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CROSS-CORRELATION LENSING: DETERMINING GALAXY AND CLUSTER MASS
PROFILES FROM STATISTICAL WEAK-LENSING MEASUREMENTS
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ABSTRACT

We present a new nonparametric method for determining mean 3D density and mass profiles from weak-lensing
measurements around stacked samples of galaxies or clusters, that is, from measurement of the galaxy-shear or cluster-
shear correlation functions. Since the correlation function is statistically isotropic, this method evades problems, such as
projection of large-scale structure along the line of sight or halo asphericity, that complicate attempts to infer masses from
weak-lensing measurements of individual objects. We demonstrate the utility of this method in measuring halo profiles,
galaxy-mass and cluster-mass cross-correlation functions, and cluster virial masses. We test this method on an N-body
simulation and show that it correctly and accurately recovers the 3D density and mass profiles of halos. We find no evi-
dence of problems due to a mass sheet degeneracy in the simulation. Cross-correlation lensing provides a powerful method
for calibrating the mass-observable relation for use in measurement of the cluster mass function in large surveys. It can also
be used on large scales to measure and remove the halo bias and thereby provide a direct measurement of €2,,,0.

Subject headings: galaxies: clusters: general — gravitational lensing — large-scale structure of universe

1. INTRODUCTION

Gravitational lensing has become a powerful tool for studying
cosmology and especially for studying the unseen matter that
dominates the universe. Weak gravitational lensing produces an
image of the universe that is slightly distorted: these distortions
reveal the quantity and clustering properties of the elusive dark
matter. One major application of weak lensing has been measure-
ment of the mass distribution around rich galaxy clusters (Fahlman
etal. 1994; Tyson & Fischer 1995; Luppino & Kaiser 1997; Clowe
et al. 1998; Joffre et al. 2000; Irgens et al. 2002; Cypriano et al.
2004) This has allowed the reconstruction of two-dimensional
(2D) projected cluster mass density maps that, combined with op-
tical and X-ray measurements, have enabled measurement of mass-
to-light ratios and determination of the cluster baryon fraction.

Another important use of weak lensing is the measurement of
the power spectrum of mass fluctuations through cosmic shear,
which has now been detected by several groups (Van Waerbeke
et al. 2000; Wittman et al. 2000; Bacon et al. 2000; Maoli et al.
2001; Rhodes et al. 2001; Hoekstra et al. 2002; Jarvis et al. 2003;
Bacon et al. 2003; Hamana et al. 2003). Cosmic shear, or shear-
shear correlations, probes cosmology through its dependence on
both the growth of structure and the expansion history of the uni-
verse (Hu 2002; Abazajian & Dodelson 2003; Takada & Jain
2004; Song & Knox 2004; Refregier et al. 2004); since it is sen-
sitive only to the matter distribution, cosmic shear is theoretically
clean.

While cluster lensing allows the study of the mass distribution
of individual objects, cosmic shear is a purely statistical quantity
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analogous to the angular power spectrum of the cosmic micro-
wave background. There is another method, called galaxy-galaxy
lensing or galaxy-shear correlations, which is a hybrid of the two.
Galaxy-galaxy lensing measures the mean weak-lensing shear
produced by a sample of lens galaxies by averaging the shear sig-
nal over large numbers of them. It is thus a statistical measure that
can be applied to different samples of galaxies to measure the
average mass distribution around different galaxy types. After
early null results (Kristian 1967; Tyson et al. 1984), the first de-
tections using this technique were made by Brainerd et al. (1996),
dell’ Antonio & Tyson (1996), and Griffiths et al. (1996); these
measurements have quickly improved (Hudson et al. 1998;
Fischer et al. 2000; Wilson et al. 2001; McKay et al. 2001; Smith
et al. 2001; Hoekstra et al. 2003). The Sloan Digital Sky Survey
(SDSS; York et al. 2000) has provided an excellent sample for
measuring galaxy-galaxy lensing: Sheldon et al. (2004) measured
the weak-lensing signal around the SDSS main spectroscopic sam-
ple to high accuracy (see also Seljak et al. 2005). The galaxy-galaxy
lensing signal is best interpreted, in the language of large-scale
structure (LSS), as an estimate of the galaxy-mass correlation
function. Combined with the galaxy autocorrelation function, it
gives us information about galaxy biasing; on large scales, it pro-
vides a direct measurement of o2, that assumes only the physics
of general relativity.

Another arena in which such statistical weak-lensing methods
can be applied is the study of galaxy clusters. The number counts
of galaxy clusters as a function of mass and redshift is a sensitive
probe of cosmological parameters. The cluster mass function has
been measured by several groups using various proxies for clus-
ter mass (Bahcall & Cen 1992; White et al. 1993; Viana & Liddle
1999; Reiprich & Bohringer 2002; Bahcall et al. 2003). The mea-
surement of cluster number counts at low redshift is usually used
to constrain the combination 03Q” with 3 ~ 0.5, although the ex-
act value of (3 really depends on which range of mass scales is
being probed (Rozo et al. 2004). Measurement of the evolution of
the mass function with redshift allows one to break the degeneracy
between these two parameters (Bahcall & Bode 2003). Galaxy
clusters are strongly biased compared to the dark matter, and this
bias as a function of halo mass is a prediction of theoretical models
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(Kaiser 1984; Mo et al. 1996; Sheth & Tormen 1999; Seljak &
Warren 2004). A measurement of cluster bias as a function of
mass via cluster correlations thus provides an independent con-
straint on og (Rozo et al. 2004). In the future, planned large-area
surveys will aim to determine the properties of the dark energy (its
equation of state and energy density) by counting clusters and
measuring their clustering to redshifts z ~ 1-2 (Haiman et al.
2001).

One of the main challenges to using galaxy clusters to constrain
cosmology is uncertainty in the determination of cluster masses.
Typically one selects clusters and/or infers their masses based on
some observable proxy for mass, such as X-ray temperature or
luminosity (Borgani & Guzzo 2001; Del Popolo 2003), Sunyaev-
Zel’dovich effect (SZE) flux decrement (Grego et al. 2001), op-
tical richness, or galaxy velocity dispersion (van der Marel et al.
2000; McKay et al. 2002; Lokas & Mamon 2003). In all of these
cases, the mass-observable relation, as well as its scatter and pos-
sible evolution with redshift, must be calibrated (Pierpaoli et al.
2003) either by simulations, by combining number counts with
spatial clustering information (Majumdar & Mohr 2004; Lima
& Hu 2004, 2005), or by “direct”” mass measurements of a sub-
sample of the clusters. X-ray and SZE measurements are sensi-
tive to varying degrees to the physics of the intracluster medium,
such as radiative transfer, cooling, accretion, and feedback mech-
anisms associated with star and galaxy formation, possibly lead-
ing to scatter in the mass-observable relation. Dynamical mass
measurements through the galaxy velocity dispersion suffer from
uncertainties in the anisotropy of the velocity distribution func-
tion, possible bias of the galaxy velocities relative to the dark
matter, and possible violation of the required assumption of dy-
namical equilibrium (e.g., due to recent mergers).

Weak lensing provides a method for measuring cluster masses
directly and thereby calibrating mass-observable relations. The
advantage of lensing is that it is sensitive to the total mass regard-
less of its makeup or dynamical state; the only physics involved
is the deflection law given by general relativity. However, lens-
ing measurements have limitations of their own. Weak-lensing
mass reconstruction of individual clusters can only obtain a 2D
surface mass density. There is no information about where the
mass along the line of sight is located. Typically these measure-
ments come from pointed observations of known massive clus-
ters, selected by X-ray luminosity or some other observational
property. Because the observations need to go deep enough to
obtain the necessary density of background source galaxies to
make spatially resolved mass maps, they are time-consuming and
therefore tend to be limited in area, usually not extending much
beyond the virial radius. Because of this limited range of physical
scales covered, there are uncertainties arising from the mass sheet
degeneracy (Bradac et al. 2004). In addition, LSS along the line of
sight and chance projections with clusters at different redshifts can
influence individual cluster mass determinations, causing ~30%
scatter around the true mass and possibly a bias in the mass deter-
mination (Cen 1997; Metzler et al. 1999, 2001; Hoekstra 2001,
2003; White et al. 2002; Clowe et al. 2004; Dodelson 2004).

In this paper we demonstrate a new way to measure the aver-
age density and mass profile of clusters using stacked samples
that, in principle, can be selected by any observable proxy. We
introduce a completely nonparametric method to deproject the
average shear profile and obtain the mean three-dimensional (3D)
density and mass profiles for a sample. This method only assumes
the statistical isotropy of the cluster-mass correlation function. We
perform tests on an N-body simulation to show that the method
correctly recovers the average 3D density and mass profiles. From
the derived mass profile of the clusters, one can measure a virial
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radius and virial mass without assuming a model for the profile.
Unlike individual cluster lensing reconstructions, these mass es-
timates are not adversely affected by LSS or chance projections
along the line of sight. We show that these methods will allow
one to constrain the density profiles of galaxy clusters, calibrate
mass-observable relations, and thereby measure the cluster mass
function and bias.

In § 2 we derive the relations between tangential shear mea-
surements and the 2D surface mass density. In § 3 we invert the
relation to obtain the 3D density profile. In § 4 we present methods
of deriving 3D mass profiles, and in § 5 we describe some of the
practical steps (interpolation, extrapolation, and error propaga-
tion) needed to implement the method. In § 6 we apply the method
to a large N-body simulation, showing that it accurately recovers
the correct 3D density and mass profiles statistically, and in § 7 we
discuss why the method is insensitive to asphericity of halos and
projected LSS along the line of sight. In § 8 we present our conclu-
sions and outlook for the future. In future papers we will apply this
method to measurement of the cluster-mass correlation function
for optically selected clusters in the SDSS and in N-body simula-
tions, derive scaling relations between optical richness and virial
mass, and constrain the bias and the mass power spectrum by
comparison with the cluster-cluster correlation function.

2. TWO-DIMENSIONAL DENSITY INVERSION

The primary measurement in cross-correlation lensing is of the
average tangential distortion of background source galaxy images
by foreground lens objects, typically galaxies or clusters. This dis-
tortion is measured in several radial annuli around the center of
the lens and repeated for all lenses in the sample. For the purpose
of this paper, we assume that we have redshift measurements for
the lenses, as is the case with the SDSS and some other current
and planned surveys. We also assume that we have an unbiased
estimate of the lensing strength, (E;}J, which is to say we have
a good understanding of the redshift distribution of the source
galaxies, possibly from using photometric redshifts. Any bias in
these redshift estimations, as well as shear calibration, will propa-
gate into all else that follows.

For any set of lenses, we can define the lens-mass correlation
function, &, and write the average 3D mass density of the lens
population as

p(r) = pll +&m(r)] = p+ Ap(r), (1)

where the cosmic mass density p = 2., 0ciit and Ap(r) = p&p(r).
The lensing deflection and the shear are determined by the excess
mass density projected along the line of sight, ©(R) = [ dz Ap(r),
where we have dropped the constant term for reasons described
below. Here and below, R denotes the 2D separation from the lens
center in the lens plane, 7 denotes the 3D radial separation from the
lens, and z is the distance from the lens along the line of sight, so
that 7> = R? + z2. The average tangential shear, 7, in a thin an-
nulus of radius R is given by (Miralda-Escude 1991)

Swieyr(R) = £(< R) — S(R) = AS(R), 2)

where L(<R) is the mean surface density interior to radius R,
the critical surface density is
¢ Dy
Vit = —— )
4G D]DIS

(3)

and Dy, D;, and Dy, are the angular diameter distances to the
source, to the lens, and from lens to source, respectively. Defining
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the convergence k(R) = X(R)/ Xy, the expression for the shear
can be put in the dimensionless form

Vr(R) = R(< R) — K(R). (4)

Equation (2) defines AX(R), the difference between the mean
surface density inside a disk of radius R and >(R) (azimuthally
averaged), which is the primary observable in cross-correlation
lensing. This assumes that you have a good redshift estimate for
the lens and have a good estimate for the source galaxy redshift
distribution so that you can estimate X ;. From this definition,
one can see that a uniform-density mass sheet of transverse size
>R produces no shear; this is referred to as the mass sheet de-
generacy (Bradac et al. 2004) and is the reason why we dropped
the constant term in the definition of ¥(R) above. In the non-
weak regime one can see that it is actually In (1 — &) that is de-
termined up to a constant by weak-lensing measurements. One
can see this directly by noting that in equation (8), the integral is
only determined up to a constant without explicitly imposing a
boundary condition.

We have shown how to predict the lensing observable A
from the theoretical quantity of interest, the correlation function
Ap = Qpperitéim- We would like to invert this relation, to infer
Q& from measurements of AY. One way to proceed would be
to use a parametric model for &, such as a power-law or NFW
profile (Navarro et al. 1997). If a model profile is assumed, one
can project the model to 2D, compute AY(R), fit the shear data,
and determine the best-fit model parameters. This method has the
advantages of simplicity and of small formal error bars on the de-
rived model parameters. Of course, the problem with any model-
dependent method is that an incorrect model will result in incorrect
interpretation of the best-fit parameters. In addition, parametric
methods force smoothness on the data and thus do not allow one
to see any features in &, or detect fine-scale deviations from the
model. Since we would like to constrain the full density profile
and not just determine its best-fit parameters for a particular model,
in this paper we develop a nonparametric approach that inverts
the process above and allows a direct estimate of the 3D density
profile Ap(R). We start by deriving a 2D reconstruction for the
mean convergence profile, x(R).

Taking the derivative of equation (4) with respect to R, one can
show that

—+'(R) = 77(R) + 297(R)/R, (5)

where the prime denotes d/dR. This is just the azimuthally sym-
metric version of Kaiser’s equation (Kaiser 1995)

+
T — (71,1 V2,1 ), )
2,0 — Y12

where ; denotes the two-component shear field and ; ; = 0:/00;
denotes the derivative in the lens plane. Equation (6) is the start-
ing point for most finite-field nonlinear inversion methods for
weak lensing (Kaiser 1995; Lombardi & Bertin 1999; Seitz &
Schneider 2001). Note that these equations relate the shear to the
density in a local way, in contrast to equation (4) for the tangen-
tial shear, which is nonlocal. As shown below, both the local and
nonlocal aspects of these equations are useful when inferring the
mass profile.

Schneider & Seitz (1995) pointed out that, except in the limit
of very weak fields, v, k < 1, the shear, ~, is not directly observ-
able. The average shape of background objects is not determined
by  or  but rather by the degenerate combination g = /(1 — k),
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which is sometimes referred to as the reduced shear. Further-
more, the average ellipticities of background galaxies are equal
to the complex distortion, § = 2¢/(1 + | g|2). This is true when
ellipticity is defined as e = (1 — #2)/(1 + r2), with r being the
axis ratio or ratio of major to minor axes. Solving this quadratic
equation for g results in g = [I + (1 — |6]*)"?)/6*. Since there
are two roots to this equation, one cannot tell from purely local
measurements which root to choose. This reflects an inherent
local degeneracy to any weak-lensing measurements. For weak
fields, one should take the negative root, for which v ~ g ~ 6/2.
The choice of sign is related to image parity; it changes when
crossing critical curves in the lens plane, where the magnification
diverges and arcs are present. In practice, it is only in the cores of
massive clusters where one might make the wrong choice of par-
ity, and this is unlikely to present a major problem for the statis-
tical method of weak lensing we pursue here. These rare, extreme
regions are not the places where weak lensing will be the most
useful probe of the mass distribution.

The other continuous degeneracy is not as problematic: one
can show that if ¢ is measured, one can invert for s up to the mass
sheet degeneracy (Kaiser 1995). For our azimuthally symmetric
case, we can simply substitute g(1 — ) for -y in equation (4), re-
sulting in

k' d g +2g/R
=—In(l — k) =>——""—
1—x dR n( ) 1—g

=G([R), (7)

so that In (1 — k) is determined up to a constant. Imposing the
boundary condition x(oc) = 0, one can integrate this ordinary
differential equation:

w(R) = 1 — exp [— | a G<p>} ®)
which in the weak-field limit becomes
“® = [ " dp [r(p) +29r(0) /o). 9)

In § 5 we discuss the truncation of integrals of this kind to a finite
region. One can see from these two equations that in factIn (1 — &)
is determined only up to a constant, which in the weak approx-
imation becomes the statement that « is determined only up to a
constant.

Since equation (9) is linear in 7, one could simply multiply it
by Y. to obtain an expression for Y(R). This is suitable for an
analysis such as that in Sheldon et al. (2004) where AY = X5y
is averaged. Beyond the weak-field regime, the situation is more
complicated because of the 1 — g term in the denominator of
G(R); in this case, an average of the lensing distortion does not
simply yield an average of 3(R). Nonetheless, as noted above,
this should only be a problem for small scales and high densities,
i.e., for the cores of very massive clusters, and in that regime one
could apply a correction or an iterative process to determine >(R).
Moreover, there is only a small spatial range where this correction
is important and where one can still safely assume that v = g ~
0/2 is the correct root. The method of averaging shear profiles
may simply not be the most prudent method for probing the non-
weak regime; strong lensing can likely tell us more about the
density profiles of massive clusters at such small scales. Alter-
natively, other methods, such as the maximum likelihood ap-
proach of Schneider & Rix (1997), might be able to better handle
this regime, although at the cost of introducing explicit model
dependence.
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3. INVERTING TO THREE-DIMENSIONAL
DENSITY PROFILES

We can rewrite equation (7) (after multiplying by X.;;;) as

—Z/(R) = Zcrit(1 - H)G(R)

= S G(R) exp {_ /R

or in terms of AY, (multiplying eq. [5] by Xeit),

oo

v G<p>], (10)

—Y'(R) = AZ'(R)+ %AE(R). (11)

An equation for Y'(R) is useful because of the existence of
the Von Zeipel (or sometimes called Abel) inversion formula
for the 3D density profile:

S 3117 )

The inverse of this equation is just the usual projection

> Ap(r)
SR =2 | dr—=22
®) R r\/rz—Rz

where, as before, Ap(r) = p(r) — p because we do not recover
the average mass density of the universe: lensing is not sensitive
to mass sheets. That is, we have arbitrarily chosen the boundary
condition p(cc) = p or Ap(oc) = 0; for further discussion of the
mass sheet degeneracy, see § 5.2.

Inversions of this type have a long history in astronomy. Von
Zeipel (1908) derived this inversion formula and used it to de-
termine the 3D density profile of globular clusters from imaging
data. Von Zeipel’s proof of this inversion formula rests on reduc-
ing it through substitutions to Abel’s formula (Abel 1826), which
in turn is usually proved through the use of the Laplace transform.
Plummer (1911), also concerned with globular clusters, derived a
similar formula that uses intensities in long parallel strips rather
than circular annuli. Recently Kaastra (1989) has shown that Von
Zeipel’s formula can be derived from Plummer’s formula much
more easily without using Abel’s formula. The interested reader
should consult Kaastra (1989), as well as Bremer (1995) and ref-
erences therein. These inversions have been used for astronomical
deprojections in many different contexts, including globular clus-
ters, galaxy clusters, elliptical galaxies, supernova remnants, plan-
etary nebulae, and galaxy correlation functions.

Formally this inversion formula assumes spherical symmetry.
When used on the stacked shear profile of a large sample of clus-
ters, spherical symmetry should be a valid approximation. This
simply follows from the isotropy of the universe and the linearity
of the inversion. This is not to say that the clusters individually
must be spherically symmetric or have common spherically av-
eraged radial profiles. They may individually be elliptical or ir-
regularly shaped; however, the resultant average of a large number
of independent clusters will approach spherical symmetry. This
inverted radial profile will be the sample average of the spher-
ically averaged individual profiles. This method of averaging is
blind to any incoherent differences between the individual clus-
ters. It would be best to split up the cluster sample by various
measured quantities (optical or X-ray luminosity, richness, etc.)
into various subsamples. If these measured quantities correlate
strongly with mass and density profile shape, then one might hope
that within the various subsamples, the profiles are sufficiently

(13)
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common that the inverted profile can be simply interpreted as be-
ing representative of the sample as a whole. This of course never
guarantees that the individual profiles all resemble the average.
Cosmological N-body simulations indicate that dark matter halos
of a given mass seem to have near universal profiles (Navarro
etal. 1997), and so this simple interpretation should be quite rea-
sonable. Detecting profile differences within a subsample is an
interesting problem that we do not address in this paper.

Since we are computing an average mass density of many lenses,
it can be written as a correlation function, Ap(r) = p&;,(r). Equa-
tion (12) combined with equation (11) results in the equation
used in Sheldon et al. (2004) to measure the galaxy-mass corre-
lation function:

AY'(R) + 2AS(R)/R

— (14)

1 o0
Ap(r) = Qpposim =~ / dR

Again, one must truncate this integral since one only has mea-
surements out to some finite projected separation R,,,. We dis-
cuss this truncation in § 5.

4. FROM DENSITY TO MASS PROFILES

Now that we can reconstruct mean 3D density profiles, it would
seem straightforward to calculate the 3D mass profiles, M (r) =
4 for dyy?Ap(y). [This mass, the second moment of the corre-
lation function, is sometimes referred to as J3(7) in the LSS lit-
erature, although not usually with cross-correlation functions
in mind.] However, the density profile cannot simply be inte-
grated directly, since one only has reliable density information
from shear measurements down to some minimum scale, Rj,.
One could extrapolate the derived density profile to smaller scales,
but that would introduce model-dependent assumptions. As we
show, one can do better: the mass inside R, is in fact constrained
by the lensing data. This is because equations (2) and (4) for the
tangential shear are nonlocal. To illustrate the point, consider that
a point mass creates a shear, y(r) ~ 2. However, substituting
this power-law expression into equation (5) results in a complete
cancellation. Thus, adding a point mass does not alter the derived
2D and 3D densities, as should be expected. The mass inside R,;,
is in fact the piece of information that we lost when taking the
derivative of equation (4) to get the local equation (5). Hence, any
mass estimator should use both the local and nonlocal equations.

Throughout this calculation we assume that the mean density
of the universe has been subtracted out, as above. This is just a
statement of boundary conditions, which does not affect the final
3D profiles, and allows us to ignore the effects of the lensing
kernel X We begin with equation (2),

AY(R) = %( < R) — X(R) (15)
o me 1(R)
= # — X(R), (16)

which defines the mass, m(R), inside a cylinder of radius R
oriented along the line of sight:

mey(R) = TR*[AX(R) + X(R)). (17)

Using equation (13) to replace X(R), we have

meyi(R) = TR* [AZ(R) +2 OodrrAp—(r)} (18)

R V2 —RZ|

Now we want to relate this cylindrical mass, mcyi(R), to the
3D spherical mass M(R). It is a slight abuse of notation to write
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M(R), since R is the 2D radius in the plane of the sky, but this
avoids the bulkiness of the more precise notation, M(r = R).
Again, assuming spherical symmetry, the 3D mass can be writ-
ten as the total mass inside the cylinder minus the mass inside
the cylinder but outside the sphere. Using cylindrical polar co-
ordinates x, z, ¢ and spherical radius » = (x* + z2)12 with the
z-axis being the axis of projection, we have

R 00
M(R) = meyi(R) — 27T/0 dxx2/R2_ i dz Ap(r) (19)

= meyi(R) — 47r/oo drrAp(r) (r —Vr?— Rz). (20)
R

Substituting equation (18) for mcy into equation (20) gives an
expression for M (R) in terms of AX and Ap. Since Apis a func-
tional of AY, this is a mapping: AX— M. We define this par-
ticular form for M(R) as M, (R), since it only uses data outside
of R:

Moy (R) = TR?AX(R) + 27 / drrAp(r)
R

x {Lzz(r m)} (21)

r2—R

Since we assumed above that the average density is zero,
equation (21) actually gives only the mass overdensity, not the
total mass; to properly correct for this, a term 4/37R "5 should
be added, but this formula is typically used on scales where
this extra contribution is negligible.

We now derive another formula for the mass profile. As we
mentioned, the simplest idea is just to integrate the density. We
call this particular form M;,(R), which is given by

R
My (R) = 47 /0 drr*Ap(r) (22)

= M(Ruin) + 47 /RR drr*Ap(r). (23)

min

Replacing the first term with equation (21) evaluated for M, Runin)
gives

Min(R) = 7R2. AY(Rmin)

min

R 2 2
2r- — Rz,
—|—27r/ drrAp(r)J—l—E(R, Ruin),
Rinin I"2 - rznin
(24)

where the last term is

o0

E(R, Rnin) = 271'/ drrAp(r)
R

R2. e
X[ﬁ—Z(V— r2_Rr%11n>‘| (25)

For R>> Ry, the term E(R, Ry ) is very small compared to the
rest of the terms. Note that although we have referred to this ex-
pression as M;,, the last term does depend on AY outside of R.
There are thus two seemingly different expressions for the 3D
mass profile. In fact, one could replace R,,;, in the above expres-
sion with any radius between R,,;, and R: all of these expres-
sions are equivalent, and they do not add any extra information
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by combining them. They simply add up the information from
different radii in a different order, much like changing the order
of integration on a 2D integral.

For clusters, one can measure a mean virial mass from these
mass profiles quite easily. The virial mass is defined as the mass
within the virial radius, r;;, where the virial radius is the radius at
which the average enclosed density is A, times either the average
or critical density of the universe. Often, A,;; = 200 (and critical)
is used and this virial radius is often denoted 7,09. One must then
interpolate between points to find the radius at which M (ry00) =
477/3750200 prie. These nonparametric virial masses should prove
very useful in comparing data to N-body simulations, which make
frequent use of the virial mass.

As mentioned above, the mass profiles derived from AY. ac-
tually contain more information than the density profiles. The
mass profile at R,;, tells us about the average density at R < Rpin,
so it can be used to probe these smaller scales. This might be use-
ful in answering the question of whether halos have cusps or cores
at small radii. It is equally true that AY contains all of the infor-
mation. However, projection and nonlocality make it somewhat
harder to use, except through parametric modeling. If one just
wants to fit a model to the data, one might as well use AX. For
visualizing the actual shape of the density profiles without a
model and obtaining virial mass estimates, these inversions are
most useful.

Finally, we note that there has been some work on deriving
aperture mass estimates in 2D from the shear profile (Schneider
1996; Schneider & Bartelmann 1997). The aperture mass m =
J d*x k(x)w(]x|), where w is an azimuthally symmetric weight
function. Schneider (1996) suggests choosing a normalized weight
function satisfying [ dxw(|x|) = 0, i.e., a compensated filter,
so that the mass estimate is not affected by the mass sheet de-
generacy. Obviously this would restrict the choice of weight
functions so that, for example, the top-hat weight function cannot
be used. We have implicitly restricted ourselves above to top-hat
apertures and derived a 3D mass profile from the lensing measure-
ments. We discuss the mass sheet degeneracy by showing (in § 5.2)
that, for stacked samples, this unknown constant can be pre-
dicted fairly well and only creates real uncertainty at the very
largest scales.

5. PRACTICAL APPLICATION

With expressions in hand for inverting 3D density and mass
profiles from the lensing data, A, we turn to a discussion of the
application of these formulae to real data. The two main issues to
consider are interpolation to evaluate the various integrals and
handling the parts of the integrals that extend beyond the scales
for which we have measurements. Improper handling of the bin-
ning and interpolation issues typically results in errors at the few
percent level for all radii. The issue of extrapolating the integrals
to infinity usually only affects the recovered profiles at the largest
measured scales.

5.1. Binning and Interpolation

Typically, one will construct a AY. profile by measuring the
average weighted lensing distortion in a set of radial bins. For
example, Sheldon et al. (2004) measured AYX(R) in 18 logarith-
mically spaced radial bins from 0.02 to 11 4~ Mpc, giving a bin
width R;,/R; = 1.41. One would like to assign one effective ra-
dius to each bin rather than just taking the midpoint of R;;; and
R;. The radius assigned should be that radius at which we believe
the true AX(R) is equal to our measured average, which can be
calculated by considering the local logarithmic slope. For the
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Sheldon et al. (2004) binning, this results in a shift of order 5%
from the midpoint.

After selecting the proper effective radii, R;, corresponding to
each AX(R;) bin, one can apply the inversion formulae of § 4.
This requires a scheme for interpolating A between the bins
and for interpolating Ap between the points to infer the mass.
Saunders et al. (1992) applied Von Zeipel’s inversion formula,
essentially our equation (12), to the projected galaxy autocorre-
lation function, w,(R), to obtain the 3D autocorrelation function,
&(r). They used a piecewise linear model for w,(R) and hence a
piecewise constant model for w'(R), which enters into the Von
Zeipel integral. This zeroth-order interpolation allows calculation
of the integral over each bin analytically, which results in simply
a weighted sum over the data points (details can be found in
Saunders et al. 1992). However, the data for both w, and A look
roughly like power laws, AY ~ R~8, so this simple interpolation
scheme biases the inversion low by about 10% for Sheldon’s bin
size. If one takes this scheme to first order by representing the
derivative, AY(R), as piecewise linear rather than constant over a
bin, this biases the result by about the same amount, but high in-
stead of low. One can in fact do N-point Lagrangian interpolation
to any order and still evaluate the integrals analytically over each
bin. Such methods are completely linear in the data, which is
another advantage. In principle, higher order interpolation will re-
duce this bias, but only at the expense of correlating many neigh-
boring points. We have found in practice that the best method is to
use a power-law interpolation, equivalent to linear interpolation of
the log-log values. Any two positive data points define a unique
power law between them. The integrals for each bin need to be
evaluated numerically, so this is slower computationally, and care
needs to be taken to handle negative data points that may be pres-
ent for noisy data. We therefore do not take logarithms directly but
rather model the function as a power law plus constant, where the
constant is only used for negative values. Data for which there are
negative values are generally very noisy; for that case, interpola-
tion is never the dominant source of errors. Tests of the inversion
show that for power-law density profiles, this interpolation scheme
is exact (unsurprisingly); for NFW profiles and halo model type
profiles, the power-law interpolation is good to a fraction of a
percent for Sheldon et al. (2004) sized bins (i.e., R;1/R; = 1.41)
and very robust for noisy data.

5.2. Endpoint Corrections

The inversion integrals in §§ 3 and 4 should in principle be
evaluated from the minimum radial bin, R,,;,, to co. In practice,
one only has shear data covering a range from R i, to Ry,ac. We
refer to the parts of the integrals from R, to oo as endpoint cor-
rections; they must be added to the parts of the integrals that we
can actually perform by interpolating the data. Consider equa-
tion (12) as an example; we can rewrite it as

1 fRoac _S(R) 1 [ —Y'(R)
Ap(r) = ;/r Rt [ R
= TD + TC7 (26)

where Tp and T¢ stand for data and correction, respectively. To
estimate the magnitude of each term, consider an isothermal
sphere, AY ~ R~!; in this case, the integrals can be computed
analytically, leading to

TC r 2
—=1—4/1- . 27
TD+TC (Rmax) ( )
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For the outermost data point, » = R, the correction term gives
the whole result, and one cannot learn anything about the den-
sity at this point. However, for smaller scales, 7 << Ry, the ra-
tio Tc/(Tp + T¢) ~ (r/Rmax)z/z. For example, for Sheldon et al.
(2004) sized bins, this implies that the correction is only about
14% at the value of R; = R4, two radial bins inward of Ry, =
Rig. The correction terms at the next bins inward (proceeding
from larger to smaller scale) are 7%, 3%, and 2%, while the re-
maining inner 12 bins are affected by less than 1%. In fact, it is
only the error in estimating this correction term that concerns us,
so we expect that even at the second bin inward of R,,,,, one could
estimate Ap to an accuracy of a few percent. Around the virial ra-
dius of clusters, R ~ 1 &1 Mpc, the correction term itself is only
half a percent of the total for Ry,,x = 10 nt Mpc.

Beyond 10 4~! Mpc, the halo density profile is expected to
drop off more steeply than isothermal, so the correction factor in
this case should be less than the estimate in equation (27). At
these large scales, it is probably a good assumption to use the
shape of the linear mass correlation function (i.e., the Fourier
transform of the linear power spectrum), which is well under-
stood theoretically for a given cosmology, as the model with
which to compute the endpoint correction. This is the expected
large-scale behavior from the halo model. We describe this in de-
tail in § 8. This requirement of providing endpoint corrections is
the one part of this method that requires a model. However, this
model dependence only affects the results at the largest scales
for any reasonable extrapolation, guided by theoretical expec-
tation and constrained by the large-scale galaxy autocorrela-
tion function, which is now measured to 175 2~! Mpc ( Eisenstein
etal. 2005). It is left up to the experimenter to decide which points
to omit and how to take the error in the correction into account.

In this context, for lensing data that extend to scales of order
a few megaparsecs, the endpoint correction can be considered
a manifestation of the mass sheet degeneracy. In the current
paradigm of structure formation, the universe is not filled with
uniform-density mass sheets, but it does contain large-scale den-
sity perturbations that are correlated with dark matter halos. Fora
cluster positioned near the peak of a large-scale overdensity with
scale > R,,..,, the latter can be thought of to first approximation
as a mass sheet for the cluster shear measurement. Using the theo-
retical mass correlation function on large scales to estimate the end-
point correction, as described above, therefore provides an estimate
of the effective mass sheet degeneracy for this method. As we
have argued above and show below in an N-body simulation, the
effect of this degeneracy on the estimate of cluster virial masses
is below 1%.

We have argued that this mass sheet uncertainty is only a prob-
lem at the largest scales, relative to the size of the survey. This
method is ideally suited to a panoramic survey such as the SDSS
where many decades in scale can be measured, in which case the
uncertainty in the recovered density profiles in the last two log-
arithmic bins (out of 18) is no great loss. This method is less well
suited to a pencil beam survey with a small field of view around a
given set of clusters. This is because one might only be able to
make measurements over a single decade in scale and with per-
haps four or five logarithmically spaced bins, and in this case,
throwing away the two endpoint bins is a large fraction of your
data. Other methods such as profile fitting do not solve this prob-
lem, as they still have to make an assumption about how the den-
sity extrapolates to scales beyond which measurements exist.

5.3. Propagation of Errors

In performing these inversions, it is important to correctly prop-
agate the errors from AX(R) to Ap(r) and M (r). In particular, the
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covariance matrix between radial bins R; needs to be calculated.
We assume that we have already calculated the covariance matrix
for AY;, which we denote by CA Usually this is just diagonal
from shot noise (i.e., lensing shape noise), but at larger scales there
can be off-diagonal terms from sample variance and systematics
such as imperfect point-spread function (PSF) anisotropy correc-
tion. These off-diagonal terms can be estimated with jackknife re-
sampling (Sheldon et al. 2004). We denote the covariance ma-
trix for Ap; and M; as Cjj and C}/'.

As we have mentioned with the simplest polynomial inter-
polations, the mapping AY(R)— Ap(r) is linear, so there exists
amatrix A such that Ap; = 4;AY;; likewise, since M is a linear
combination of AY and Ap, and Ap is computed linearly from
AY, there exists a matrix B such that M; = B;AY;. For the poly-
nomial interpolation schemes, these matrix elements can be com-
puted analytically, without requiring numerical integration. For
the power-law interpolation that we recommend using, the map-
ping is not exactly linear, but it is well approximated by its first-
order Taylor expansion,

0Ap; OM;

4i=9as, B = %Ay,

(28)

Although these derivatives can be calculated analytically in prin-
ciple, in practice we estimate them numerically with a finite differ-
ence method.

Alternatively, one could use the linear interpolations just for
the covariance matrices, where the matrix elements can be com-
puted analytically. This would be the fastest method computation-
ally. Once the linearization has been computed (by any method),
the covariance matrices can be propagated simply with matrix
multiplication, C” = AC*AT and C¥ = BC*BT. Generally, we
find that the covariance matrix C” is mostly diagonal if C* is di-
agonal. The covariance matrix C¥ | however, has large off-diagonal
terms since M (r) is a cumulative statistic and therefore neighbor-
ing bins are correlated.

6. TESTS OF THE METHOD: N-BODY SIMULATIONS

As a proof of principle, we have performed tests of these in-
version methods on an N-body cold dark matter (CDM ) simula-
tion. In the simulation, we can measure the 3D density and mass
profiles directly and check that the inversion of projected quan-
tities correctly recovers the true values.

The simulation we use has 5123 particles in a periodic cube of
length 300 #~! Mpc. The simulation is evolved from z = 60 to
0 using a TreePM code (White 2002, 2003);'° we use only the
z = 0 output. The cosmological parameters used are 2, = 0.3,
Qy=07, h=0.7 n=1, Qh?=0.02, and o3 = 1. The
simulation has an effective Plummer force softening scale of
20 i~ kpc, which is fixed in comoving coordinates. The mass of
each dark matter particle is 1.7 x 10'° 4~! M. Dark matter halos
are identified using a friends-of-friends (F oF) algorithm (Davis
etal. 1985) with a linking length of 0.2 in units of the mean inter-
particle separation. Specific details of the simulation such as res-
olution, cosmology, and halo finding are not crucially important,
since we are only interested in whether the inversion methods
recover the 3D quantities. The simulation box was chosen to have
high enough resolution to resolve the inner regions of clusters
measurable by SDSS and is large enough to have relatively low
cosmic variance; nevertheless, it is about 5 times smaller in vol-
ume than the SDSS cluster sample currently in preparation.

19 The simulation is publicly available at http://mwhite.berkeley.edu/Sim1/.
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We select all halos of mass M.;; > 10'* A~! Mpc, measure p ()
and M(r), and average these 3D quantities for all such massive
halos. For p(r), we correct for the effects of binning in a similar
way to the methods described in § 5.1. Next, we project the box
separately along each of its three axes (x, y, z). For each of these
projections, we measure the average ¥(R) and AY(R) from equa-
tion (2). We do not perform ray tracing to determine the real shear,
so we are only testing the inversion method, assuming that one can
measure AY, through measurement of background galaxy shear
(see Sheldon et al. 2004). In particular, we are not testing the shear
nonlinearities, the details of galaxy shape measurement, photo-
metric redshift estimation and calibration, or any kind of cluster
finding. In a real survey, one would find clusters with techniques
such as optical red sequence methods or by observing X-ray fluxes
or SZ decrements instead of having the luxury of selecting halos
directly by mass. These details are important for any analysis of
real data, but they are beyond the scope of this paper (and will be
discussed further in future papers in this series).

By studying the differences in these projected 2D quantities
for the three different projections of the simulation box, we can
crudely measure a kind of sample variance that we call aniso-
tropic sample variance (ASV). If the halo-mass correlation func-
tion were exactly isotropic, all three projections would agree
precisely. Since this is only true in the infinite volume limit, there
will be differences between the three projections of the simulation,
as well as small departures from isotropy in any real measurement.
On small scales, these differences arise from the asphericity of
halos: if halo orientations are not strongly correlated, the residual
ellipticity w1ll result in a small random error that will decrease as
~1/(Nhaios) 2. More explicitly, we can define the halo ellipticity
along the z-direction as e, = (302 — 0%)/0?, where o2 is the sec-
ond moment of the cluster density distribution along the projected
direction and 0% = o2 + a + o2 defines the characteristic clus-
ter size.

The ensemble average of e, is zero by symmetry, but the rms
for a finite sample will be zero within £({e; >/Nhalos) . One can
show that this rms halo ellipticity 1nduces a multiplicative cor-
rection factor in the prOJected dens1ty and all derived quantities
(pand M) of 1 + ({€2)/Nhaios)"; this factor will vary randomly
from realization to realrzation (or from projection to projec-
tion within a single N-body realization). The rms halo elhptlcity
((e? >)”2 appears to be about 0.5 for the massive halos in the
N-body simulation described above. Since large survey samples
will have very many clusters, this correction will usually be a
very small effect. For example, in the sample used in this study,
there are 1226 halos above the mass threshold in the simulation,
resulting in an expected multiplicative variance of £1.4% in the
inferred profiles. This estimate agrees very well with the observed
scatter between the three different projections on small and in-
termediate scales, as shown below in Figures 2 and 3. The SDSS
cluster samples are typically larger than this, so the effect will be
correspondingly reduced. Less massive halos (these are M = 10
14 h=! M), being more common, will have a larger Ny, and
thus this will be reduced further.

On larger scales, where the halo-mass correlation function is
dominated by contributions from mass elements in halos differ-
ent from the lens halo (i.e., where, in halo model terms, the two-
halo term dominates; Seljak 2000; Mandelbaum et al. 2005), the
asymmetric sample variance arises predominantly from the shapes
of larger scale structures such as filaments and superclusters. Since
there are fewer structures contributing to this part of the ASV
(fewer filaments than halos), and since these large structures are
more asymmetric than the halos, the variance between projec-
tions is expected to be larger on large scales than small scales, in
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FiG. 1.—Measurements of AX(R) (proportional to the mean tangential shear)
for halos with virial masses greater than 10'* 4~! M, for three orthogonal pro-
jections of a ACDM N-body simulation. The turnover at around R ~ 200 &~ kpc is
due to the finite resolution of the simulation. The scatter between the lines at the
smallest scale is likely due to low-number statistics since there are very few dark
matter particles at these scales due to the resolution. At large radius, we attribute the
differences to ASV caused by LSS along the line of sight.

qualitative agreement with Figure 2 below. This large-scale asym-
metric sample variance is expected to scale as 1/v/V, where V/
is the volume of the survey. When the shot noise from galaxy
shapes (i.e., the shape noise) is sufficiently small, the large-scale
errors will be dominated by the ASV. Judging by the volume
of our simulation and the scatter that we see at scales of a few
h~! Mpc, we expect this large-scale multiplicative error to scale
roughly as 2%(¥/Gpc*)~3, although it may vary with scale R.

Figure 1 shows the AY results for each of the three projec-
tions of the simulation (the three different colors correspond to
the three different projections). We note that these lines turn over
below about 200 /4~! kpc, an effect almost certainly due to the
finite resolution of the simulation: this scale is about 10 times the
Plummer force softening scale. The turnover in A typically
occurs at a few times the 3D correlation function core radius, and
the 3D correlation function core radius typically occurs at a few
times the Plummer force softening scale. By correlation function
core radius we have in mind something like a power law with a
softening, » — (% + r2,)"*. Smaller volume, higher resolution
simulations do not show this turnover in AX.. For a pure NFW
profile, AY flattens at small scale but does not decline. As noted
above, despite this resolution issue, we should be able to use these
small scales to test our inversion methods since the 3D values are
equally affected by resolution. In fact, this gives us an opportunity
to test the robustness of the methods by including a pathologi-
cal regime instead of a perfect power-law or NFW profile on all
scales. The large errors (estimated by a jackknife technique) at
small scales indicate that there are not many particles in these
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Fic. 2.—Top: Inverted 3D density profiles for the three projections of the
simulation. The red, green, and blue lines indicate the inversions, while the
magenta line denotes the true density profile measured by averaging the dark
matter particle density in spherical shells. The inverted profiles are only distin-
guishable from each other and from the true profile at large scales. Bottom: Ratio
of the inverted density to the true 3D density for the three simulation projections
as a function of radius; lines correspond to the same projections as in the top
panel. For each projection, the inverted and true density profiles agree to about
5% or better within the virial radius (7200 = 0.585 #~! Mpc). On larger scales,
there is significantly more scatter due to ASV in this relatively small simulation
box.

weak cusps. The larger deviations at the largest scales indicate
the larger ASV, as expected from the arguments above.

We invert each of these AX. profiles to obtain the estimated
density Ap(r) and M(r) using the formulae and algorithms de-
scribed in previous sections. The endpoint corrections are car-
ried out assuming power-law extrapolations with logarithmic
slopes that are not too different from the expected continuation of
the linear theory correlation function. The last two bins from the
inversions are not plotted, since they are highly affected by the
endpoint corrections.

Figure 2 shows results of the inversion for the density profile
p(r). As in Figure 1, the red, green, and blue lines denote the
inversions from the three different projections. The magenta line
shows the true 3D density as measured in spherical shells. On
this log-log plot one can hardly see any difference between the
true and inverted profiles. The bottom panel of Figure 2 shows
the ratio of each of these inverted density profiles to the true 3D
density with a linear axis. On scales » < 1 2~! Mpc, these ratios
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Fig. 3.—Top: Mass profiles inverted from the tangential shear for the three
projections of the N-body simulation (red, green, and blue lines). The magenta
line shows the true average mass profile measured in 3D for these halos. The
differences are not evident on this scale. Bottom: Ratios of the three inverted
mass profiles to the true 3D profile. The inverted masses are all correct to within
5% out to the largest scales and to within 2% near the virial radius. Because the
points are correlated, the slight trend with radius that is apparent is not signif-
icant. The deviations at the smallest scale are most likely due to low-number sta-
tistics; the bins are logarithmically spaced, but the smoothed profile is noncuspy
and so there are very few particles in these bins.

are all consistent with unity to within about 5%. On larger scales,
the ASV becomes larger, and the three lines differ randomly
from unity by about 20%. There do not appear to be any system-
atic biases or significant trends. Changing the endpoint correction
moves these lines around by a few percent at the largest scales.

Figure 3 shows results of the inversions for the mass profile,
M (7). Again, the top panel shows all three inversions with the true
M(r) overplotted in magenta; the inversions and the true profile
are indistinguishable on this plot. The bottom panel shows the ra-
tios of inverted to true mass. Except for the smallest scales, where
the scatter between the three inversions is a little larger, the mass
ratios are consistent with unity to about 5%. Around the virial ra-
dius, » ~ 1 h~! Mpc, which is the optimal location in terms of
measurement signal-to-noise ratio, the inverted masses are cor-
rect to about 2%. There appears to exist a slight tilt to these ratio
curves, but the points at different radii are strongly correlated
[M(r) being a cumulative quantity], so this trend is not signifi-
cant. On the whole, we consider these tests a confirmation that
inverting lensing measurements can correctly recover the den-
sity and mass profiles of galaxy and cluster halos.
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7. EFFECTS OF HALO ASPHERICITY AND LARGE-SCALE
STRUCTURE ALONG THE LINE OF SIGHT

In the case of weak-lensing mass reconstructions for individual
clusters, one must consider the systematic effects of both cluster
asphericity and contamination from structure along the line of
sight, such as filaments or clusters at other distances seen in pro-
jection. Several studies (Cen 1997; Metzler et al. 1999, 2001;
White et al. 2002) have concluded that LSS along the line of
sight introduces significant scatter and bias in the resulting clus-
ter mass estimates. Later studies (Hoekstra 2001, 2003; Clowe
et al. 2004; de Putter & White 2005) agreed that LSS introduces
scatter in the mass estimate, although Clowe et al. (2004) argued
that the bias found in the previous studies was due to an over-
simplification of the mass estimation. Dodelson (2004) suggested
ways that the extra noise from LSS can be reduced, although not
eliminated, through a particular type of filtering when making
mass maps. Clowe et al. (2004), on the other hand, argued that
cluster halo asphericity is a larger problem for determining cluster
masses than LSS along the line of sight: if the major (minor) axis
of'the halo is aligned along the line of sight, the virial mass will be
overestimated (underestimated). In general, one does not know
the orientation of the halo in 3D, so this creates an uncertainty in
the inferred mass at the ~30% level.

As demonstrated in § 6 and Figure 3, neither of these ef-
fects compromises the accuracy of our statistical mass inversion
method, provided that the cluster sample is sufficiently large. By
stacking many clusters to form a statistical sample, the effects
of LSS uncorrelated with the lensing cluster must average out
by statistical isotropy. On small scales, the mean orientation of
aspherical halos for a large sample of lenses must be very close
to random, provided that the method of selecting cluster lenses is
not biased toward including those oriented, say, along the line of
sight. These selection effects can be checked in N-body simula-
tions that incorporate some prescription for assigning luminous
galaxies to dark matter halos; as such, they are beyond the scope
of this paper, but we plan to address them in a future publication.
(Note that cluster samples selected by their shear signal may suf-
fer from such a bias; see, e.g., White et al. 2002.) On intermediate
scales, the orientation of nearby filamentary structure correlated
with the cluster lens (as well as the angular distribution of nearby
correlated halos) must also be random for a large statistical sam-
ple. Since such structure is correlated with the lens, it does con-
tribute to the tangential shear on large scales; indeed, as we have
argued above, it dominates the signal from clusters on scales above
a few A~! Mpc and simply represents the large-scale cluster-mass
correlation function. Again, as shown above, the effects of corre-
lated structure along the line of sight appear to be negligible out to
the virial radius of massive clusters.

The only residual problem for the statistical inversion method
is ASV at large scales (discussed in § 6); this finite-volume effect
creates a small scatter in the inferred mass but does not create a
bias.

8. ESTIMATION OF SIGNAL-TO-NOISE
RATIOS FOR REAL DATA

In this section we calculate the expected signal-to-noise ratios
for AY(R) and derived quantities, Ap(r) and M(r), for a cluster
survey resembling the SDSS. We argue that this method should
be immediately applicable to SDSS data. Let us consider a sam-
ple of galaxy clusters of approximately 10'* 2=! M. First, we
calculate how many clusters are expected in a bin of mass close
to this value. We do this using the Sheth & Tormen (1999) mass
function and a flat ACDM cosmology with §2,, = 0.3, 0g = 0.8,
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h=0.7, and ny, = 1.0 with a matter transfer function from
Eisenstein & Hu (1998). We assume a volume-limited sample of
clusters in the redshift range z = 0.05-0.2 and an area cover-
age of 8000 deg?, similar to the SDSS. This gives a fraction of
the sky of 0.19 and an effective volume of 0.15 (Gpc 72~ ')>. We
also assume that we have selected a fairly narrow mass bin: 9 x
108 7~ M, < M < 2x 10" h=! M. We estimate that we will
have approximately 800 clusters to use as lenses. This number is
very sensitive to the assumed cosmology, as well as the effective
width of the mass bin, which depends on the method of finding
and selecting clusters. Any choice of binning will need to be done
on some observable tracer such as X-ray luminosity, optical lumi-
nosity, galaxy richness or SZ decrement, etc. Due to the scatter
between mass and the tracer, any hard cut on these observational
quantities will necessarily result in a selection in mass that is not
hard. However, we assume for the present purposes that one can
select a sample of clusters with an effective range in mass as
above.

We assume that these 800 clusters have masses of approxi-
mately 10! 2=! M and have similar NFW profiles. The NFW
density profile is parameterized by two numbers, a virial radius
ry00 and a concentration parameter ¢, and is given by

Perit 6c

7, C, T = 29
PNFw ( 200) rJr(l+ r/rs)z (29)
with 7y = ryp9/c and
2 3
5, = (200/3)c (30)

In(14+¢)—c/(1+c¢)’

With this mass, they have a virial radius, 700 = 0.72 h! Mpc.
We use an NFW concentration parameter of ¢ = 5.0.

The 3D density profile will be the sum of the NFW profile and
the large-scale or two-halo term

p(}") = pNFW(r7 c, VZOO) + pcritb(M)QmS(r)y (31)

where £(r) is the linear correlation function and b(M ) is the lin-
ear bias for clusters of this mass. We calculate £(r) by Fourier
transforming the linear power spectrum using the same cosmo-
logical parameters above and normalizing it with the same og =
0.8. We use a linear bias of b = 2.0.

The shear, ~, is calculated from the 3D density by projecting
to 2D and using the formulae described in § 2. This involves a
factor of >, and for this we need to consider the redshift dis-
tributions involved. In reality, both the lenses and sources are at
many different redshifts and an effective X;;; needs to be calcu-
lated by integrating over the redshift distributions. This is de-
scribed in detail in Sheldon et al. (2004). For simplicity, we fix
the lens redshift at z; = 0.15 and a source redshift at z; = 0.35.

We choose 22 logarithmically spaced radial bins between » =
20 A~ kpc and 30 2~ Mpc. This range spans 11” (smallest bin)
t0 4.5° (largest bin) at a lens redshift of z = 0.15. We use a source
galaxy surface density of one galaxy per square arcminute, which
is appropriate for the SDSS. Given the bin sizes and this source
galaxy density, we can calculate the mean number of source gal-
axies in each radial bin for each cluster. Since we are stacking the
signal over all clusters, we can multiply this number by the num-
ber of clusters to get the expected number of lens-source pairs,
which determines the noise on the lensing signal. The noise on the
shear in each radial bin is given by o, = O.3/(Npair)”2. Multi-
plying this by Y. gives the noise for AY(R).
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The top left panel of Figure 4 shows the predicted AX(R) for
this stacked sample of 800 clusters where we have added the
appropriate amount of Gaussian noise using the above analysis.
The red line is the noiseless contribution to AY from the NFW
halo or the one-halo term. The blue line is the two-halo contribu-
tion, and the magenta line is the full noiseless AY(R), which is
the sum of the one- and two-halo terms. The top right panel shows
the signal-to-noise ratio of AX(R) as a function of scale. Interest-
ingly, the signal-to-noise ratio increases with scale, dips slightly
around the one-halo to two-halo transition, and then increases
thereafter. The linear correlation function is not very steep, and
for this reason the shear can be measured with increasing accu-
racy at very large scales if one has a big enough panoramic sur-
vey, simply due to the large number of foreground-background
pairs. This, however, neglects other sources of error that most
likely will dominate on large scales such as sample variance and
systematic errors due to PSF correction, shear calibration, and
photo-z estimation. We do not attempt to model these sources of
error in this paper but believe that they will begin to dominate
around 20 4~ Mpc for surveys such as the SDSS.

The bottom left panel of Figure 4 shows the 3D density profile
obtained by inversion of the noisy AY. profile. The solid lines, as
before, show the contributions from each of the one-halo (red)
and two-halo (blue) terms with their sum (magenta). The error
bars are calculated by propagating the errors of AY as discussed
in § 5.3. The bottom right panel shows the inverted mass profile.
The mass profile appears to have smaller errors only because the
points are more correlated since mass is a cumulative quantity.
Despite the many assumptions we have made, this analysis shows
that a survey like the SDSS can produce excellent measurements
of the average density and mass profiles of a stacked sample of
clusters. In fact, this analysis can be performed in many different
bins of any observation tracer and measure the density and mass
profiles for different mass ranges. Although the more massive
clusters have a higher shear signal, they are more rare and thus
have a higher noise level. Because of this, the signal-to-noise
ratio should be about the same over a fairly wide range in masses
from 10'3 to 10'3 2! M. Mass scales larger than this are usually
strong-lensing clusters and do not need to be stacked. Masses
smaller than this are merging into the galaxy-galaxy lensing re-
gime, which has been measured quite accurately already by Sheldon
et al. (2004) among others. This method of stacking the lensing
signal of groups and clusters should provide a bridge between
these two regimes that have both been studied quite extensively.

9. THE EFFECTS OF SHEAR NONLINEARITY
ON REAL DATA

For the most part, in this paper, we have been working in the
weak-lensing approximation where we have assumed that we
can average the shapes of galaxies and measure the shear, y(R).
However, as we pointed out, one really measures the distor-
tion parameter 8(R) from which you can calculate g = {1 + [1—
8(R)2]"*}/8(R), which is related to the shear by g(R) = y(R)/[1 —
£(R)]. If you are confident that you have not included data inside
the critical curves, then you can choose the negative sign for g
and avoid or ignore that discreet degeneracy. We want to inves-
tigate how important this weak-lensing assumption is and see
what we can do to mitigate the problems that will arise with real
data. For this purpose let us assume that we have a cluster survey
like the SDSS where the source galaxies are at z; = 0.35 and
lensing clusters are at z; = 0.15. We assume NFW profiles with
concentration, ¢ = 5, and consider three mass ranges, M =
(103, 10'%, 10'%) A~! M_,. For each mass range we calculate the
Y(R) and AX(R) profiles and use the redshifts to calculate X.



No. 1, 2007

CROSS-CORRELATION LENSING 37

10° " " "
“ 2
2 10°f
®
=
= 10
W
<

1 . .
102 0.1 1 10
R (Mpc/h)

10° " " "
—~ 104' 7
2 10°f -
= 102} ;
®
= 10} :
= 1t .
S 01 :

107 .

102 0.1 1 10
R (Mpc/h)

1b] e e
10}

AY. S/N

5 102} 1
= 14

",_: 10 r 1
% 107} 1
>

102} '

aal al

102 0.1 1 10
R (Mpc/h)

FiG. 4 —Predicted lensing signal and corresponding noise level around a sample of clusters in a narrow bin of mass M ~ 10'* 2~ M_, from a survey similar to the
SDSS. Top lefi: A profile with added noise of the expected level. The magenta line shows the noiseless signal, with the red line indicating the contribution from the
one-halo term or NFW profile. The blue line shows the contribution from the two-halo term. Top right: Signal-to-noise ratio for A as a function of scale. Bottom
left: Inverted density profile Ap. Bottom right: Inverted mass profile. The error bars for both Ap(r) and M(r) are propagated from AY. In all cases the solid lines

show the contribution from each of the one- and two-halo terms.

From this we can compute the reduced shear g(R) and the distor-
tion 6(R). These are shown in Figure 5. The three rows corre-
spond to the three mass ranges. In the left panels, we have plotted
K(R) (solid black line) and y(R) (solid red line). The solid blue
line is 6(R)/2, and the dashed magenta line is g(R). The first thing
to note is that all of these are subcritical on these scales; k < 1
although the largest mass cluster has x ~ 0.6 on the smallest
scales. For these NFW profiles, the shear is less than «. Contrast
this to the isothermal sphere where «(R) = (R). For the smallest
mass, all three of 7, g, and 6/2 are about equal. For the other two
masses, the shear v deviates from the other two curves. The right
panels show this in more detail. The solid blues lines are 6/(27),
and the dashed magenta lines are g/v. So, for the smallest mass
clusters, the measured distortion only differs from the shear by
a few percent: 8% at R = 10 4~! kpc, which is probably smaller
than one would want to push this method due to blending issues
and foreground cluster galaxy contamination, etc. Sheldon et al.
(2004) make measurements down to 26 42~! kpc. For the other
two mass ranges, however, the shear is significantly different from

the distortion. At small scales (20 4~ ! kpc) they differ by 20% for
M = 10" h~! M, and by a factor of 2 for M = 10" h~! M.
Notice, however, that g and ¢ differ from each other by smaller
amounts. It can be shown readily that the difference between these
two quantities is quadratic in the distortion whereas the difference
between v and g = /(1 — k) is better described as linear since s
and ~y are linearly related.

Despite the fact that the weak-lensing approximation § ~ 2~y
may break down for massive clusters at smaller scales, the inver-
sion methods can still be used. In §§ 2 and 3 we showed how to
perform the inversions using the reduced shear, g(R). We define
G(R) = (g’ +2¢g/R)/(1 — g) (our eq. [7]) and can then use the
unapproximated equation (10) rather than equation (11). Thus,
as long as we are confident that we have not crossed over critical
curves and can therefore choose the negative sign for g, we can
still do the inversions exactly. The one complication is one of
interpreting what we mean by the average profile. In the weak-
lensing regime, the inversion equations are all completely linear in
the lensing distortion so that the average of the distortion is just the
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Fic. 5.—Left panels: For three mass ranges M = (10'%, 10'*, 10'%) 42~ M, for NFW profiles (top to bottom) we show k(R) (solid black line), ¥(R) (solid red
line), the distortion 6(R)/2 (solid blue line), and g (dashed magenta line). For the smallest mass, all three of «y, g, and /2 basically coincide. For the larger masses, -y
is significantly less than the other two. The right panels show 6/2 (solid blue line) and g (dashed magenta line) both divided by ~. This shows more clearly the
difference between these quantities. In the nonlinear regime, the difference between the measured distortion and «y needs to be taken into account. These plots assume

typical redshift ranges for SDSS data.

average shear and thus the inverted densities and mass profiles
are simply averages of the individual density and mass profiles.
However, this is no longer exactly true in the nonweak regime.
The nonlinearities inherent in equations (7) and (10) make this
more complicated. Normally you would average the 8(R) pro-
files and compute g(R) from this average d(R) and then G(R)
from g(R) and finally your estimator for —X'(R), which is
SeitG(R) exp [— [ dp G(p)].

Note that this will not be equal to what you would get if you
measure X G(R) exp [— f 1:0 dp G(p)) for each cluster and then
average those. If you proceed this way instead, your inversion
for Ap would really be an unbiased estimator for the real average
Ap. These issues of nonlinearities will not affect virial mass es-
timates or interpretation of the large-scale lensing signal in terms
of'the linear correlation function. Small-scale issues such as NFW
cusp slope and concentration measurements may require more
careful handling. As we stated earlier, clusters approaching the

strong-lensing regime probably will not need to be stacked any-
way. There may also be strong-lensing information available such
as arcs or multiple images. However, stacking them will reduce
projection effects that may bias any given cluster mass depending
on its particular orientation.

10. THE EFFECTS OF CLUSTER MISCENTERING

To interpret the tangential shear pattern around clusters as the
tangential shear from the associated dark matter halos, we are as-
suming that the centers that we are using coincide with that of
the dark matter halos. Here we wish to relax this assumption and
demonstrate how the tangential shear pattern is affected by any
miscentering.

Let us assume that we have an offset of R, between the cluster
center and the underlying dark matter halo. Let us further assume
that when averaging over many clusters the direction of the offset
is random and so we can azimuthally average over this angle.
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Fic. 6.—Demonstration of the effects of miscentering (intentional or not) on
the tangential shear profile. The upper solid lines show the NFW X(R) profile
(black) and the convolved X .(R) profile (red). The lower dashed lines are the
NEW AX(R) profile (black) and the resultant AY.(R) profile (red ) derived from
the convolved X.. The convolution kernel is a Gaussian of scale length o in-
dicated by the vertical dashed green line. The relative effects of convolution on
AY are larger than on ¥ and make a noticeable difference to about R = 10 o.

The resultant AX(R|Ry) is given in terms of the halos’s profile
AY(R) by the formula ( Yang et al. 2006)

1 27
2(1!3|RS):E/0 dGE(\/RZJrRSZJrZRRXcos&). (32)

If there is some distribution P(R;) of offsets, we can average
over it to get the resultant convolved tangential shear profile,
2e(R),

SL(R) = / " 4R, P(R)S(RIR,). (33)

In general, for any distribution of offsets g(x), the resultant
Y.(x) is given by convolution, ¥, = Yg, with the above equa-
tions applying to azimuthally symmetric g.

As an example, we can choose an azimuthally symmetric
Gaussian for g(x) with scale length o that gives normalized P(Ry)

given by
R, 1 R?

Furthermore, we choose an NFW profile for ¥(R) with con-
centration ¢ = 3 and ry;; = 1 A1 Mpc and set o = 30 hl kpc.

Figure 6 shows the resultant profiles. The top two lines show
that the effect of the convolution on ¥ is to flatten the cusp where
R < o. The vertical line indicates o. The effect on AY is more
pronounced. At R = o, the two X profiles only differ by 10%,
but the AY differ by a factor of 4.5. The effect on X is negligible
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after about R > 2 ¢ but not until R > 10 ¢ for AX. This is not
surprising since a flattening ¥ is nearly a mass sheet and so pro-
duces no shear.

Fitting model profiles such as NFW to real data should take
into account possible miscentering. In practice, one would prob-
ably center clusters on the brightest cluster galaxy (BCG). Even
if this is not at the center of the cluster’s dark matter halo, it will
probably have its own dark matter subhalo and at any rate con-
tains some mass in its stars. Therefore, it may be expected that
the measured AY profile will be cuspy at small scales even if the
central BCG is offset from the main halo center. At small scales,
the interpretation of a measured signal is complicated by both
this effect and also the effects of shear nonlinearity discussed
in the previous section.

By moving the center systematically to different locations, for
example, from the BCG to the X-ray center, one should be able
to measure which of these locations better traces the dark matter
halo. One may also be able to measure the fraction of mass in sub-
halos by recentering on each galaxy in the cluster and subtracting
off the contribution from the convolved cluster halo.

11. DISCUSSION

We have developed a nonparametric method for inverting cross-
correlation lensing measurements to obtain average density and
mass profiles of halos. We have demonstrated the method on an
N-body simulation and shown that it successfully recovers the
3D profiles. We argued that asphericity of halos and LSS along
the line of sight do not introduce bias or substantial uncertainty
in the inferred mass estimates.

This method should find several useful applications in surveys.
Applied to galaxy-galaxy lensing measurements, this method can
be used to measure Ap(r) = Qyperitégm(r) for samples of lens
galaxies (e.g., Sheldon, et al. 2004). On small scales, this provides
information about galaxy dark matter halos and should thereby
constrain models of galaxy formation and evolution, including the
details of hierarchical structure formation and merging. Statistical
mass profiles around galaxies can provide virial mass measure-
ments and, combined with the average light profile around these
galaxies, determine mass-to-light ratios as a function of scale.

On larger scales, galaxy-galaxy lensing inversions should
tell us more about cosmology. The autocorrelation function of
galaxies allows us to measure &g,(r) = b2(F)Em(r), where b(r)
is the scale-dependent bias and &,,,(r) is the mass autocorre-
lation function. Lensing allows us to measure €2,&(r) =
Qub(r)r « (N&um(r), where the cross bias, r,(r), is sometimes
referred to as stochastic bias (a term we do not recommend using
in this context, since it is not bounded by +1). The presence of
these two bias functions, b(») and r,(r), allows for the most gen-
eral model of the relative clustering of galaxies and mass (see
also Neyrinck et al. 2005). Simulations indicate that . (r) is con-
sistent with unity on scales larger than ~2 4~ Mpc for any range
of halo masses (Tasitsiomi et al. 2004). In this case, measure-
ment of large-scale galaxy-galaxy lensing and of the galaxy auto-
correlation function determines the mass correlation function,
Q ,ifmm = (nggm)z/fgg, and so fixing the shape of the linear cor-
relation function determines the amplitude or normalization
,,0%. It also determines the bias, b(r)/€2,, = £4y/$2&ym. The as-
sumption that bias is scale independent on large scales is cru-
cial to extracting cosmological information from the galaxy power
spectrum; lensing can provide a way to test this important assump-
tion. Other cosmological probes, such as cluster counts and cos-
mic shear, measure a different parameter combination, 927'5 og, SO
combining these probes with cross-correlation lensing helps break
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this classic degeneracy. An advantage of this new method is that it
is robust; the only assumptions used are that general relativity is
correct and that » , () ~ 1 on large scales.

Applied to galaxy clusters, this inversion method should
prove useful for both astrophysics and cosmology. On small
scales, cross-correlation lensing probes the mean density profiles
of clusters. Cosmological dark matter simulations indicate that
clusters have universal dark matter halos (although baryonic
physics presumably needs to be taken into account to understand
the inner density structure in detail). Inverted density profiles can
test this assumption quite directly. As we have demonstrated,
cluster mass profiles can be determined, leading to virial mass
estimates independent of a model for the density profiles. Virial
masses allow a direct comparison between simulated and real
clusters. In addition, in a cluster survey we can measure the
cluster abundance, n(M, z), binned by any observable proxy for
mass, and use this inversion method to calibrate the virial mass-
observable relation as a function of redshift. This should allow
cluster surveys to more precisely probe cosmology, including the
dark energy. We still need to gather information about the scatter
in the mass-observable relation; this can be constrained by sim-
ulations, by self-calibration (Lima & Hu 2005), and internally
by dividing the clusters into subsamples and separately estimat-
ing the mass-observable relation.

Before applying this method with confidence to real cluster
data, the possible selection biases involved in a given cluster se-
lection algorithm need to be explored. If the selection algorithm
preferentially finds clusters aligned along the line of sight, the
assumption of statistical isotropy will be violated and the mass
inversions may be biased. Similarly, if the selection algorithm
assigns cluster centroids that are displaced from the true halo
centers, the resulting density profiles will be convolved with dis-
tribution of centroid errors. Additional complications for the clus-
ter counting technique arise if clusters, however selected, are not
isomorphic to massive dark matter halos. These issues can be
tested with simulations.

Applying these lens inversion methods to clusters on large
scales provides new cosmological information beyond the clus-
ter counting technique. As noted for galaxies above, we can use
the cluster-mass and cluster-cluster correlations to measure €2,,,0.
A useful cross-check is provided by comparing the results for dif-
ferent cluster samples binned by some observable, e.g., richness.
This method should be even more robust for clusters than for gal-
axies, since the halo bias as a function of mass is predictable from
theory and can be studied in dissipationless N-body simulations
(Seljak & Warren 2004; Tasitsiomi et al. 2004). One can use this
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information in two ways. Conservatively, one could measure the
average cluster masses, M, and b(M)/2,,; from these bias mea-
surements one could further constrain cosmology through the
theoretical bias predictions and the direct measurement of €2,,07%.
Alternatively, one could use the lensing data only on small scales
to determine masses and assume that the theoretical bias predic-
tions are correct; in this approach, one would use the mass and an
assumed cosmology to predict the bias. This would allow one to
“debias” the cluster autocorrelation function and obtain a con-
straint on og that depends on other cosmological parameters as
well. Since the scaling of bias with mass is somewhat weak
[b(M) ~ M®? in the vicinity of M = 10'3 h~! M ] and the clus-
ter autocorrelation function can be measured with high signal-to-
noise ratio, this measurement of 2,05 could be quite precise.
This method has been applied to galaxies by Seljak et al. (2005)
utilizing the halo model. We believe that clusters are a more nat-
ural choice for this method in that they do not need an additional
halo occupancy prescription.

The approach of “debiasing” the correlation function also
makes possible the study of the growth of structure. In principle,
the inversion method can be applied to data in redshift bins, al-
lowing one to measure the large-scale mass power spectrum am-
plitude as a function of redshift. This is particularly useful because
the linear density perturbation growth rate is sensitive to dark en-
ergy. Moreover, since the evolution of the halo mass function is
also sensitive to the growth of structure, combining cluster counts
and the cluster-mass correlation function should offer a powerful
probe of cosmology.

We are currently applying these statistical lensing inversion
techniques to optically selected clusters in the SDSS. In the fu-
ture, ongoing and planned wide-area surveys, including RCS 11,
CFHTLS, the VST and VISTA surveys, the Dark Energy Survey,
PanSTARRS, LSST, and SNAP/JDEM, will allow for higher
signal-to-noise ratio lensing measurements to be made and will
eventually probe much larger cosmological volumes. The cos-
mological constraints they supply from cross-correlation lensing
will complement those from other probes.
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