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ABSTRACT

There exists observational evidence that the interstellar medium has a fractal structure in a wide range of spatial
scales. The measurement of the fractal dimension (Df ) of interstellar clouds is a simple way to characterize this fractal
structure, but several factors, both intrinsic to the clouds and to the observations, may contribute to affect the values
obtained. In this work, we study the effects that opacity and noise have on the determination ofDf . We focus on two
different fractal dimension estimators, namely, the perimeter-areaYbased dimension (Dper) and the mass-size dimen-
sion (Dm). We first use simulated fractal clouds to show that opacity does not affect the estimation of Dper. However,
Dm tends to increase as opacity increases, and this estimator fails when applied to optically thick regions. In addition,
very noisy maps can seriously affect the estimation of bothDper andDm, decreasing the final estimation of Df .We apply
thesemethods to emissionmaps of theOphiuchus, Perseus, andOrionmolecular clouds in differentmolecular lines, and
we obtain that the fractal dimension is always in the range 2:6 P Df P 2:8 for these regions. These results support the
idea of a relatively high (>2.3) average fractal dimension for the interstellar medium, as traced by different chemical
species.

Subject headinggs: ISM: clouds — ISM: individual (Ophiuchus, Orion, Perseus molecular cloud) —
ISM: structure

1. INTRODUCTION

For a complete understanding of the physical processes in-
volved in the structure and evolution of the interstellar medium
(ISM), it is essential to systematically characterize this structure.
A systematic and uniform analysis would probably allow us to
draw reliable conclusions on the ‘‘real’’ ISM structure, as well
as its dependence on variables such as galactocentric distance or
star formation activity. A simple approach consists of characteriz-
ing the ISM topology through its fractal dimension. Observations
show that the boundaries of interstellar clouds have projected
dimensions (Dper ) that are always in the range 1:2 P Dper P 1:5.
This seems to be valid for IRAS cirrus (Bazell & Desert 1988),
molecular clouds (Dickman et al. 1990; Falgarone et al. 1991; Lee
2004), high-velocity clouds (Vogelaar & Wakker 1994), the H i

distribution (Westpfahl et al. 1999), etc. The general belief is that
Dper has a more or less universal value around�1.35, and this re-
sult could have important implications, because it is reasonable
to assume that clouds subject to the same underlying physical pro-
cesses should have the same fractal dimension. However, often
the observational data and/or analysis techniques are so differ-
ent that the robustness of this conclusion is questionable.

In a previous work (Sánchez et al. 2005, hereafter Paper I) we
showed that if the boundary of a projected cloud had dimension
Dper ’1:35 , then the three-dimensional fractal dimension would
be Df ’ 2:6, a value higher than the value Df ¼Dper þ1’ 2:35
sometimes assumed in the literature (e.g., Elmegreen& Falgarone
1996). Moreover, the average properties of the ISM are in gross
agreement with relatively high Df values (Sánchez et al. 2006,
hereafter Paper II ). The application of two different fractal di-
mension estimators (the perimeter and the mass dimensions) to
the Orion A molecular cloud yielded Df � 2:6 � 0:1 for this
region. In this work we apply the same techniques to various
molecular cloud maps in a very first attempt to systematically
compare fractal properties in different regions and from different

emission lines of the ISM.An important point to take into account
is the sensitivity of these measurements to factors such as finite
sampling of themaps, resolution, and noise. In Paper I we showed
that low-resolution maps tend to decrease the estimated value of
Dper. The analysis of clouds mapped in different emission lines
opens the question of the role played by self-absorption in the
estimation of the fractal dimension of the clouds. It is obvious
that what we observe is not only a projected image of the true
three-dimensional cloud, but also a fraction of the total emission
of the cloud. Particles closer to the observer will hide—for
some particular combinations of size, geometry, and absorption
coefficients—the emission coming from the back side of the
clouds. How much is self-absorption affecting the estimation of
the fractal dimension of the cloud? In x 2 we analyze the effect
that different opacities would have on the measuredDper andDm

values. After that, in x 3, we use different emission maps to cal-
culate the fractal dimension of three different molecular clouds
(Ophiuchus, Perseus, andOrion). As a natural consequence of this
analysis, the signal-to-noise ratio (S/N) arises as an important
factor contributing to the uncertainty in the final estimation. This
issue is discussed in x 4, where three different views (three dif-
ferent transitional lines) of the same cloud are analyzed to evaluate
the fractal dimensions. Finally, the main conclusions are sum-
marized in x 5.

2. OPACITY EFFECT ON THE ESTIMATION
OF THE FRACTAL DIMENSION

We have generated fractal distributions of points by randomly
placing spheres inside spheres through a given number of levels
of hierarchy. In addition, we have used a Gaussian kernel to cal-
culate the three-dimensional density field �(x, y, z) associated
with the fractal cloud. We refer readers to Paper I and Paper II
for details about the procedure used. In Paper I we considered
that the contribution of every point to the projected image was
the same, regardless of how theywere distributed inside the cloud.
In other words, every particle acts as a similar emitter, and what
we observe at every surface pixel is the summation of all the par-
ticles projected on it, so the cloud is effectively optically thin. Now
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we try to give a more realistic view of the projected cloud that
accounts for opacity effects in the cloud. Thus, the observed
emission of every particle is not the same and depends on the
column density that the radiation has to cross before exiting the
cloud. We have modified the algorithm in such a way that con-
tributions are weighted by exp ��(x; y)½ � when the projection is
done on, for example, the plane z ¼ z0, where

�(x; y) ¼ c

Z z

z0

�(x; y; z) dz ð1Þ

is the total optical depth between the point (x, y, z) and the pro-
jection plane. The absorption constant c includes quantities such
as the abundance, mean molecular weight, and absorption cross
section of the emitting molecule, which we assume are constant
throughout the structure. For the sake of clarity, we use the con-
stant �0, the maximum optical depth in the case in which all the
mass (Mf ) is homogeneously distributed throughout the entire
available volume [Vf ¼ (4/3)�R3

f ]. Since we have definedMf ¼1

and Rf ¼1, we obtain �0 ¼ 3c/2�. As an example, Figure 1 shows
three projected images of the same cloud with fractal dimension
Df ¼ 2:6, but for three different maximum optical depth values
(�0 ¼ 0, 1, and 2). The total optical depth is in general a function
of the position in the projected map, but its maximum value is
always close to �0. For the example shown, the maximum optical
depth is �0.9 and �1.7 when �0 ¼ 1:0 and 2.0, respectively.

As we can note in Figure 1, the main effect of opacity is to
shorten the dynamical range of intensity levels, as well as to de-
crease the emission maxima. Here we want to understand how
this effect alters the estimation of Df . To do this, we use the two
estimators used in Paper I, the perimeter-areaYbased dimension
(Dper) and the mass dimension (Dm). The first method begins by
fixing a threshold intensity level and defining each object as the set
of connected pixels whose intensity value is above this threshold.
Then the perimeter and the area of each object in the image is
determined, and the best linear fit in a log (perimeter)- log (area)
plot is calculated. The slope of this fit isDper /2 (Mandelbrot 1983).
To increase the number of data points in the linear fit, it is useful
to take several intensity levels. The second method (Dm) works
by generating random positions along the image and then plac-
ing cells of different radii (see details in Paper I). The ‘‘mass’’ of
each cell is assumed to be the summed values of all the intensities,
andDm is calculated as the slope of the best linear fit in a log (mass)-
log (radius) plot. We have run exactly the same algorithms as in
Paper I to calculate Dper and Dm for several random fractal clouds
and random projections with different opacities. Our first result
is that the mean value of Dper is not significantly affected by the
cloud opacity. The results for Df ¼ 2:0, 2.3, and 2.6 are shown
in Table 1, where we can see that Dper stays always within the
s.d., independently of the opacity. For a better understanding
of this important result, Figure 2 shows, as an example, the
log (perimeter)- log (area) plot resulting from using only three

Fig. 1.—Three images of the same cloud projected with fractal dimensionDf ¼ 2:6, but for three different optical depth values: (a) �0 ¼ 0, (b) �0 ¼ 1, and (c) �0 ¼ 2.
The contour levels are fixed at 25%, 50%, and 75% of the maximum projected intensity for the case �0 ¼ 0.

TABLE 1

Calculated Fractal Dimension

Perimeter-AreaYbased Dimension (Dper)

Df �0 ¼ 0:0 �0 ¼ 1:0 �0 ¼ 2:0 �0 ¼ 5:0

2.0.................................. 1.601 � 0.024 1.602 � 0.021 1.604 � 0.021 1.591 � 0.019

2.3.................................. 1.469 � 0.023 1.474 � 0.021 1.467 � 0.019 1.455 � 0.018

2.6.................................. 1.359 � 0.032 1.364 � 0.032 1.367 � 0.035 1.359 � 0.046

Mass Dimension (Dm)

�0 ¼ 0:0 �0 ¼ 0:5 �0 ¼ 1:0 �0 ¼ 1:25

2.6.................................. 1.808 � 0.029 1.816 � 0.034 1.876 � 0.045 1.860 � 0.044
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intensity levels (0.25, 0.5, and 0.75 times the maximum pro-
jected intensity Imax) for the same fractal cloud shown in Figure 1.
Squares in Figure 2 refer to the case �0 ¼ 0, and circles to the case
�0 ¼1. For the lowest intensity level (0.25Imax; Fig. 2, crosses),
only one relatively large structure (area � 105 pixel2) is observed,
which represents the whole molecular complex. As the threshold
intensity is increased, smaller and denser structures, which are
‘‘embedded’’ in the complex, can be observed (see Fig. 1). The
central and densest parts (cores), corresponding to a threshold
intensity of 0.75Imax ( filled symbols), are difficult to detect for the
case �0 ¼ 1:0, because opacity occults the internal structure of the
densest regions. In contrast, small and low-density regions, as well
as the gas that lies near the boundaries of the three-dimensional
clouds, are less affected, because they have relatively low column
densities. However, the same linear behavior is found for different
�0 values (the slopes in Fig. 2 are similar within the fit errors),
because the ideal monofractal clouds we are simulating keep the
same fractal properties at all the spatial scales considered; i.e.,
the fractal dimension is the same for both large low-density clouds
and small high-density cores. This is the reason the perimeter-area
dimension remains almost unchanged. Thus, Dper appears as a
robust estimator of the fractal dimension, given that the shape of
the external contour is not modified by opacity; rather, it is mainly
determined by the internal structure of the cloud. The measure of
Dper can, in this way, be used to infer the fractal structure of the
cloud, regardless of the opacity of the observed transition line.

The situation is different for the mass dimension, because, un-
like Dper, this estimator has to use information from all the cloud
structure (mass vs. radius) to quantify Dm, including the internal
and dense regions, which could be hidden in the projected image
due to opacity effects. The results for the mass dimension are
also shown in Table 1. For the particular case Df ¼ 2:6, we ob-
serve small but significant variations with opacity. The trend is
for Dm to increase as �0 increases, an expected result, taking into
account the fact that higher �0 values produce maps with a shorter
dynamical range of intensities. But in addition, the errors become
higher (poorer mass-size correlation) and the method begins to
fail (a correlation is not found) for �0 k1:3.

3. APPLICATION TO MOLECULAR CLOUD MAPS

Considering that opacity has almost no effect on the estimation
of the perimeter-area dimension for the simulated fractal clouds,

we set out to study the fractal dimension of nearby interstellar
clouds mapped in different molecular lines. As a starting hy-
pothesis, we argue that if different molecules are distributed fol-
lowing very similar patterns, then their maps should exhibit nearly
the same perimeter-area dimension values, independently of the
opacity of the molecular transition line. On the other hand, sta-
tistically significant differences will be evidence of internal
structure differences. We have used various maps of molecular
clouds to calculate both Dper and Dm. We have searched the lit-
erature for similar maps observed in different molecular lines. We
first use integrated intensity maps of the Ophiuchus and Perseus
molecular clouds obtained from the COMPLETE Survey of Star-
forming Regions (Ridge et al. 2006). The maps were obtained
from simultaneous observations in the 12CO(1Y0) and 13CO(1Y0)
transitions at the 14 m Five College Radio Astronomy Observa-
tory (FCRAO). The half-power beamwidth (HPBW) is around
4500 for both lines, the data are oversampled at irregular intervals,
and they were convolved onto a regular 2300 grid. We have also
used integrated intensity maps of the Orion molecular cloud ob-
tained from observations with the 45m telescope of the Nobeyama
Radio Observatory (Tatematsu et al. 1993). We use three maps
of the region around Orion KL in the 13CO(1Y0), CS (1Y0) (ob-
served simultaneously), and C18O(1Y0) transitions. The HPBW
was 3600 (for CS) and 1500 (for 13CO and C18O) with a grid spac-
ing of 4000 (CS and 13CO) and �3400 (C18O). After regridding,
the maps have resolutions of 1000 (CS and 13CO) and 1700 (C18O).
In principle, each map provides important information on cloud
structure. The high 12CO abundance ensures that strong emis-
sion occurs throughout most of the structure, but the lower J
lines of this molecule are often optically thick, providing very
little information on the structure of very dense regions within
molecular clouds. On the other hand, the lines of lower abun-
dance molecules (for instance, C18O) are usually optically thin,
even on multiparsec scales, making them suitable for identi-
fying deep regions, but the emission is limited to the denser
gas.
The results are summarized in Figures 3 and 4, which show

the perimeter and mass dimensions, respectively, obtained for
each of the maps (the bars on the data points represent 1 s.d.,
resulting from the best linear fit in the perimeter-area or mass-
size log- log plot; see Paper I). The perimeter-area method al-
ways gives three-dimensional fractal dimensions in the range
2:6 P Df P 2:8 for the Ophiuchus, Perseus, and Orion molecular
clouds. The exception to this general result was the C18O map of

Fig. 2.—Perimeter as a function of the area for the same fractal cloud as
shown in Fig. 1. Squares (left axis) are for the case �0 ¼ 0, and circles (right axis)
are for �0 ¼ 1. The intensity levels are fixed at 25% (crossed symbols), 50%
(open symbols), and 75% ( filled symbols) of the maximum intensity on the image.

Fig. 3.—Perimeter dimension projected Dper obtained for each molecular
cloud map. The dashed horizontal lines indicate values calculated in Paper I for
fractal dimension values Df from 2.0 to 2.9 in increments of 0.1. The open circle
refers to the result obtained for the smoothed C18O map (see text).
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Orion,which is discussed in x 4. For eachmolecular cloud theDper

value does not depend, within the error bars, on the transition line
used, a behavior that is consistent with the results we found in x 2.
The mass-size method yields 2:5 P Df P 2:8 for all the maps
(except again the C18Omap), which is in gross agreement with the
perimeter-area method. However, here we obtain higher error
bars, making it more difficult to constrain the range of Df values.
Part of this uncertainty is associated with the method itself, but
part is due to its sensitivity to opacity (x 2), because opacity varia-
tions within each map will affect the looked-for correlation. In
spite of this limitation, the mass-size method is useful as an ad-
ditional and independent tool for verifying values and trends de-
rived from the perimeter-area method, especially in low-opacity
regions. An example is the relatively low fractal dimension value
for the original C18O map that is obtained from bothDper andDm,
and it is discussed next.

4. THE EFFECT OF NOISE

The results for the C18O map of Orion are shown in Figures 3
and 4 as filled circles. The Dper value has a higher error bar for
the C18O map of Orion; i.e., there is a poorer correlation between
the perimeter and the area of the projected clouds. Moreover, the
resulting fractal dimension is in the range Df ’ 2:3Y2.5, sig-
nificantly lower than in the other maps. The mass dimension
also indicates a relatively low fractal dimension, but in this case
the value is Df ’ 2:0Y2.2. In principle, this would imply that
the observed structures are more irregular in the C18O map than
in the 13CO and CS maps, but two points have to be taken into
account before coming to this conclusion. First, the Df values
derived from both estimators (Dper and Dm) do not agree. Sec-
ond, if the C18O map shows mainly dense regions where turbu-
lence is overcome by gravity in order to condense into prestellar
cores (Larson 2005), then the resulting structures should be more
regular, i.e., with higher fractal dimension values (Falgarone
et al. 2004). Since the C18O emission is much weaker than the
other ones, the S/N is much lower for this map. Vogelaar &
Wakker (1994) used Brownian fractals to show that noise dis-
torts the contours and thus tends to increase the estimate of
Dper. This is specially true in maps with low S/N values. Thus,
the results Dper � 1:4 and Dm �1:7 for the C18O map could be
simply due to the fact that very noisy maps produce more ir-
regular structures and not necessarily because C18O is distrib-
uted in a more irregular pattern in Orion A. In other words,
we have to try to disentangle the structural aspects from noise

effects based only on the two-dimensional projection of the
cloud.

In order to test this possibility, we increased the S/N ratio by
smoothing the maps, and then we recalculated the fractal dimen-
sions.We have used aGaussian kernel to convolve the data, where
the � of the Gaussian determines the size of the neighboring re-
gion used to smooth spatial variations. If these variations between
neighboring pixels are due, in good part, to noise, then the final
effect will be some reduction in the image noise level. An opti-
mal algorithm would maximize the S/N ratio throughout the map
as, for example, the adaptive kernel algorithms do (Lorenz et al.
1993; Ebeling et al. 2006). Here we have used a simple space-
invariant Gaussian kernel (� constant), and we have calculated
Dper and Dm for different � values. In order to quantify the con-
trasting quality of the resulting images after smoothing, we have
introduced a new parameter, C, named ‘‘contrast,’’ which takes
into account the dynamical range of the image and the rms of the
background. This parameter is defined as the ratio between the
maximum intensity in the map and the s.d. of the intensity values
of the background pixels. The calculation of Dper is done by taking
a fixed number of brightness levels and finding all the connected
pixels (objects) whose brightness values are above each pre-
defined level (Paper I). We consider here as ‘‘background’’ pixels
all pixels whose brightness is below the minimum brightness level
considered in calculating Dper (5% of the maximum brightness
in the map). Thus, the parameter C estimates the contrast be-
tween the signal of the brightest object in the map and the varia-
tions of the background pixels. This parameter would be related
to the S/N of the brightest pixel only if the variations of the back-
ground pixels are due mainly to noise. We have calculated C for
the original maps and for the maps smoothed with different
� values. Figure 5 shows the results for the three maps of Orion
A used in this work.3 As expected for a low-S/N map, the C18O
map has the lowest contrast, but the interesting result is that this
map is the only one that begins increasingC as � increases. This
means that as the map is smoothed, the rms of the background de-
creases faster than the peak intensity does. In all the other maps,
the smoothing of the background variations is accompanied by
a higher proportion of decrease in the maximum signal. The

Fig. 4.—Mass dimension Dm obtained for each molecular cloud map. The
dashed horizontal lines indicate values calculated in Paper I for fractal dimen-
sion values Df from 2.0 to 2.9 in increments of 0.1. The open circle refers to the
result obtained for the smoothed C18O map (see text). Fig. 5.—Contrast parameterC as a function of the smoothing parameter � for

the three maps of Orion A used in this work, 13CO (squares), CS (circles), and
C18O (triangles).

3 The Ophiuchus and Perseus maps behaved similarly to the 13CO and CS
maps of Orion A. For clarity, those results are not presented here.
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contrast parameter, C, for the C18O map exhibits a maximum at
� ¼ 1:25 pixels (see Fig. 5, triangles). This maximum represents
the ‘‘optimal’’ map, in the sense of exhibiting the maximum
contrast or, in other words, the minimal noise distortion on the
image (in the case that background rms is due mainly to noise).
In each case we calculated Dper and Dm for the smoothed maps,
and all the results showed the expected behavior; i.e., Dper de-
creases ( less irregular boundaries) and Dm increases (more ho-
mogeneous distribution of intensities) as � increases. Figure 6
shows this result for the C18O map. For the 13CO and CS maps,
the same behavior could be appreciated for � k 1:5, whereas for
lower � values, Dper and Dm remain more or less constant (within
error bars). The perimeter-areaYbased dimension of the C18Omap
for the � at which C reaches its maximum value (Fig. 6, vertical
line) is Dper ¼ 1:31 � 0:02 (Fig. 3, open circle), from which
Df ’ 2:7 � 0:1 is derived, in very good agreement with the re-
sults obtained from the 13CO and CS maps (Fig. 3). In addition,
the mass dimension for this case (maximum value of C ) yields
Dm ¼ 1:84 � 0:03 (Fig. 4, open circle), which again is consis-
tent within the error bars with the previous results.

To calculate Dper, we use a given number of intensity levels
over the whole range of map intensities (Paper I). In principle,
we expect that the structure information in most of these levels
is only slightly distorted by noise in high-S/Nmaps. The lowest
levels are probably more affected by noise, but the perimeter di-
mension is calculated by using all the objects in all the levels,
and therefore noise affects the final result very little. The opposite
occurs in low-S/N maps, where most intensity levels are close to
the noise level and cloud boundaries may be artificially length-
ened (higher Dper values). The smoothing process should correct
this problem by flattening the wiggles due to noise in neighboring
pixels. But if the image is excessively smoothed, the clouds will
exhibit unrealistically lowDper values. Howmuch does the image

have to be smoothed? In high-S/N images the distortion produced
by noise is minimal; then it is reasonable to impose the condi-
tion of maximizing S/N in low-S/N maps as a previous step in
the estimation of the fractal dimension. While this requirement
does not guarantee that the dimension obtained is the ‘‘real’’
one, it does ensure the ‘‘best’’ estimation, diminishing the effect
of noise. Since the S/N value may be an unknown quantity (be-
sides depending on the position in the map), we have looked for
a parameter related to the S/N, but also easy to calculate for a
given map. The contrast C defined in this work equals the S/N of
the brightest pixel if the background variations are due to noise.
What we are suggesting is that the results obtained when C is
a maximum are more ‘‘reliable’’ than the results for the original
(unsmoothed) map. These arguments are supported by the fact
that both estimators (Dper andDm) approach the sameDf value for
the C18OmapwhenC is amaximum and by the fact that this value
agrees with the other map values.

5. CONCLUSIONS

Both the perimeter dimension (Dper) and the mass dimension
(Dm) are useful tools to infer the three-dimensional structure of
molecular clouds from two-dimensional maps. In general, Dper

yields uncertainties smaller than Dm, but this last method could
be very useful to corroborate values and trends observed in op-
tically thin regions. The opacity does not alter the results derived
from the perimeter-area method, but when � k 1, the mass-size
method cannot be used in a reliable way to estimate the fractal
dimension Df . An important point that should be considered
when using these methods with real data is that very high noise
levels can seriously affect the estimation of Df , artificially de-
creasing its value. One possible strategy to prevent this situation
is the use of a smoothing algorithm that maximizes the S/N
throughout the map. In this work we have defined a parameter
called ‘‘contrast’’ (C ), which we propose can help to choose the
most ‘‘reliable’’ image for estimating Df .
From different emission maps of the Ophiuchus, Perseus, and

Orion molecular clouds we obtain that the fractal dimension is
always in the range 2:6 P Df P 2:8. This result supports our
previous suggestion (Papers I and II) of a relatively high (>2.3)
average fractal dimension for the ISM. The ultimate goal is to
understand the origin of the ISM structure; therefore, it would
be important to investigate what physical processes are able to
generate high fractal dimension structures.
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