fig. 5), and so we com-
pare �̄(r) of the merged and general samples at this radius. On
average, when a 2 � signal is seen (5%Y15% of the time, depend-
ing on mass ratio, etc.), �̄(r) for the mergers is�20% higher than
for the general sample, although in extreme cases the difference
can be as large as a factor of 2 or 3. Due to the noisy statistics, it
was hard to identify any clear trends.

5.3. Likelihood Fit to r0

The integrated correlation function sums all pairs within a
spherical region. As an alternate approach, we approximate the
correlation function as a power law over some range of radii,

and we perform a likelihood fit to this power-law correlation
function:

�(r) ¼ r

r0

� ���

ð8Þ

over the range of scales (rmin; rmax). This method incorporates
information from many scales, similar to the integrated correla-
tion function. However, it is combined with the expectation that
the correlation function should be a power law and excises the
center region. By using the positions of the halos directly in the fit
to the likelihood, the errors differ from those in the integrated cor-
relation function as well.

Fig. 5.—Integrated correlation function, �̄(r), of recently (within 0.4 h�1 Gyr) merged halos (triangles) and a comparison sample of the same mass (squares) for
M2/M1 > 0:1 (left),M2/M1 > 0:2 (middle), andMf /Mi > 1:2 (right), whereM1,M2 are the full masses of the progenitor halos, for halos in our b ¼ 0:15 catalog at z ¼ 0.
The number of halos that merged out of the 96,319 total halos withM > 5 ; 1013 h�1M� is shown at upper right for each case. For these three examples, the differences
between the two samples are largest at 30 h�1 Mpc, with significance 3.1 � (left), 2.7 � (middle), and 2.5 � (right). [See the electronic edition of the Journal for a color
version of this figure.]

Fig. 6.—Left: Correlation function for a recently merged sample (triangles) and a comparison sample (squares) of the same mass. The lines indicate the best-fit
� ¼ 1:9 power-lawmodel, fitted directly to the cluster positions [not the binned �(r)]. Right: Likelihood for the clustering amplitude, r0, assuming a slope � ¼ 1:9 for the
same samples at left. The sample is at z ¼ 0, with a minimummass of 5 ; 1013 h�1M� (b ¼ 0:15), looking back 0.4 h�1 Gyr.Mergers are tagged as havingM2/M1 � 0:2,
M1, M2 full progenitor masses. [See the electronic edition of the Journal for a color version of this figure.]
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Assuming that the pair counts form a Poisson sample with
mean proportional to 1þ �(r), the likelihood L is (Croft et al.
1997; Stephens et al. 1997)

ln L r0ð Þ ¼ � 2�n̄2

Z rmax

rmin

r 2 1þ � rð Þ½ � dr

þ
X
i< j

ln n̄2r 2i; j 1þ � ri; j
� �� �� 	

þ const; ð9Þ

where the sum is over measured pairs i, j with separation ri; j, n̄ is
the measured average density,11 and �(r) is given by equation (8).
We fit over the range 5Y25 h�1 Mpc, where the correlation func-
tion exhibits an approximately power-law behavior. For the com-
parison sample we multiply the likelihoods for several different
realizations, to reduce the noise, and then renormalize to unit area.
A typical result, where a significant signal can be seen, is shown in
Figure 6, demonstrating both the power-law fit and the maximum
likelihood distribution. For the fits, r0 was usually�10 h�1 Mpc,
within the range where the power-law fit was being applied.

Across all of our samples, we find � ’ 1:9 
 0:1. To allow us
to compare different samples more easily, we reduce the number
of free parameters to one by holding � 	 1:9. A typical example,
demonstrating the ratio of the power-law fit correlation functions
of the merged and general sample, is shown in Figure 7 as a func-
tion of look-back time/redshift. Since we fix � ¼ 1:9 for both
the merged and general sample, the ratio �merge/�all using equa-
tion (8) is scale invariant within our fit range. While the enhanced
clustering of the recently merged sample is small, it remains sta-
tistically significant. Typically, the merged sample shows an en-
hanced clustering of 5%Y10% in the correlation function for the
0.7 h�1 Gyr spacings, although we find no strong evidence of
systematic bias evolutionwith redshift.Moreover, at z ¼ 0, where
the spacing is smaller (0.4 h�1 Gyr), we find a significantly en-

hanced �(r) for the mergers, often 10%Y20%. Presumably, this
increased clustering signal is caused by the smaller time interval.
Larger intervals encompass more mergers, leading to smaller er-
rors, but also leading to a smaller signal, sincemergers now encom-
pass a more significant fraction of the comparison population. As
mentioned above, looking at earlier times also makes the merged
and comparison population overlap increase dramatically.
By averaging �merge /�all across all of the 0.7 h

�1 Gyr spacings
from z � 1 to z ¼ 0:04, we are able to study the size of themerger
bias simply as a function of merger ratio. Figure 8 shows the
increase of �merge /�all withM2/M1 (full mass) andMf /Mi both for
mergers within 0.4 h�1 Gyr of the present and for the redshift-
averaged 0.7 h�1 Gyr spacings. Themerger bias clearly increases
with increasing merger ratio, with the smaller time step yielding
stronger clustering as described above.
In summary, we find a weak bias in many cases (but not all: the

signals are very noisy) for recent major mergers and recent large
mass gains. While Percival et al. (2003) found no such merger
bias, our signal is consistent with their upper limit of 20% on the
bias effects of recentmergers. Thework of Scannapieco&Thacker
(2003) saw a small bias for large mass gains but noted that their
statistics limited their ability to determine the significance. Our
larger box allowed us to incorporate the effects of cosmic variance,
which had been neglected in previous work. Cosmic variance in-
creased the errors by 40% or more, which limited the significance
of the signal. Nonetheless, we still found a small bias for both
mergers and large mass gains.

6. CONCLUSIONS

The large-scale structure of the universe is built on a skeleton
of clustered dark matter halos. For the past two decades we have
known that rarer, more massive dark matter halos cluster more
strongly than their lower mass counterparts. Halos of a fixed
mass, however, can differ in their formation history and large-
scale environment, and recent work on halos smaller than galaxy
clusters has shown that this can lead to further changes in their
clustering.
In this paper we have used two large-volume, high-resolution

N-body simulations to study the clustering of massive halos as
a function of formation history. We confirmed earlier results

Fig. 7.—Scale-independent ratio of the power-law fit correlation functions for
the merged and comparison samples, as a function of look-back time/redshift;
�t ¼ 0:7 h�1 Gyr (triangles) and 0.4 h�1 Gyr (square). The mergers satisfy the
criterion M2/M1 > 0:2, with M2, M1 total progenitor mass, for the M > 5 ;
1013 h�1 M� halos in our b ¼ 0:15 catalog. No evidence of systematic bias evolu-
tion with redshift is found. The enhanced clustering at z ¼ 0 arises presumably
from the shorter time interval used.

Fig. 8.—Scale-independent ratio of the power-law fit correlation functions
for the merged and comparison samples as a function of merger ratio, M2/M1

(left symbols; full progenitor mass) and Mf /Mi (right symbols), for halos above
5 ; 1013 h�1 M� in our b ¼ 0:15 catalog. Mergers are counted within 0.4 h�1 Gyr
of z ¼ 0 (squares), and an average across all 0.7 h�1 Gyr spacings from z � 1 to
z ¼ 0:04 (triangles). In both cases, clear trends can be seen. [See the electronic
edition of the Journal for a color version of this figure.]

11 We find that marginalizing or maximizing over n̄ as a free parameter re-
sults in biased fits for several samples.

WETZEL ET AL.146 Vol. 656



that the lower concentration massive halos are more clustered
than the population as a whole, extending these results to higher
masses (and thus lower redshifts) than had been probed previously
(Wechsler et al. 2006). [Previous work had looked at similar re-
gimes of M /M� but for smallerM and thus higher redshift; note
again that exact scaling with M /M� is not expected for nonY
power-law P(k) and �m 6¼ 1.] Similarly, we confirmed the en-
hanced clustering of halos with later formation times, although the
signal was not as strong as for concentration. The signal for bias
based on a halo reaching half of itsmass isweaker than that seen in
Gao et al. (2005) (again for higher z) and not statistically signif-
icant in our case.

We also investigated whether recent merger activity affected
the clustering of massive halos, a topic with a muddied history in
the literature.Whilewe found statistically significant (>2�) merger
effects on clustering in many cases we considered, both for recent
major mergers and large mass gain, in most cases this signal was
weak: a 5%Y10% increase in bias. Our strongest signal came from
using a likelihoodfit of the correlation function to a power law, par-
ticularly formajormergerswithin 0.4 h�1Gyr of the present,where
we saw a typical merger bias of up to 20%. This bias signal is not
necessarily at oddswith the lack of signal in previouswork, which
looked for larger bias than that seen on average here.

Even with a (1.1 h�1 Gpc)3 volume, massive halos remain
very rare objects and small changes in their correlations are dif-
ficult to detect. We were plagued by the competing effects that
increasing the severity of the merger (and hence underlying sig-

nal) decreases the number of pairs, worsening the statistics. Gen-
eral trends remain elusive, since changing various criteria (e.g.,
merger definition, minimummass, time step) generally changed
the number of halos involved, thus changing the errors. However,
we did find that the strength of the merger bias typically increased
with increasing merger ratio, i.e., more major mergers are more
strongly biased. Finally, we note that the correlations found be-
tween the last large (20%) mass gain and the different definitions
of formation redshifts provide a connection between the assembly
bias studied in x 4 and the merger bias in x 5. This bias is not ex-
pected fromdirect application of extended Press-Schechter theory,
and it provides a phenomenon that a more precise analytic model
of mergers should reproduce.
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