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ABSTRACT

We describe the evolution of double degenerate binary systems, consisting of components obeying the zero-
temperature mass-radius relationship for white dwarf stars, from the onset of mass transfer to one of several possible
outcomes, including merger, tidal disruption of the donor, or survival as a semidetached AM CVn system. We use
a combination of analytic solutions and numerical integrations of the standard orbit-averaged first-order evolution
equations, including direct-impact accretion and the evolution of the components due to mass exchange. We include
also the effects of mass loss during supercritical (super-Eddington) mass transfer and the tidal and advective ex-
changes of angular momentum between the binary components. With the caveat that our formalism does not include
an explicit treatment of common-envelope phases, our results suggest that a larger fraction of detached double white
dwarfs survive the onset of mass transfer than has been hitherto assumed, even if this mass transfer is initially unstable
and rises to super-Eddington levels. In addition, as a consequence of the tidal coupling, systems that come into
contact near the mass transfer instability boundary undergo a phase of oscillation cycles in their orbital period (and
other system parameters). Unless the donor star has a finite entropy such that the effective mass-radius relationship
deviates significantly from that of a zero-temperature white dwarf, we expect our results to be valid. Much of the
formalism developed here would also apply to other mass-transferring binaries, and in particular to cataclysmic
variables and Algol systems.

Subject headinggs: accretion, accretion disks — binaries: close — gravitational waves —
novae, cataclysmic variables — white dwarfs

1. INTRODUCTION

Binary white dwarfs that are close enough to be driven together
by angular momentum losses due to gravitational radiation, and
perhaps additional mechanisms, undergo a phase of mass transfer
during which the ultimate fate of the binary is decided. There are
many reasons to revisit the dynamical phases of the evolution of
double degenerate binaries today. Chief among these is that a
survey of the published literature on the subject reveals that many
pieces of the puzzle have been explored in different degrees, but
we still lack a uniform theoretical understanding of the fate of
these binaries for all possible mass ratios, orbital parameters, and
origins. Ideally, onewould like our theoretical understanding to be
such that, given awhite dwarf binary of arbitrarymasses and com-
positions at the time that the less massive component comes into
contact, one could reconstruct the previous evolutionary pathways
and the subsequent evolution to merger, tidal disruption, or stable
mass transfer.

The reason for this lack of uniformity is that understanding
double white dwarf (DWD) binaries in this rapid phase of inter-
action can be quite complex and demanding, necessitating detailed
hydrodynamics, nuclear physics, radiative transfer, and stellar
structure. Therefore, it is natural that different assumptions and
techniques are used when one attempts to answer a question re-
levant to different classes of phenomena. For example, the ap-
proaches adopted in studying the putative progenitors of Type Ia
supernovae, or the sources of gravitational waves for the Laser
Interferometer Space Antenna (LISA), or the progenitors of AM
CVn binaries, are all very different. While we will not attempt
to cover all the rich physics that may be ultimately necessary to
have a uniform and reliable treatment of all possible outcomes of
the interaction, we will describe these interactions within a single
semianalytic framework, making connections where appropriate
to well-known results already in the literature.

Our particular motive for having developed the understanding
described in this paper is that our group has been improving and
running a three-dimensional (3D) numerical hydro code (Motl
et al. 2002; D’Souza et al. 2006) that is currently capable of fol-
lowing self-consistently the evolution of model white dwarf bi-
naries through these rapid phases of mass transfer, tracking mass
and angular momentum with high accuracy for over 30 orbital
periods. In the course of numerous evolutions in which we con-
trolled the rate of driving by angularmomentum losses or prescribed
an arbitrary rate of pseudothermal expansion of the donor, it became
clear that we needed some simpler insight into the behavior of the
models. This led us to extend the analytic solution of Webbink &
Iben (1987, hereafter WI87) for the time-dependent behavior of
the mass transfer by relaxing most of the assumptions made to
render the problem tractable. Here we retain the simplifying as-
sumption of Roche geometry, but allow all the binary parameters
to vary self-consistently. Thus, we investigate numerically a sys-
tem of first-order evolution equations for a variety of cases and
recover the WI87 solution when appropriate conditions are ap-
plied.We then extend our insight to more general cases and com-
ment on the applicability and limitations of our approach. While
we are still far from themore ambitious goal described above, we
think that the present investigation may also provide a useful
framework for other workers in the field of binary evolution, es-
pecially for those interested in large-scale numerical simulations
of these binaries. Many of the techniques and theoretical insights
in this paper are applicable to other semidetached binaries and
may have some relevance to contact binaries.

2. BASIC EQUATIONS

Consider a binary that has nearly spherical components of
masses M1 and M2 and a separation of a. Without loss of gen-
erality, we assume that as this binary evolves from a detached to

1010

The Astrophysical Journal, 655:1010Y1024, 2007 February 1

# 2007. The American Astronomical Society. All rights reserved. Printed in U.S.A.



a semidetached state, star 2 is the one that fills its critical Roche
lobe and becomes the donor. We define the mass ratio of the bi-
nary to be q ¼ M2/M1. Assuming for simplicity that the spin axes
of the individual components of the binary are perpendicular to
the orbital plane and that the orbit is circular, the total angular
momentum of the system is given by

Jtot ¼ Jorb þ J1 þ J2

¼ M1M2 Ga=Mð Þ1=2þ k1M1R
2
1!1 þ k2M2R

2
2!2; ð1Þ

where ki are dimensionless constants that depend on the internal
structure of the components and !i are the angular spin frequen-
cies. The first term in equation (1) represents the orbital angular
momentum of the components, and the two other terms represent
the spin angular momenta of the stars. The form of the orbital an-
gular momentum term adopted above assumes that the binary
revolves at the Keplerian frequency � ¼ (GM /a3)1/2, which is a
good approximation if the stars are centrally condensed.

For a fully synchronous configuration, it is easy to show that the
total angular momentum and the total energy have a minimum
at the same separation amin ¼ 3(I1 þ I2½ Þ/�)1/2, where the Ii ¼
kiMiR

2
i are the moments of inertia of the components and � is the

reducedmass. Even if the orbital frequency and the spin frequency
are not synchronized but remain proportional to one another (!i ¼
fi�), there is aminimum of Jtot at some amin. Also, the total energy
of the systemwill have aminimum, but in general it will not occur
at amin.1

For our purposes it will be sufficient to work with the approx-
imate form of equation (1) given above. A more complete and
thorough discussion of the secular and dynamical stability of
polytropic binaries has been presented in two well-known series
of papers by Lai et al. (1993a, 1993b, 1994a, 1994b, 1994c) and
further developed with smoothed particle hydrodynamics (SPH)
simulations in papers by Rasio & Shapiro (1992, 1994, 1995),
who also addressed the role of mass transfer.

If the donor has a relatively soft equation of state and if q 6¼ 1,
the binary tends to become semidetached, and mass transfer oc-
curs before it falls prey to the tidal instability mentioned above.
Mass transfer changes the initial configuration as the system
evolves and may either drive the system to smaller separations
and thus closer to the onset of the tidal instability or to larger sep-
arations and toward stability. Similarly, mass loss from the system
can affect the dynamic stability of the system. We investigate the
behavior of such systems (in particular DWD binaries) in the
cases of conservative and nonconservative mass transfer, driven
by gravitational wave radiation (GWR).

2.1. Orbital and Spin Angular Momentum

A system of two point masses orbiting around each other, in
circular orbits, radiates gravitationally (Landau & Lifshitz 1975).
The loss of orbital angular momentum as a result is given by

J̇

J

� �
GWR

¼� 32

5

G3

c5
M1M2M

a4
: ð2Þ

Although GWR is likely to be the only important mode of an-
gular momentum loss from DWD binaries, for any general form

of systemic angular momentum loss J̇sys, we can rearrange equa-
tion (1) to obtain

Jorb ¼ Jtot� J1þ J2ð Þj J̇orb ¼ J̇sys� J̇1þ J̇2
� �

; ð3Þ

allowing for the possibility of spin-orbit coupling of the angular
momenta. The rate of change of the spin angular momentum of
each individual star can be given as the sum of the advected or
consequential angular momentum transport plus the effect of the
tidal torques:

J̇1 ¼ Ṁ1 j1þ J̇1; tid; ð4Þ
J̇2 ¼ Ṁ2 j2þ J̇2; tid: ð5Þ

The term denoting the advected component from the donor has
not been included in previous treatments concerning white dwarf
donors (Marsh et al. 2004), but has been discussed in the case of
evolved donors (see, for example, Pratt & Strittmatter 1976 and
Savonije 1978). For this reason, a few remarks clarifying the
meaning of the consequential terms are in order. In the above
equations, j1 and j2 indicate the specific angular momenta of the
matter arriving at the accretor and the matter leaving the donor,
respectively. In a conservative system these refer to the specific
angular momentum of the same material with respect to the
center of mass of each star, but at different times. We assume that
as the stream leaves the donor, there is no back-torque that could
modify the spin of the donor. Therefore, j2 is entirely determined
by the instantaneous conditions at the donor. However, the
material traveling in the stream experiences a time-varying torque
due to the binary that changes j1 at the expense of the orbital
angular momentum alone; that is, not torquing the spins of either
component. These are the assumptions underlying the standard
calculations of j1 and the estimates of the circularization radius,
which go back to Flannery (1975) and Lubow& Shu (1975). We
will discuss the appropriate values for j1 and j2 later, and write
down just the general expressions here. Substituting equations (4)
and (5) in equation (3) and rearranging, we obtain

J̇orb ¼ J̇sys � �Ṁ2 j1� j2ð Þþ J̇1; tidþ J̇2; tid
� �

; ð6Þ

where we have assumed conservative mass transfer. Also, we
can write the tidal torque as

J̇1; tid ¼
k1M1R

2
1

�s1
�� !1ð Þ; ð7Þ

J̇2; tid ¼
k2M2R

2
2

�s2
�� !2ð Þ; ð8Þ

where �s1 and �s2 are the synchronization timescales of the accretor
and the donor, respectively (see x 6.1). Equation (6) becomes

J̇orb ¼ J̇sysþ Ṁ2 j1� j2ð Þ� k1M1R
2
1

�s1
��!1ð Þ� k2M2R

2
2

�s2
�� !2ð Þ

ð9Þ

¼ J̇sys þ
Ṁ2

M2

�
M2 j1 � j2ð Þ þ k1M1R

2
1

�M2

�s1
�� !1ð Þ

þ k2M2R
2
2

�M2

�s2
�� !2ð Þ

�
; ð10Þ

where �M2
¼ �M2/Ṁ2 is the mass transfer timescale. In equa-

tion (10) the tidal torques have been placed inside the brackets,

1 Lai et al. (1993b) show that for Riemann-S and Roche-Riemann sequences,
dE ¼ � dJ þ � dC, where � is the angular velocity of internal motions and C is
the equatorial circulation. Thus, as a binary evolves, driven by gravitational wave
radiation, circulation is conserved and the minima of E and J will coincide.
However, tidal dissipation does not preserve C, and thus in general the minima
will not coincide in the presence of tidal spin-orbit coupling.
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although, strictly speaking, they are not consequential. In most
cases encountered in cataclysmic variables (CVs) and low-mass
X-ray binaries (LMXBs), �s1 3 �M2

and �s2T�M2
, and thus usu-

ally !1 3�, while (�� !2)/�j j � �s2 /�M2
. However, in double

degenerate binaries there is considerable uncertainty about the
synchronization timescales, and in numerical simulations of mass
transfer, �M2

is orders of magnitude shorter than the typical time-
scales one encounters in long-term accreting binaries. Therefore,
we retain both tidal terms and investigate their effect on dynamical
evolution. Note that our equation (9) is equivalent to equation (1)
of Marsh et al. (2004), with two extra terms arising from the ad-
vective and tidal contributions from the donor.

2.2. Binary Separation

We now derive the equations for the evolution of the binary
separation, the radius of the donor, and the Roche lobe radius us-
ing the above equations. From the functional form of the orbital
angular momentum, we know that for a conservative system

J̇

J

� �
orb

¼ Ṁ2

M2

1� qð Þþ 1

2

ȧ

a
:

Comparing this with equation (9) and rearranging, we obtain

ȧ

2a
¼ J̇sys

Jorb
� Ṁ2

M2

1� q�M2

j1� j2

Jorb

� �

� k1M1R
2
1

Jorb�s1
�� !1ð Þ � k2M2R

2
2

Jorb�s2
�� !2ð Þ: ð11Þ

The sign of the quantity in brackets determines whether mass
transfer tends to expand the system and thus oppose the effect of
angular momentum losses, or to lead to enhanced contraction.
The change of sign will generally occur at some mass ratio qa,
whose value we discuss below. Symbolically, we may write

ȧ

2a
¼ J̇sys

Jorb
� J̇1; tid þ J̇2; tid

Jorb
� Ṁ2

M2

qa � qð Þ; ð12Þ

qa � 1�M2

j1 � j2

Jorb
: ð13Þ

Thus (remembering that Ṁ2 is intrinsically negative), if q > qa,
mass transfer will contribute to reducing the separation and, as
we will see below, will tend to make the binary more unstable to
mass transfer. On the other hand, if q < qa, mass transfer will
oppose the effects of driving and will tend to stabilize the binary.
As q decreases with mass transfer, it is possible that a system that
started life with q > qa may evolve to a more stable configura-
tion, if it does not fall prey to the tidal instability. In equation (12)
the tidal synchronization torques may be considered additional
contributions to the driving, and they may subtract or add an-
gular momentum to the orbit, depending on the case. Note that qa
should be interpreted as the mass ratio at which the last term in
equation (12) changes sign. Its value can be estimated from the
initial mass ratio, since it is a slowly varying function of q in the
conservative case, but in general it is obtained self-consistently
as the binary evolution is followed numerically.

The second term in the definition of qa represents the effects of
the net consequential transfer of angular momentum from orbit
to spins. We introduce the symbol �c ¼ M2 j1� j2ð Þ/Jorb for this
term, noting that it stands for the consequential contribution to
�d log Jorb/d logM2. For direct-impact accretion, j1¼ jcirc
(�b21�) is the specific angular momentum carried by the stream
as it hits the accretor. The approximate value in parentheses is

valid for a synchronous donor, and b1 ¼ a(0:5� 0:227 log q) is
the distance from the center of mass of the accretor to the inner
Lagrangian point L1 (Frank et al. 2002). With the standard defi-
nition of circularization radius, rh ¼ Rcirc/a (Flannery 1975;
Lubow & Shu 1975; Verbunt & Rappaport 1988; Marsh et al.
2004), we find thatM2 jcirc/Jorb ¼ (1þ q)rh½ �1/2. Note, however,
that the tidal coupling of the donor spin to the orbit was neglected
byMarsh et al. (2004), and the consequential term proportional to
j2 � R2

2!2 was not included either. The precise value of j2 de-
pends on the details of the flow in the vicinity of L1 in a non-
synchronous donor (see Kruszewski 1963 and Csatáryová &
Skopal 2005). For the purposes of this investigation, we simply
adopt j2 ¼ R2

2!2. With these definitions, we may write

qa ¼ 1� �c ¼ 1� 1þ qð Þrh½ �1=2 1� R2
2!2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

GM1Rcirc

p
� �

: ð14Þ

The net effect of the consequential redistribution of angular mo-
mentum in the binary depends on the sign of �c. For DWD bi-
naries, j1 > j2 during the direct-impact stage, and this holds even
after the onset of disk accretion, when j1 ¼ (GM1R1)

1/2 and �c
becomes smaller but remains positive. In CVs and LMXBs, the
accretion disk returns via tidesmost of the angularmomentum that
was advected by the stream, the donor is almost synchronous, and
the tidal coupling of the accretor to the orbit is very weak. How-
ever, in this case R1Ta, and thus it is more likely that j2 > j1.
While all the additional terms in equations (12) and (13) are rel-
atively small, yielding qa � 1, in some cases �c < 0, and thus
qak 1, making these systems slightlymore stable. The expression
(eq. [14]) obtained above proves very useful in the interpretation
of results of large-scale numerical hydrodynamic simulations of
the dynamical evolution of binaries undergoing mass transfer,
with andwithout driving by angularmomentum losses (D’Souza
et al. 2006; see also x 6.3).
The Roche lobe radius for the donor is accurately given by the

Eggleton (1983) formula,

rL � RL

a
¼ 0:49q2=3

0:6q2=3þ ln 1þ q1=3ð Þ
; ð15Þ

and so with the notation of Marsh et al. (2004),

ṘL

RL

¼ �rL
Ṁ2

M2

þ ȧ

a
;

where �rL � 1/3 is the logarithmic derivative of rLwith respect to
M2.

2 Collecting results, we get

ṘL

RL

¼ 2 J̇sys

Jorb
� 2

J̇1; tid þ J̇2; tid

Jorb
� 2Ṁ2

M2

qa �
�rL
2

� q

� �
: ð16Þ

Generalizing the meaning of the symbols introduced byWI87 to
include tidal and consequential terms, we can write the equiva-
lent expressions

ṘL

RL

¼ �L þ �L
Ṁ2

M2

; ð17Þ

�L ¼ 2 J̇sys

Jorb
� 2

J̇1; tid þ J̇2; tid

Jorb
; ð18Þ

�L ¼ � 2qa þ �rL þ 2q; ð19Þ

2 In the range 0 < q � 1, the function �rL takes values between 0.32 and
0.46 and is well approximated by �rL � 0:30þ 0:16q for 0:1� q� 1.
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where � stands for driving terms and � stands for logarithmic
derivatives with respect to donor mass. In the same spirit, we
write the logarithmic time derivative of the donor radius R2 �
R2(M2; t) as

Ṙ2

R2

¼ �2 þ �2
Ṁ2

M2

; ð20Þ

where �2 ¼ (@ ln R2/@t)M2
represents the rate of change of the

donor radius due to intrinsic processes such as thermal relaxation
and nuclear evolution, whereas �2 usually describes changes re-
sulting from adiabatic variations of M2 (D’Antona et al. 1989).
More generally, since the radial variations due to the aforemen-
tioned effects operate on different timescales, it is more appropriate
to think of �2 as the effectivemass-radius exponent, averaged over
the characteristic timescale of mass transfer. If the donors are de-
generate, as in the white dwarf case, or if the thermal relaxation is
sufficiently rapid, �2 is simply obtained from the equilibrium
mass-radius relationship for the donor. But in nondegenerate do-
nors, if the thermal relaxation timescale � th becomes comparable
to themass transfer timescale �M2

¼ M2/Ṁ2, as is thought to occur
during the evolution of CVs, the effects of thermal lag in the
donor radius become important, and �2 deviates from the equilib-
rium value (see Appendix A).

3. MASS TRANSFER RATE

The following discussion of mass transfer and its stability is
rooted in a similar treatment of mass transfer under consequen-
tial angular momentum losses (King&Kolb 1995). For all types
of donor stars, the mass transfer rate is a strong function of the
depth of contact, defined here as the amount by which the donor
overflows its Roche lobe:�R2 � R2 � RL, suitably normalized.
We adopt the following expression as valid for most cases of
interest:

Ṁ2 ¼ �Ṁ0 M1; M2; að Þ f �R2ð Þ; ð21Þ

where Ṁ0 is a relatively gentle function of the binary parameters,
while f is a rapidly varying dimensionless function of�R2. For
example, for polytropic donors with index n, f ¼ (�R2/R2)

nþ3/2

(Paczyński & Sienkiewicz 1972), while for a donor with an
atmospheric pressure scale height H, f ¼ exp(�R2/H) is ap-
propriate (Ritter 1988). In fact, the exact value of the normali-
zation rate Ṁ0(M1; M2; a) is not important at all in a steady state
because the equilibrium rate is determined by the rate of driving:
given a particular value of Ṁ0, the depth of contact will adjust to
yield the transfer rate sustainable by the driving. In transient
situations, if the mass transfer is varying rapidly, or if the depth
of contact becomes large, the normalization becomes relevant.

In principle, equations (7), (8), (12), and (16)Y(21) completely
specify the system and can be numerically integrated, and we
discuss some examples of such evolutions later in x 5. However,
before proceeding, it is more illuminating to analyze the general
implications of equation (21). Under the assumptions mentioned
above,

M̈2 ¼ �Ṁ0

@f

@�R2

Ṙ2

R2

� ṘL

RL

� �
; ð22Þ

where we have neglected the slower variations of Ṁ0 with sys-
tem parameters and have also assumed that the depth of contact
is small, �R2TR2. Thus, the mass transfer rate will be steady
whenever the size of the donor varies in step with its Roche lobe.

From equations (17)Y(20) and (22), we obtain the equilibrium
mass transfer rate

Ṁ2

M2

� �
eq

¼ �L � �2
2 qstable � qð Þ ¼

�L � �2
�2 � �L

; ð23Þ

where

qstable ¼ qa �
�rL
2

þ �2
2

ð24Þ

is the critical mass ratio for stability of the mass transfer. The
alternative expression on the right-hand side of equation (23)
thus has the same form as in WI87, except that here the driving
and consequential terms include the effects of tidal coupling and
direct-impact accretion. Furthermore, we allow these terms to
vary self-consistently as the evolution proceeds (see x 5).

For example, if we assume that the binary is synchronized, the
orbit is circular, the donor is a polytrope of index n ¼ 3/2, and
�2 ¼ 0 (no thermal or nuclear evolution), then �2 ��1/3, �rL �
1/3, and we get

Ṁ2

M2

� �
eq

¼ J̇sys=Jorb
2=3� �c � q

;

which is the familiar form in the case of direct-impact DWDs
(Marsh et al. 2004), except that here �c is reduced by the contri-
bution from the donor as given by equation (14).

The equilibriummass transfer rate was obtained by demanding
that M̈2 ¼ 0 in equation (22). In general, if Ṁ2 6¼ (Ṁ2)eq, one can
rewrite this equation as follows:

M̈2 ¼ �2
Ṁ0

M2

@f

@�R2

qstable � qð Þ Ṁ2 � Ṁ2

� �
eq

h i
: ð25Þ

The sign of the prefactor on the right-hand side is negative if
q < qstable; thus, Ṁ2 will tend toward the equilibrium value, and
the mass transfer is stable. If q > qstable, no attainable equilib-
rium mass transfer exists, and the mass transfer is unstable.

4. ANALYTIC SOLUTIONS

Assuming that most of the parameters characterizing the binary
and the donor remain constant during the (usually much faster)
evolution of the accretion rate, it is possible to obtain analytic
solutions for the evolution of the accretion rate itself. In this sec-
tion we generalize the result of WI87 to include donors with an
arbitrary polytropic index and with an isothermal atmosphere.
These can be later compared to our integrations of the evolution
equations, in which we allow all binary and donor parameters
to vary self-consistently, and also with the results of large-scale
hydrodynamic simulations (D’Souza et al. 2006).

Assuming that the donor in the binary can be represented by a
polytrope, the mass transfer rate is given by a formula derived by
Jędrzejec (1969) assuming laminar flow, and quoted by Paczyński
& Sienkiewicz (1972):

�Ṁ2 ¼ Ṁ0

R2 � RL

R2

� �nþ3=2

: ð26Þ

Raising both sides of the above equation to the power of
2/(2nþ 3) and differentiating, we obtain

d

dt
�Ṁ2

� �2=2nþ3¼ Ṁ0

� �2=2nþ3
�2� �Lþ

Ṁ2

M2

�2 � �Lð Þ
� �

; ð27Þ
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where we have set the factor RL/R2 to unity, given that in most
situations �R2TR2. The analytic solutions discussed here as-
sume that the driving rate �L, the intrinsic radial variation rate �2
(which includes the intrinsic thermal and nuclear evolution), and
radial reaction exponents �2 and �L remain constant while the
depth of contact changes. This is only approximately true, and a
self-consistent solution will require numerical integrations. It is
interesting first to look at the implications of equation (27) when
no driving is present, because the solution is immediate and in-
structive. This is a situation we encounter in some large-scale
hydrodynamic simulations of mass transfer in polytropic bina-
ries (D’Souza et al. 2006). If we define a positive dimensionless
mass transfer y ¼ (�Ṁ2/Ṁ0)2/(2nþ3) and a characteristic timescale
� ¼ M2/Ṁ0, equation (27) becomes

dy

dt
¼ � �2 � �L

�
ynþ3=2: ð28Þ

The solution can be easily inverted to yield

y tð Þ ¼ y 0ð Þ 1þ y 0ð Þnþ1=2
nþ 1=2ð Þ �2 � �Lð Þt=�

h i� 2= 2nþ1ð Þ½ �
;

ð29Þ

where y(0) is the initial mass transfer rate, normalized as
above. This solution illustrates explicitly the role of �2 � �L ¼
2 qstable � qð Þ. In the stable case, where �2 > �L, the mass transfer
decays asymptotically to zero over a characteristic time �chr ¼
� /½(nþ 1/2)y(0)nþ1/2(�2 � �L)�, whereas in the unstable case,
where �2 < �L, it will blow up in a finite time equal to �chr. Thus,
the essence of the stability of mass transfer in a binary is already
contained in the simple case of no driving. The presence of driv-
ing exacerbates the natural instability, or, in the stable case, the
mass transfer settles asymptotically to a nonzero stable value. This
is what we observe, for example, in CVs, AM CVn types, and
LMXBs.

Returning now to equation (27), using the same definitions as
above for y and � , we obtain for the general case in which driving
is present

dy

dt
¼ � �2 � �L

�
ynþ3=2 � ynþ3=2

eq


 �
; ð30Þ

where ynþ3/2
eq � �(Ṁ2)eq/Ṁ0 ¼ (�2 � �L)� /(�2 � �L) is the equi-

librium value normalized to Ṁ0. Note that in the stable case, this
value is positive, while it is negative in the unstable case. Before
we attempt to solve the above differential equation, it is clear from
its form and the signs just discussed that it describes a stable sol-
ution in which y ! yeq when q < qstable. If, however, q > qstable,
the right-hand side is positive even if the mass transfer vanishes
initially, and it just gets bigger as the mass transfer grows. Since y
diverges for the no-driving case in a finite time, the driven case
diverges even sooner.

In order to obtain an analytic solution to equation (27) that can
be compared to the solution of WI87, it is necessary to cast it in a
slightly different form, using the equilibrium rate defined in equa-
tion (23) and modifying appropriately the definitions of the inte-
gration variable and characteristic time. With the definitions y� �
½Ṁ2/(Ṁ2)eq�2/(2nþ3)

and 1/�� � (�2 � �L)(Ṁ2/j(Ṁ2)eqj)2/(2nþ3), the
differential equation for the evolution of mass transfer becomes

dy�

dt
¼ sgn y�ð Þ 1

��
1� sgn y�ð Þ y�j jnþ3=2
h i

; ð31Þ

where sgn( y�) is the sign of y�. Thus, for the stable case y� > 0,
while y� < 0 for the unstable case, and �� is defined positive.
The general analytic solution comprising both the stable and the
unstable case can be given in terms of the hypergeometric func-
tion 2F1, as follows:

t

��
¼ y� 2F1 1;

1

nþ 3=2
; 1þ 1

nþ 3=2
; sgn y�ð Þ y�j jnþ3=2

� �
:

ð32Þ

While this solution can be easily plotted numerically, it is not
possible in general to invert it to obtain y�(t). In a few cases,
simpler analytic forms can be obtained. For example, the case in
which n ¼ 3/2 yields the solution of WI87, and the case in which
n ¼ 1/2 is particularly simple:

y� ¼
tan t=��ð Þ; unstable < 0ð Þ;
tanh t=��ð Þ; stable > 0ð Þ:

�
ð33Þ

In the case of isothermal atmospheres, the mass transfer rate
(Ritter 1988) is given by

Ṁ2 ¼ �Ṁ0e
R2�RLð Þ=H ; ð34Þ

where H is the scale height. This form of the mass transfer
equation is much simpler to integrate than the one for polytropes
considered above.With the same approximations and notation as
in the steps leading to equation (30), and defining y ¼ �Ṁ2/Ṁ0 ¼
exp((R2 � RL)/H), we obtain

1

y

dy

dt
¼ � �2 � �L

�

R2

H
y� yeq

� �
: ð35Þ

This can be easily integrated to obtain

y ¼ yeq

1� 1� yeq=y0
� �

e�t=�iso
; ð36Þ

where �iso � H /R2(�2 � �L) is the timescale required for the
driving to change the depth of contact by�H and y0 is the initial
value, which is always positive for physically meaningful cases.
In the stable case, yeq > 0 and y ! yeq, while yeq < 0 for the
unstable case and y diverges in a finite time tdiv ¼ �iso ln(1�
yeq/y0). If no driving is present, we may set yeq ¼ 0 and integrate
equation (35) for an isothermal donor. The result is again simple
and instructive:

y ¼ y0

1þ �2 � �Lð Þy0 R2=Hð Þ t=�ð Þ : ð37Þ

In the stable case, for any initial mass transfer, the system will
detach and mass transfer will tend to zero. In the unstable case,
any nonzero initial mass transfer will grow and diverge in a finite
time.

5. NUMERICAL INTEGRATION RESULTS

We now relax some of the constraints imposed in the previous
section and integrate the evolution equations, allowing the binary
parameters to adjust self-consistently. Specifically, we compute
the changes in the masses of the components (assuming conserva-
tive mass transfer), allow the binary separation to change as a result
of any driving present, and compute the values of �2 and �L as
they evolve. The values of �2 depend on the adopted mass-radius
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relationship for the donor. Here we use the Eggleton (1983)
interpolated zero-temperature mass-radius relationship cited by
Verbunt & Rappaport (1988) and Marsh et al. (2004), which is a
good approximation for systems containing old, cold white
dwarfs. It is possible that the systems emerge from a common-
envelope evolution with a massive hydrogen atmosphere around
the donor (D’Antona et al. 2006), or that the donor has a finite
entropy such that �2 deviates significantly from the value ob-
tained from the zero-temperaturemass-radius relationship for white
dwarfs (Deloye et al. 2005). In such situations, the radial variation
rate �2 is nonzero and in fact can reduce the net driving rate �L � �2,
leading to a lower value for the equilibrium mass transfer (see
eq. [23]). Also, a mass radius exponent (�2) that is significantly
different from approximately �1/3 clearly affects the stability
and evolution of the systems at the onset of mass transfer and can
lead to shrinking orbits even if the mass transfer is stable with
M̈2 � 0. In our subsequent analysis, in which we are concerned
about the long-term integrations of the orbit-averaged equations,
we set �2 ¼ 0 and use the zero-temperature mass-radius relation-
ship. We note that for the study of the onset of mass transfer in
finite-entropy systems like the ones addressed by Deloye et al.
(2005) and D’Antona et al. (2006), a more realistic model for the
donor is required.

In order to calculate �L, we need to either assume or determine
from other assumptions how themass and angular momentum are
redistributed in the binary during mass transfer. As we have seen
in x 3, this depends on the mode of accretion appropriate for the
binary considered.Does the stream impact the accretor, or is an ac-
cretion disk present? Is the mass transfer sub-Eddington and con-
servative, or are mass and angular momentum being ejected from
the system following super-Eddington mass transfer? For most of
the numerical integrations that follow, we use the appropriate rate
of driving by gravitational wave radiation, �L, wherever necessary
we assume a constant driving rate. However, if one is interested in
the relatively rapid phases of mass transfer that follow contact and
onset, then the qualitative properties of our integrated evolutions
do not depend strongly on these assumptions.

5.1. Surviving Unstable Mass Transfer

We integrate numerically the evolutionary equations for a sam-
ple of double degenerate binaries whosemass ratios at the onset of
mass transfer exceed the stable value. In order to mimic the con-
ditions assumed byWI87 in their pioneering analysis, we assume

a constant rate of driving, that nomass loss from the systemoccurs
even during super-Eddington phases, and that a tidally truncated
accretion disk is present at all stages. For these choices, qstable �
0:49, and thus we expect unstable mass transfer in binaries whose
initial mass ratio exceeds this value. In Figure 1 we present the
evolution of mass transfer for a selection of unstable binaries un-
dergoing conservative disk accretion, including the specific value
q ¼ 0:563 that was used byWI87 to illustrate their analytic solu-
tion. These integrations show that the mass transfer in an initially
unstable binary grows rapidly at first, peaks, and then evolves
asymptotically toward an equilibrium rate that is also evolving as
q changes. The analytic WI87 solution diverges in a finite time,
while all numerical solutions reach a peak and then return to
stability. The peak transfer decreases as the initial value of q ap-
proaches qstable. The equations we integrate are orbit-averaged
evolution equations (OAEs) in the sense that the rates of change
of the orbital parameters are averaged over one orbital period.
This approximation is valid as long as the evolution is not too
rapid and the eccentricity of the orbit remains negligible. Further-
more, our formulation does not include the full effects of tidal
distortion and instability discussed by Lai et al. (1993a, 1993b,
1994a, 1994b, 1994c). Our results suggest that an initially un-
stable binary may survive the onset of unstable mass transfer as
long as the mass transfer does not get too big and the separation
does not get too small. See x 5.2 for a discussion of the limits of
the validity of the OAEs under unstable mass transfer.

It is also interesting to compare the analytic solution given by
equation (36) for an isothermal donor in the unstable case with
numerical integrations of the OAEs for various initial mass ra-
tios. This comparison is shown in Figure 2, with the analytic un-
stable solution plotted as the single divergent black curve. We
elected to plot the natural logarithm of y, which is simply the
depth of contact, R2 � RL, in units of the pressure scale heightH.
All the integrations were started from the same initial depth of
contact, corresponding to an initial mass transfer of 10�5 times
the reference rate.

5.2. Super-Eddington Mass Transfer

Another effect may come into play, as discussed by Han &
Webbink (1999), when the mass transfer exceeds the critical
Eddington rate and the evolution becomes nonconservative. We
can incorporate this effect into our numerical integrations by

Fig. 1.—Comparison of integrations with the analytic solution by WI87. The
mass transfer rate, normalized to the initial equilibrium rate, is shown as a
function of time, in units of the initial value of � , for the analytic solution (black
curve) and the numerical solutions (green curve, q ¼ 0:663; orange, 0.613; cyan,
0.563 [same as WI87]; blue, 0.543; magenta, 0.523; red, 0.513).

Fig. 2.—Comparison of integrations with the unstable isothermal analytic
solution. The natural logarithm of the mass transfer rate, normalized to the initial
equilibrium rate for the case with q ¼ 0:663, is shown as a function of time, in
units of � iso, for the analytic solution (black curve) and the numerical solutions
(green curve, q ¼ 0:663; orange, 0.613; cyan, 0.563 [same asWI87] ; blue, 0.543;
magenta, 0.523; red, 0.513).
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allowing the excess mass to be blown out of the binary as a wind,
carrying away a specific angular momentum jw.We calculate the
accreted fraction � following Han & Webbink (1999) and
modify the evolution equations as follows:

J̇1 ¼ � �Ṁ2 j1þ J̇1; tid; ð38Þ
J̇2 ¼ Ṁ2 j2þ J̇2; tid; ð39Þ
J̇orb ¼ J̇sys � �Ṁ2 �j1 � j2 þ 1� �ð Þ jw½ � þ J̇1; tid þ J̇2; tid

 �
;

ð40Þ
ȧ

2a
¼ J̇orb

Jorb
� Ṁ2

M2

1� �q� 1� �

2 1þ qð Þ

� �
: ð41Þ

During the direct-impact phase, it is reasonable to assume that
the material blown out carries away the characteristic specific
angular momentum of the stream, jw ¼ j1. After a disk forms,
the angular momentum advected by the wind will depend on the
details of the flow, which are beyond the scope of the present
study. For example, if thematerial is lost mostly from the vicinity
of the accretor, it will carry approximately the specific orbital
angular momentum of the accretor. Since we do not know ex-
actly how jw varies, we set jw ¼ j1 throughout. In this case, equa-
tion (40) simply reduces to equation (6). While it would be
possible to cast the evolution equation for the binary separation
(eq. [41]) in the same form as equation (12) by defining

qa � 1þ 1� �ð Þq� 1� �

2 1þ qð Þ �M2

�j1� j2 þ 1� �ð Þ jw
Jorb

;

ð42Þ

the explicit appearance of q above makes it obvious that qamust
be calculated self-consistently during the evolution. Note that
when � ¼ 1, the above expression reduces to equation (13), as it
should.

Figure 3 shows two examples of evolution with a super-
Eddington mass-transfer phase. Because the OAEs do not include
tidal distortions of the components or dissipative effects, arising
for example from friction during a common-envelope phase, they
always predict survival, no matter how high the mass transfer gets
during an unstable phase. The only exception to this rule occurs
if during the evolution the binary separation falls below the value
amin, at which the angularmomentumand the energy of the binary
reach a minimum. In that case, further loss of angular momentum
inevitably breaks the synchronism, and the system is secularly
unstable. As the binary frequency increases, the spin frequencies
of the components fall behind, tidal synchronization torques fur-
ther reduce the orbital angular momentum, and finally a dynamical
instability leads to a rapid merger. However, for DWD binaries the
lower mass component almost always fills its Roche lobe at a
‘‘contact separation’’ acwell before this minimum is reached. Then
mass transfer commences, and soon the second term in equa-
tion (11) rises enough to drive the binary apart, saving it from a
merger. If initially q > qstable , mass transfer rises evenmore quickly
and causes the binary to expand and recover from the instability.
Clearly the OAEs break down if during the transient the transfer is
so high that a significant fraction of the donor overflows in one
orbit, and the dissipative effects mentioned above may promote a
merger even before the mass transfer gets that high.

Suppose that during the transient, themass transfer rises to � times
the critical Eddington rate. We can estimate the fraction of the donor
mass transferred in a single orbit, using the standard assump-
tions about the donor filling its Roche lobe, and taking for

simplicity a mass-radius relationship Ri � 5 ; 108 M�/Mið Þ1/3 cm.
We find

�Ṁ2P

M2

¼ P

�
� 10�9�

M1

0:5 M�

� ��1=3
M2

0:1 M�

� ��2

: ð43Þ

In most of the parameter space this fraction is so small that we
can trust the OAEs to describe approximately the correct behavior
within the limits of the physical effects included in their deriva-
tion. Looking at Figure 3 of Han & Webbink (1999), we see that
�P10 for most cases, with the exception of very rare binaries in
which the accretor is already very close to the Chandrasekhar
limit. Thus, we expect a certain fraction of the binaries that come
into contact with q > qstable to survive unstable mass transfer, even
if the mass transfer happens to be super-Eddington. However, to
estimate the fraction of binaries that actually make it through,
one would have to deal with the common-envelope phase, which
is beyond the scope of the present study.

6. APPLICATIONS

In the above sections we have developed the basic framework
for investigating the evolution of close DWD systems. By im-
posing the appropriate constraints on the OAEs, we have com-
pared our OAE integrations with analytic solutions illustrating
the limitations of the latter. In what follows we investigate the
consequences of the OAEs when they are applied with all effects
included. One immediate consequence of the OAEs is the phe-
nomenon of tidally induced oscillations, which we describe first.
Next, we apply the OAEs to a grid of systems with different ini-
tial component masses inM2-M1 space and study the evolutionary
outcome of each of these systems. Finally, we follow the evolu-
tion of a single system in order to achieve a better qualitative
understanding of the results obtained for this system using a full
3D hydro code.

6.1. Tidally Induced Cycles

As a system comes into contact, the binary separation decreases
at first until the mass transfer rate is high enough to reverse the
trend in a. In unstable or near-unstable cases, during this phase the
mass transfer timescale �M2

decreases rapidly and becomes shorter
than the synchronization timescale of the accretor, �s1 , allowing
efficient spin-up and building a large asynchronism. As the sep-
aration increases, the mass transfer rate begins to fall, and corre-
spondingly �M2

increases rapidly (see Fig. 1). The synchronization
timescale does not evolve as rapidly as the mass transfer rate, and
eventually �M2

k �s1. Now the angular momentum stored in the
spin of the accretor is efficiently returned to the orbit. If enough
asynchronism has been built up in the accretor during the spin-up
phase, the additional injection of spin angular momentum to the
orbit can cause the separation, and consequently the Roche lobe
radius of the donor, to increase at a rate faster than that of the
radius of the donor. On the other hand, the donor radius increases
at a slower rate due to the decreasing mass transfer rate. This
leads to detachment: the radius of the star cannot keep up with
the increase in the Roche lobe radius. In general, whenever the
effective driving �L � �2 > 0, the systems detach. Eventually,
when tides synchronize the spins again, the driving will shrink
the binary back into contact, and accretion recommences, slowly
at first, and accelerating as the separation a shrinks and the cycle
repeats. However, as the cycles repeat, the deviations from the
equilibrium rate decrease until the system settles to a steadily
expanding behavior with the mass transfer following the equi-
librium rate closely. In the absence of tidal effects, one would
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Fig. 3.—Various parameters for super-Eddington accretion with direct impact with q ¼ 0:25, just above qstable (left), and q ¼ 0:35, well above qstable (right). The panels
show, from top to bottom, the accreted fraction �, the logarithm of the mass transfer rate (magenta curve) and the corresponding Eddington rate (dashed red curve) in units
ofM� yr�1, themass ratio q, and the total mass normalized to the initial value. The abscissa shows times in units of years from the time of first contact. The lower value of q
accretes at super-Eddington rates for less time as compared to the higher value of q, and it does so more gradually, losing less mass (bottom). Even for the initially more
unstable mass transfer (the larger value of q), the fraction of mass lost is below 3%.



expect the orbital period to increase monotonically with time
once equilibrium mass transfer has been established for AM
CVnYtype systems. However, in the presence of appropriate tidal
coupling, the systems may detach, and this leads to oscillations
in the orbital period, increasing when the system gets into suf-
ficient contact and decreasing when it detaches and the GWR
dominates over the tidal terms. This behavior is evident from
Figures 4 and 5, in which we plot the orbital period of the binary
as a function of time for different mass ratios and different tidal
synchronization timescales. Note that the number of oscillations
the system goes through is a function of both the tidal timescale
and the mass ratio. For a given tidal timescale, the higher the
mass ratio, the larger the number of oscillations a system is likely
to go through. This is because the higher mass ratio implies that
the system is more unstable, which leads to a higher mass
transfer rate and thus a higher degree of asynchronism between
the accretor and the orbit. On the other hand, for a given mass
ratio, a longer tidal timescale allows for a higher spin-up of the
accretor, leading to more oscillations and higher amplitudes.
There are, however, limits to how high or low the tidal timescale
(as compared to the mass transfer timescale) can be in order to
observe this behavior. If the timescale is too high, the spins
and orbit are effectively decoupled, while if the timescale is too
low, the coupling is too efficient to allow for any significant

asynchronism. Thus, in these extremes we do not observe any
oscillations.
During the evolution of the binary, the tidal synchronization

times change because the masses and stellar radii relative to the
orbital separation are changing. We assume that the synchroni-
zation timescales evolve as in Campbell (1984):

�s1 /
M1

M2

� �2
a

R1

� �6

;

�s2 /
M2

M1

� �2
a

R2

� �6

; ð44Þ

and choose a normalization (�s0 ) that yields the desired initial
timescales.
As has been mentioned above, tidally induced detachment has

implications for ultracompactDWDsystems,3 such asRX J0806+
1527 (hereafter RX J0806) and V407 Vul. In these systems it is
observed that the orbital period is decreasing at a rate consistent
with GWR, but mass transfer is obviously under way in these sys-
tems (Strohmayer 2002; Hakala et al. 2003). This is at odds with
the theoretical expectation that the orbital period should increase.
Building on ideas discussed in Lamb & Melia (1987), and com-
plementing cases considered by Marsh & Nelemans (2005), we
have investigated the possibility of tidally induced detachment.
We see that it is possible for the binary to detach, especially in the
case of unstable, direct-impact systems.
The system parameters such as the mass of the donor and the

accretor and the various angular momentum loss mechanisms are
not accurately known for the known AM CVn systems. We have
calculated the amount of time forwhich the tidal oscillations are in
effect in the case of a DWD system after it first comes into contact
by loss of GWR for different system parameters. In Table 1 we
have tabulated the relevant timescales as a function of the mass
ratio q and the tidal timescale �s1 of the accretor. Here Tosc ¼
T1 þ T2 þ T3 is the timescale for which the oscillations last after
initial contact, T1 represents the time when the binary is in con-
tact but the separation is decreasing, T2 is the time when the sys-
tem is in contact and the separation is increasing, T3 represents
the time for which the system is out of contact, and Nosc repre-
sents the number of oscillations that a system encounters during
its evolution.We see that for a givenmass ratio, a system tends to

Fig. 4.—Evolution of the period, normalized to the period of first contact
and onset of mass transfer, for a binary with initial values q ¼ 0:28 and M2 ¼
0:125 M�. This choice yields an orbital period of �300 s at onset. The curves
shown correspond to different initial tidal synchronization times: �s1 ¼ 500 yr
(green), 1000 yr (red ), 1500 yr (blue), and 2000 yr (magenta). Tidal timescales
are evolved according to eq. (44). The longer the tidal timescale, the more oscil-
lations with higher amplitude.

Fig. 5.—Left : Evolution of a binary with q ¼ 0:28 for values of �s1 ¼ 2500 yr (magenta) and 500 yr (green). Right : Same as at left, but for q ¼ 0:24. The time is set to 0
when the binary comes into contact for the first time. The higher the mass ratio, the more oscillations with higher amplitude.

3 The higher the donor mass, the shorter the period at initial contact. Also, a
higher donormassmakes it more likely that the system has an unstablemass ratio.
Thus, in general, oscillations are more likely to be in short-period systems.
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spend an increasing amount of time out of contact with increas-
ing tidal timescales. Moreover, the more unstable the mass ratio,
the larger the number of oscillations and the timescale for which
the oscillations last.

A binary can spend a considerable amount of time in a state in
which tides are effective, especially in the case of unstable mass
transfer. In fact, since the systems also spend quite a significant
fraction of time out of contact, there should be many more sys-
tems with short periods than can be observed. However, even in
the most favorable case, a given system spends less than 30% of
its time in a regime where the system is in contact and the orbit is
shrinking. Thus, it is unlikely that tidally induced oscillations are
responsible for the observations of Ṗ < 0 for RX J0806 and
V407 Vul. Nevertheless, the probability that we can catch a sys-
tem in contact with Ṗ < 0 is enhanced significantly as compared
to the case when there are no oscillations (Willems & Kalogera
2005). For example, for the q ¼ 0:26 case the system does not
undergo any oscillations and T1 �1000 yr for �s1 ¼ 1000 yr. A
more promising idea is the recent proposal by D’Antona et al.
(2006), according to which the behavior of these systems can be
understood if the donor possesses a substantial nondegenerate
atmosphere that allows the donor to shrink as mass transfer
proceeds. Under these conditions mass transfer tends to be more
stable, at least initially, and cycles are unlikely.

In the next subsection we follow a large number of evolutions
with different initial conditions by integrating theOAEs for 109 yr,
in order to address the question of which kind of systems, and
under which conditions, are likely to experience the cycles de-
scribed here.

6.2. Exploring Evolutionary Outcomes

We explore the parameter space for DWD binaries by inves-
tigating the different types of binary evolution that can occur
under a variety of initial assumptions. Our procedure consists of
selecting the initial masses for binary components and evolving
them under driving by gravitational radiation for 109 yr. In the most
general case, we include tidal coupling between the orbit and both
components, we allow mass loss in super-Eddington cases, and we
include the transition from direct impact to disk accretion. We also
choose the tidal synchronization timescales for either the accretor
alone, as in Marsh et al. (2004), or for both components, allowing
even the donor to become nonsynchronous. As a check, we have
evolved a grid ofmodels that suppress the tidal and advective terms
from the donor and choose the same synchronization timescale as
Marsh et al. (2004). Under these assumptions, our results are in-
distinguishable from theirs.

Before presenting the results of the evolutions, we investigate
the expected behavior of the systems, focusing on the stability
limits and whether the mass transfer is super-Eddington or not.
In Figure 6 we plot the stability limits for two cases, one with the
donor spin properly accounted for (blue line), and the other with
the donor effects ignored (magenta line). In addition, for each
case, we plot the locus of points for which Ṁ2eq � ṀEdd; that is,
the locus of points that defines a transition from super-Eddington
accretion to sub-Eddington accretion. Note that these curves
represent the equilibrium mass transfer and Eddington rates of
the system at initial contact, where we assume that the systems
are synchronous and thus the tidal terms are zero.

For direct-impact systems, the accretion rate is always super-
Eddington if M2 > 0:21 M� (0.17 M� if donor terms are ne-
glected). This occurs for two reasons: (1) in general, the higher
the donor mass, the higher the mass ratio, and thus the systems
are closer to instability, which in turn implies a higher Ṁ2eq ; and
(2) the higher the accretor mass, the lower the threshold for super-
Eddington accretion (Han &Webbink 1999). However, as can be
seen from Figure 6, the transition of the systems from direct im-
pact to disk accretion leads to changes in the stability properties of
these systems: they tend to be slightly more stable, because the
loss of orbital angular momentum to the accretor spin in disk
systems is smaller than that in the direct-impact case. This is re-
flected in the slight upturn in the stability curve aroundM1 �1M�
(0.85M� if donor terms are neglected). The result of this is that the
equilibrium mass transfer rate for the disk systems is lower than it
would have been for that same system if it were a direct-impact sys-
tem. Consequently, these systems tend to undergo sub-Eddington
accretion, and the locus of the transition between super- and sub-
Eddington accretion systems follows the stability curve for both
cases. However, the disk transition ‘‘saves’’ only a few systems,
because DWD binaries with M2 > 0:25 M� (0.23 M� if donor
terms are neglected) are all super-Eddington initially.

We now present the results of the numerical integrations of the
OAEs for a grid of models in theM2-M1 parameter space. In Fig-
ure 7, we plot the results for two extreme values of the accretor
tidal synchronization timescales, one with an extremely large
tidal timescale (1015 yr), corresponding to inefficient coupling,

TABLE 1

Time Spent in Different Regimes during the Oscillation Phase

q

�s1
(yr)

Tosc
(yr)

T1
(yr)

T2
(yr)

T3
(yr) Nosc

0.28............................ 1000 3200 1260 1000 936 1

2500 23000 4450 4125 14425 4

5000 64000 4025 11655 48320 5

0.26............................ 1000 0 985 8t > T1 0 0

2500 5400 1750 810 1840 1

5000 15200 1600 4100 9510 2

0.24............................ 1000 0 710 8t > T1 0 0

2500 3600 1130 1820 650 1

5000 5500 1110 2300 2100 1

Note.—Here time is given as a function of the mass ratio q and the tidal time-
scale �s1 .

Fig. 6.—Mass-transfer stability limits (dash-dotted lines) and super- and
sub-Eddington accretion boundaries (solid lines), both with (blue) and with-
out (magenta) the donor terms included. The dashed black line divides direct-
impact systems from disk accretion systems (Marsh & Steeghs 2002). Because
the transition from direct impact to disk accretion makes mass transfer more
stable, both the stability limits and the Eddington accretion rate boundaries fol-
low closely the locus of that transition toward higher donor masses (see text for
details).
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and one for a short timescale of 10 yr, corresponding to highly ef-
ficient spin-orbit coupling. First we note a significantly increased
region (as compared to when the donor terms are ignored) of
parameter space corresponding to sub-Eddington mass transfer
and probable survival as a long-term, stable mass transfer binary
of the AM CVn type. Also, from our discussion above, we ex-
pect that the case with inefficient tidal coupling (Fig. 7, left) to
match the curves in Figure 6. The transition from super- to sub-
Eddington accretion overlaps the stability boundary until M2 �
0:21M�, after which it follows the stability curve defined by the
transition from direct impact to disk accretion, in accordance
with our expectations. On the other hand, since the tides almost al-
ways act to stabilize the system by effectively reducing the driving
rate, a simplistic analysis based on comparing the initial equi-
libriummass transfer and Eddington rates has only partial validity.
While the threshold for super-Eddington accretion remains un-
affected by the tidal coupling, themass transfer rate is significantly
lowered due to the reduced driving rate and can be below the
Eddington accretion rate. Systems that have super-Eddington ac-
cretion rates when the tidal coupling is inefficient can thus ac-
crete at sub-Eddington rates if the tidal coupling is strong. As a
consequence, we expect the domain of sub-Eddington accretion
to extend to higher donor masses, and when we compare the left
and right panels of Figure 7, this is what we observe.

Finally, the locus of systems that undergo oscillations in their
separation and binary period is illustrated in Figure 8. Whether a
system undergoes oscillations or not depends primarily on two
factors: the accretor tidal synchronization timescale �s1 and the
mass ratio q. As can be seen from Figure 8, oscillations are seen
to occur only in a certain domain around the stability curve, and
that domain decreaseswith increasing tidal synchronization times.
This is due to the fact that, for higher donor masses, the mass
transfer timescale �M2

is quite short, and if the tidal timescale �s1 is
much longer than �M2

, the spin and the orbit are effectively de-
coupled. As a result, there is minimal return of the spin angular
momentum to the orbit, and consequently there are no oscilla-
tions for these long timescales. In fact, referring to Figure 8, we
observe that systems with high donor mass (M2 > 0:35 M�) do
not undergo any oscillations at all. Again, this is because the mass
transfer rates are high in this domain, and thus the tidal timescales
(considered here) are much longer than the mass transfer time-

scales. Consequently, the radius of the donor keeps up with the
increase in the Roche lobe radius throughout the evolution, and
the systems stay in contact.
On the other hand, systems to the bottom right of Figure 8 (the

ones with low donor mass and high accretor mass) are stable
systems and are more likely to be disk systems. Thus, the accretor
is not spun up as much as in the case of less stable or unstable
systems. Moreover, in the disk systems, tides are extremely effi-
cient in returning angular momentum back to the orbit. Both of
these factors conspire to decrease the level of asynchronism
achieved by the accretor, and consequently these systems do not
undergo oscillations.
We have also studied the effect of the donor’s tidal synchro-

nization timescale on the domain over which systems undergo
tidally induced oscillation cycles. In most cases, the level of the
donor’s asynchronism is rather low. Thus, the magnitude of the
term associated with the tidal effects of the donor in the driving
rate �L (eq. [19]) is much smaller than that of the corresponding

Fig. 7.—Evolution for 109 yr for an initial value of �s1 of 10
15 yr (left) and 10 yr (right). This synchronization time is for the initial configuration and evolves according

to eq. (44). The value of �s2 is calculated on the basis of whatever value of �s0 is required to obtain the desired value of �s1 . The red symbols represent super-Eddington
accretion, and the green are sub-Eddington; the plus signs and diamonds represent systems with total mass below and above the Chandrasekhar limit, respectively. Among
the latter, asterisks superimposed on diamonds indicate systems in which the accretor does not reach the Chandrasekhar limit in 109 yr. The blue dash-dotted line represents
the initial stability boundary with all donor effects included. The magenta line represents the stability boundary without these effects, shown here for comparison. Note the
transition in the super- and sub-Eddington accretion rates around a value of M2 ¼ 0:2 M� to the latter stability curve.

Fig. 8.—Systems that undergo oscillations at least once during their evolution
for values of �s1 ¼ 500 yr ( plus signs), 2500 yr (crosses), and 5000 yr (open
circles). Red symbols indicate super-Eddington transfer during any part of the
evolution, whereas green symbols indicate sub-Eddington transfer throughout the
109 yr evolution. The magenta and blue lines represent the stability limits, as in
previous figures. The quantity �s2 is held at a constant value of 100 yr.
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term for the accretor. As a result, the donor synchronization time-
scale has a limited impact on the domain over which the systems
oscillate.

6.3. Comparison with Hydrodynamic Simulations

One of the stated objectives of this paper is to develop a theo-
retical framework to interpret and analyze results of large-scale,
self-consistent, 3D hydrodynamic simulations of binaries under-
going mass transfer (D’Souza et al. 2006). To this end, we apply
the same initial conditions to ourOAEs as have been applied to the
various runs carried out by D’Souza et al. We take the tidal nor-
malization factor (�s0 ; see eq. [44]) and the mass transfer rate scal-
ing (m), such that Ṁ2 ¼ �mṀ0 f (�), as ‘‘free parameters,’’ which
we adjust so as to obtain as close a match to the hydro runs as we
can. In the particular run shown in Figure 9, �s0 ¼ 0:75 and m ¼
35:0. This choice is not unique; indeed, we get reasonable fits
even for other combinations of these free parameters.

It should be noted that in the numerical simulations of
D’Souza et al. (2006), the minimum resolvable mass transfer
was on the order of�10�5M /P, which translates for short-period
AM CVn binary parameters to �104ṀEdd! Also, in the case of
the hydro runs, one observes severe distortion of the accretor and
the formation of an accretion belt around the accretor toward the
end of the evolution. These features cannot be easily incorporated
in the OAEs, and so the later stages of evolution, especially in the
case of run Q0.5-c, cannot be properly represented in the OAE
runs. An added complication is that for the hydro runs, the driving
was cut off after the systems were thought to have reached a deep
enough contact. Since the effective density levels, especially near
the edges of the stars in the 3D numerical model, differ from an
ideal n ¼ 3/2 polytrope due to the finite numerical resolution of

the code, the depth of contact achieved after a certain amount of
driving for a certain period of time is not necessarily the same as
that for the hydro runs and the OAE runs. This is especially true
for run Q0.5-a, because it is the one that is most sensitive to the
depth of contact at the instant the driving is cut off. For runs Q0.5-b
and Q0.5-c, the depth achieved is deep enough to make small dif-
ferences between the hydro runs and the OAE runs unimportant.
We are working on another set of runs in which the driving is not
cut off and the systems are driven at slightly lower (and more
realistic) rates. We hope that this will eliminate another source of
discrepancy between the hydro runs and the OAE runs.

Despite the aforementioned shortcomings, the OAEs do re-
produce reasonably well the behavior of the binaries we have
studied.We note that the hydro runs have a gentler slope initially
that progressively gets steeper as compared to the OAE runs.
This, we believe, is a consequence of the complicated fluid flow
around the L1 point and the distortion of the donor star. More-
over, during the initial stages of the evolutions, the 3D hydro-
dynamic simulations are subject to numerical noise, which is not
the case for our numerical integrations. The relative significance
of this noise diminishes as the mass transfer rate increases during
the evolution. Also, the epicyclic motion that one encounters in the
hydro runs (see D’Souza et al. 2006 for details) cannot be repro-
duced in our results, since we assume circular orbits. Thus, the
behavior of the OAE runs is much smoother than that of the nu-
merical hydro runs, with no abrupt changes in the slopes of the
various parameters.

We conclude from the above discussion and Figure 9 that the
OAEs confirm that (1) tidal effects play an important role in the
numerical simulations of the binary, (2) direct-impact accretion
is an important effect and can lead to significant spin-up of the

Fig. 9.—Comparison with some of the numerical simulations (the q ¼ 0:5 run) in D’Souza et al. (2006). Three simulations were performed for the same initial
conditions, but the binary was driven by angular momentum losses at the level of 1% per orbit for different times in order to achieve increasing depths of contact: Q0.5-a
(blue ; driven initially for 2.7 orbits), Q0.5-b (green; driven for the first 5.3 orbits), and Q0.5-c (red; driven throughout). The solid black curves show the accretion rate in
donormasses per period, the binarymass ratio, the separation normalized to the initial separation, and the spin angular momenta as predicted by theOAEs, while the dotted
colored curves show the same quantities as derived from the results of the simulations.We arbitrarily change the values of �si of the donor and accretor to match the Q0.5-a
run and then predict the outcomes of the other simulations. Here �s1 � 150P and �s2 � 3:5P initially.
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accretor at the expense of orbital angular momentum, and (3) the
OAE prediction that systems that are initially unstable can indeed
survive mass transfer seems to be borne out in the hydro runs
despite the rather extreme conditions to which the binaries in the
hydro runs are subjected.

In addition to the Q0.5 runs presented above, D’Souza et al.
(2006) also present other runs that result in the disruption of the
binary. As can be seen from their Figures 3, 6, and 10, the donor
star becomes increasingly distorted toward the end of these
simulations. The OAEs, at least in their present form, are not
capable of accounting for the distortion of the components and
the consequences of these distortions on the fate of the binary.
Additional hydro runs with different values of the mass ratio q
and lower driving rates � (although these rates are still orders
of magnitude higher than realistic values) are being carried out
(P.Motl et al. 2007, in preparation). In principle this can help, for
example, in determining a limit on the mass ratio q (>qstable)
above which the tidal disruption of the binary is likely. However,
other physical effects not yet included in the 3D simulations,
such as radiation and the formation of a common envelope, are
more likely to determine the fate of such systems.

The tidal timescales that most closely account for the behavior
observed in the simulations will serve as a measure of the nu-
merical dissipation present in the simulations. We will present
elsewhere a more comprehensive study of the numerical dissi-
pation and its dependence on spatial resolution.

7. DISCUSSION

We have reexamined the standard circular orbit-averaged equa-
tions (OAEs) that describe the evolution of mass-transferring
binaries, allowing for advective and tidal exchange of angular
momentum between the components. We found that the mass
transfer stream issuing through the L1 point has two effects in the
internal redistribution of angular momentum in the binary: (1) it
delivers a specific angular momentum jcirc to the accretor, spin-
ning it up at the expense of the orbital angularmomentum, and (2) it
reduces the spin angular momentum of the donor by a specific
amount�R2

2!2 and ultimately couples to the orbit via tides. In the
cases examined in this paper, the effect of this additional term is
mildly stabilizing. For example, with parameters thought to be
appropriate for the two short-period, direct-impact binaries V407
Vul and RX J0806, the additional donor term is�0.1 (see eq. [24]),
so that the net effect of the consequential terms (accretor plus
donor), which is approximately�0.3, is still destabilizing, but less
so than estimated by Marsh et al. (2004), and qa � 0:7. Its effect
on the evolution of other systems remains to be explored further,
but in systems driven by magnetic braking, it is likely to be rela-
tively minor, since it is relatively small and would be masked by
the magnetic torques acting directly on the donor.

We have analytically and numerically extended our under-
standing of the evolution of stable and unstable mass transfer in
semidetached binaries, with special emphasis on DWD binaries.
In particular, we have extended the analytic solutions of the type
discussed byWebbink & Iben (1987) to other polytropic indexes
and the isothermal case. The analytic solutions predict that if
q > qstable at contact, the mass transfer rate diverges in a finite
time, implying the catastrophic merger of the two components.
The OAEs, on the other hand, always predict that a binary under-
going unstable mass transfer would survive after a phase of rapid
mass transfer that in many cases would reach super-Eddington
levels. This is because, unlike the analytic case, in the numerical
integration of the OAEs,we allow the binary parameters to evolve
self-consistently throughout the evolution. Thus, even if initially
q > qstable, at some point in the evolution q < qstable, and the

systems settle to the equilibrium mass transfer rate correspond-
ing to the current values of the system parameters. While we do
incorporate mass loss due to super-Eddington accretion, follow-
ing the treatment along the lines of Han & Webbink (1999),
clearly the OAEs must break down if a common envelope forms.
The treatment of common-envelope evolution is beyond the
scope of the present paper, but we suspect that many systems
previously considered doomed to a merger would actually sur-
vive, provided that the mass transfer peak is not too high. This
point clearly needs further investigation and will probably re-
quire 3D hydrodynamic simulations with the inclusion of radia-
tive effects.
One interesting consequence of the tidal coupling of the ac-

cretor to the orbit is the appearance of mass transfer oscillation
cycles that occur for a limited time after the onset of mass trans-
fer. The likelihood of these cycles is higher in situations where the
mass transfer is high, or rises to a high value rapidly. Therefore,
they tend to occur near and around the stability boundaries. Note
that all the systems that undergo oscillations are direct-impact
systems, at least for the system parameters and synchronization
timescales that we have considered. Thus, it is highly unlikely that
systems that have accretion disks will undergo the tidally induced
oscillation cycles in the case of DWD binaries.
The presence of a massive (�0.01 M�) nondegenerate atmo-

sphere on the donor at the onset of mass transfer (D’Antona et al.
2006) can affect the stability and evolution of these systems. For
example, a large and positive value of �2 would imply qstable > 1
and has significant implications for cycles, stability boundaries,
and super-Eddington mass transfer. The full consequences of
these circumstances remain to be explored further.
DWD systems are some of the most common compact sys-

tems in the galaxy and are of particular importance for the space-
based gravitational wave detector LISA. AM CVn systems are
guaranteed sources for LISA, and the knowledge of possible
evolutionary trajectories is valuable. The framework we have
outlined in this paper can be used to generate templates for short-
period DWDs in general and AM CVn systems in particular.
Similar work has been done already (see, for example, Kopparapu
&Tohline 2007 and Stroeer et al. 2005), but the effects of the tidal
couplings and the advective term associated with the donor spin
remain to be incorporated into future studies.
The Louisiana State University (LSU) theory group has per-

formed a number of large-scale 3Dnumerical simulations of inter-
acting binaries with polytropic components (Motl et al. 2002;
D’Souza et al. 2006). These simulations did not include enough
physics to tackle the common-envelope evolution, but they should
be viewed as the first steps toward that goal. In the meantime, we
have used theOAEswith suitably adjusted tidal coupling timescales
to analyze and interpret the results of some of the simulations de-
scribed by D’Souza et al. (2006). The mass transfer rates that these
simulations can resolve are much higher than the Eddington critical
rate and probably much higher than the rates likely to arise during
the onset of mass transfer in most realistic cases. Nevertheless, they
describe correctly the dynamical aspects of the mass transfer and
tidal interactions under these conditions. Comparing the predictions
of the OAEs with the simulations, we were pleased to find that they
predict the outcome of the simulations reasonably well.
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gram grants NAG5-8497 and NAG5-13430. We thank Joel E.
Tohline, Patrick M. Motl, and Ravi Kopparapu for helpful dis-
cussions. Finally, we would like to acknowledge the referee for
constructive comments.
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APPENDIX A

THE EFFECTIVE MASS-RADIUS EXPONENT �2

We derive here a simple analytic approximation to the effective mass-radius exponent when the response of the donor is a
combination of the adiabatic and thermal adjustments to mass loss. Our starting point is the same as in x 3 of D’Antona et al. (1989),
namely,

d ln R2

dt
¼ @ ln R2

@t

� �
th

þ @ ln R2

@t

� �
nuc

þ � s
Ṁ2

M2

; ðA1Þ

where the first two terms on the right-hand side represent the effects of thermal relaxation and nuclear evolution and �s is the purely
adiabatic mass-radius exponent. The thermal relaxation term may arise as a result of initial conditions, nuclear evolution, and mass
transfer, and it is usually not possible to disentangle these effects if they operate on similar timescales. However, an approximate
description of the radial evolution can be obtained by viewing it as the result of the superposition of thermal relaxation of initial
conditions and nuclear evolution, plus a thermal adjustment to mass loss, as follows:

d ln R2

dt
¼ �2 þ � 0

2 þ � s
Ṁ2

M2

; ðA2Þ

where �2 is the superposition of intrinsic thermal and nuclear evolution, while � 0
2 stands for the rate of the thermal radial reaction to

mass loss. Our goal is to combine the last two terms on the right-hand side by absorbing the thermal adjustment to mass loss into an
effective mass-radius exponent. We write

�2
Ṁ2

M2

¼ � 0
2 þ � s

Ṁ2

M2

; ðA3Þ

where �2 is the effective mass-radius exponent we seek. With the above interpretation, the term �2 in equation (20) represents intrinsic
thermal and nuclear processes that may operate on timescales that differ from the standard thermal relaxation rate. This approach is
consistent only if �2T�2(Ṁ2/M2). Therefore, in what follows, we only consider thermal relaxation in response to mass loss and set
�2 ¼ 0. As a consequence of the mass loss, the donor’s radius R2 will differ from the equilibrium radius corresponding to its in-
stantaneous mass, Req(M2). With these definitions, we write

Ṙ2

R2

¼ Req M2ð Þ � R2

R2� 0 þ �s
Ṁ2

M2

; ðA4Þ

where we have adopted a simple linear approximation for the thermal reaction term and � 0 is the corresponding timescale. The secular
evolution of the binary takes place on a mass-transfer timescale �M2

¼ �M2/Ṁ2. Differentiating equation (A4) with respect to time, we
get

d 2 ln R2

dt2
¼ 1

� 0
Req

R2

�eq
�M2

� �2
�M2

� �
� �s

� 2
M2

: ðA5Þ

If the effective mass-radius exponent is to have any meaning, it must not change much over the evolutionary phase that one is
considering. Thus, we require

d 2 ln R2

dt 2
¼ � �2

� 2
M2

: ðA6Þ

Finally, setting Req ¼ R2 in equation (A5), and solving for �2 , we obtain

�2 ¼
�eq þ �s�

0=�M2

1þ � 0=�M2

: ðA7Þ

This expression shows that if the evolution is much slower than the thermal relaxation (� 0T�M2
), the donor radius follows the

equilibrium radius closely, whereas if mass transfer occurs rapidly, the donor reacts adiabatically. The above discussion may be
applied to cataclysmic variables to describe approximately how the donor becomes increasingly oversized as the orbital period
decreases because �2 � 0. If relaxation from initial conditions or significant nuclear evolution is taking place on timescales com-
parable to either � 0 or �M2

, the above discussion is strictly not valid.
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