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ABSTRACT

We discuss axisymmetric force-free pulsar magnetospheres withmagnetically collimated jets and a disk wind ob-
tained by numerical solution of the pulsar equation. This solution represents an alternative to the quasi-spherical wind
solutions in which a major part of the current flow is in a current sheet that is unstable to magnetic field annihilation.
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1. INTRODUCTION

Interest in the structure of pulsar magnetospheres has been
stimulated by Chandra and Hubble Space Telescope observa-
tions of the Crab synchrotron nebula that point to an axial-jet /
equatorial-disk structure (Hester et al. 2002). An analogous struc-
ture is observed in the nebula of the Vela pulsar (Pavlov et al.
2001). A theoretical model of an aligned rotating pulsar with col-
limated jets was put forward by Sulkanen & Lovelace (1990,
hereafter SL90) who solved the pulsar equation of Scharlemann
& Wagoner (1973) on a grid numerically. This work was criti-
cized by Contopoulos et al. (1999, hereafter CKF99) who pre-
sented numerical calculations showing that the possibly unique
solution is a quasi-spherical wind without jets but with an equa-
torial current sheet. The quasi-spherical wind solution has been
found in the time-dependent, relativistic, force-free simulations
by Spitkovsky (2004), Komissarov (2006), andMcKinney (2006)
and in high-resolution grid calculations by Timokhin (2006). How-
ever, the wind solutions may be short lived owing to the fact that a
major part of the current flow is in a current sheet that is unstable to
magnetic field annihilation. MHD simulations by Komissarov &
Lyubarsky (2004, 2003) indicate that a jet-torus configuration can
be generated due to the anisotropic energy flux density of the pul-
sar far outside the light cylinder.

We reconsider the possibility of jet/disk-wind structures of
aligned pulsar magnetospheres on the scale of the light cylinder
distance using a different approach to the numerical solution of
the pulsar equation. We utilize the fact that the poloidal current
flow along the poloidal field lines within the star’s light cylinder
is an adjustable parameter. We find that when this parameter is
sufficiently large, magnetically collimated (�z) jets formwithin
the light cylinder and a quasi-collimated jet flows outside. The
collimation is due to the toroidal magnetic field. The analysis by
SL90 did not include the current flows outside the light cylinder,
and this resulted in a kink in the field lines that cross the light
cylinder. In addition to the collimated flows we find an ‘‘anti-
collimated’’ disk wind. The anticollimation is due to the toroidal
magnetic field. These solutions have no net poloidal current flow
and no current sheets inside or outside the light cylinder. Thus,
these solutions are not unstable to field annihilation. The forma-
tion of magnetically collimated jets along the axes and an equa-
torial disk wind is similar to what is found in the nonrelativistic
limit for magnetic loops threading an accretion disk (Ustyugova

et al. 2000). This jet /disk-wind geometry was discussed for the
case of pulsars by Romanova et al. (2005).
Section 2 of the paper discusses the theory, the boundary con-

ditions, and the regularity condition at the light cylinder. It goes on
to discuss the conditions for having no jets and having jets. Sec-
tion 3 discusses the numerical solutions. For the case of jets we
discuss the radial force balance across the jet and the vertical force
balance in the disk. Section 4 gives the conclusions of this work.

2. THEORY

Themain equations for the plasma follow from the continuity
equation: = (�v)¼ 0, Ampère’s law: < B ¼ 4�J/c, Coulomb’s
law : =E ¼ 4��e, with �e the charge density, Faraday’s law
: < E ¼ 0, perfect conductivity Eþ v < B/c ¼ 0, with v the
plasma flow velocity, and the ‘‘force-free’’ condition in the Euler
equation �eEþ J < B/c ¼ 0. The perfect conductivity implies
that E2 < B2. Owing to the assumed axisymmetry, E� ¼ 0, so
that the poloidal velocity vp ¼ �Bp. Mass conservation then gives
B = :(��) ¼ 0;, which implies that �� ¼ F(�)/4�, where F is an
arbitrary function of the flux function �. In cylindrical coordi-
nates, Br ¼ �r�1(@�/@z) and Bz ¼ r�1(@�/@r). In a similar way,
one finds that v� � �B� ¼ rG(�), so that E ¼ �G(�):�, and
rB� ¼ H(�), so that there are two additional functions, G and H.
The function G is determined along all of the field lines that

go through the star. This follows from the perfect conductivity
condition at the surface of the star,E� þ (v < B)� /c ¼ 0 in terms
of spherical (R; �; �) coordinates. This gives E� ¼ �(v�BR �
vRB�)/c ¼ �v�BR /c, where vR is zero inside the star. Here v� ¼
��R� sin � is the velocity at the star’s surface, �� is the angular
velocity of the star, and R� is the star’s radius. Thus, we have
E�(R�; �) ¼ ���(d�/d�)/(R�c), so that G(�) ¼ �� /c.
The component of the Euler equation in the direction of :�

gives the force-free Grad-Shafranov (GS) equation in cylindrical
(r; �; z) coordinates,

1� r��

c

� �2
" #
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where

F � H(�)
dH(�)

d�

and

�? � @ 2=@r2 � (1=r)(@=@r)þ @ 2=@z2

(Scharlemann & Wagoner 1973).
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Note that the poloidal current density is given as Jp ¼
(c/4�)Bp(dH /d�), where the p subscript indicates the poloidal
component.We consider solutionswith symmetry about the equa-
torial plane with, for example,�(r; z) ¼ �(r;�z) and B�(r; z) ¼
�B�(r;�z).

This equation for � involves the unknown function F (�) or
H(�). It is, in general, nonlinear. Ampère’s law gives

H
dl =B ¼

(4�/c)
R
dS = J, so that rB�(r; z) ¼ H(�) is 2/c times the current

flowing through a circular area of radius r (with normal ẑ) la-
beled by �(r; z) ¼ const.

In the following, distances are measured in units of the light
cylinder radius, rL ¼ c/��. The flux function � is measured in
units of �/rL, where � is the magnetic moment of the star. The
magnetic field is measured in units of B0 � �/r 3L .

2.1. Boundary Conditions

Numerical solutions of equation (1) for�(r; z) are calculated
on a uniform grid in a region r ¼ 0 to rmax and z ¼ 0 to zmax with
rmax ¼ zmax 3 1. For r2 þ z2T1 we require� ! (r2 þ z2)�1/2,
which is the star’s intrinsic dipole field. Along the symmetry
axis, �(r ¼ 0; z) ¼ 0 and H(� ¼ 0) ¼ 0.

On the equatorial plane inside the light cylinder (r < 1, z ¼ 0),
Br ¼ �(1/r)(@�/@z) ¼ 0, and H(r; z) ¼ 0. For the closed field
lines within the light cylinder, � > �eq. On the equatorial plane
outside the light cylinder (r > 1, z ¼ 0),�(r; 0) ¼ �eq ¼ const:,
and H(r; 0) ¼ 0. Thus, for the open field lines, the range of � is
from zero on the axis to �eq on the equatorial plane.

On the outer boundaries at rmax and zmax we take free
boundary conditions @ 2�/@n2 ¼ 0, where n is the normal to the
boundary. Other conditions have been tested including using
equation (1), and they do not alter our results.

2.2. Light Cylinder Condition

A further condition on the solutions of equation (1) arises
from the regularity of � at the light cylinder. Because the co-
efficient of the �? term vanishes at the light cylinder, all field
lines (� values) that cross the light cylinder must have

2
@�

@r
¼ H

dH

d�
¼ F ð2Þ

for r ¼ 1 and all z. This relation determines H(�) for the field
lines that cross the light cylinder. In the following dH /d�¼H 0.
There are two possibilities.

2.2.1. No Jets

The first possibility is that all open field lines cross the light
cylinder. This is the solution put forward by CKF99.

Because we calculate � in a finite size region, F (�) is not
determined for the open field lines that exit the region at z ¼ zmax

inside the light cylinder, r ¼ 0Y1. These field lines have 0 �
� < �c, where �c � �(1; zmax). For the CKF99 solution, for
this range of�we assume a linear interpolation,F ¼ (�/�c)F c,
where the c subscript indicates evaluation at r ¼ 1; z ¼ zmax.
The quantityF c is known, owing to equation (2). Note that both
�c and F c evolve as the iteration proceeds.

For the CKF99 case,

Z �eq�0þ

0

d�F ¼ 1

2
H 2 �eq � 0þ

� �
> 0; ð3Þ

where 0þ is an arbitrarily small positive quantity. Because
H(�eq) ¼ 0, this requires a poloidal current sheet at z ¼ 0þ for
r > 1 with

Jr ¼� c

4�
Br r; 0þð ÞH �eq � 0þ

� �
� ���eq þ 0þ
� �

¼� c

4�r
H �eq � 0þ
� �

� z� 0þð Þ: ð4Þ

The poloidal current flow is sketched in Figure 1a. There is a
corresponding positive current density/ �(zþ 0þ) due to the
lower half-space. Inside the light cylinder, the poloidal current
sheet follows the dipole-like poloidal field lines to the star’s
surface. This is required in order to have H ¼ 0 within the
closed field line region of the magnetosphere. At the same time,
there is a delta-function toroidal current flow with

J� ¼ (c=4�)Br r; 0þð Þ� z� 0þð Þ ð5Þ

Fig. 1.—(a) Sketch of the poloidal current flow in a pulsar magnetosphere with
a quasi-spherical wind with no jet as proposed by Contopoulos et al. (1999).
(b) Sketch of the poloidal current flow with a collimated jet and a disk wind. This
solution is related to that proposed by Sulkanen & Lovelace (1990).
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for r > 1. There is a corresponding positive toroidal current flow
/ �(zþ 0þ) due to the lower half-space. Inside the light cylinder
there is also a delta-function toroidal current sheet associated
with the mentioned poloidal current sheet.

Themagnetic field just above the equatorial plane for r > 1 is
Bþ ¼ Br r̂þ B�f̂, and this is equal and opposite to the field just
below the plane. The oppositely directed fields are unstable to
annihilation. The electromagnetic stress Tzz varies discontinu-
ously from zero on the equatorial plane (by symmetry) to a finite
value at z ¼ 0þ.

2.2.2. Jets

A second possibility is that there is a collimated jet along the
+z-axis (and �z-axis) so that not all open field lines cross the
light cylinder. The open field lines that do cross the light cylinder
must obey equation (2). For the other open but collimated field
lines (0 � r � rL, z ! 1), H(�) is arbitrary.

Thus, H(�) is not determined for ’ � �/�c < 1. Because
H(0) ¼ 0 we consider the simple dependence

H(�) ¼ kH ’� 1

2
�’2

� �
; ð6Þ

where kH is an adjustable constant. As kH increases in equation
(6), the axial current flow within the light cylinder (/dH /d�)
increases. Owing to equation (2), (HH 0)c is fixed at each step of
the numerical iteration of �. Of course, both �c and (HH 0)c
evolve as the iteration proceeds. Consequently, we can calculate

� ¼ 1

2
3� 1þ 8�c(HH

0)c
k2H

� �1=2( )

at each iteration.
We seek solutions without an equatorial current sheet. That

is, we search for solutions withZ �eq

0

d�F ¼ 0: ð7Þ

Figure 1b shows a sketch of the poloidal current flow.

3. NUMERICAL SOLUTIONS

The numerical calculations of � for both cases of no jets and
jets were done using successive iterations on a uniform 500 ;
500 mesh in a square region rmax ; zmax ¼ 5 ; 5. We have ob-
tained the same results for a 600 ; 600 grid in a 6 ; 6 region.
The initial�(r; z) used to start the iteration consists of the vacuum
dipole field inside the light cylinder and the straight line extrap-
olation of the field lines outside this cylinder. Convergence of the
iterations is measured by the change of � between iterations.
Figure 2 shows the solution�(r; z) andH(�) for the CKF99 case,
where there is no jet.

3.1. Solutions with Jets

Figure 3 shows�(r; z) andH(�) for the case of a jet flow along
the axis and a disk wind in the equatorial plane where kH ¼ 2:48.
The flow has zero net poloidal current flow,

R�eq

0
d�F ¼ 0 and

no current sheets. The main parameters of this solution are: along
the z-axis,� ¼ 0 ¼ H ; on the light cylinder (at z ¼ 5), the values
are�c and Hc ¼ H(�c); in the Bp ¼ 0 region,�1 and H1; and
on the equatorial plane,�eq and H(�eq) ¼ 0. The numerical val-
ues are �c ¼ 0:0384, Hc ¼ 0:6180,�1 ¼ 0:133, H1 ¼ 0:637,
and �eq ¼ 0:318. This solution is not unique. For example, we
have found an analogous solution for kH � 1.

The total power output into both the upper and lower half-
spaces is Ėtot ¼ B2

0r
2
Lc

R�eq

0
d� ½�H(�)� ¼ 0:152Ė0, where Ė0 �

B2
0r

2
Lc. In contrast, the total power output of the quasi-spherical

wind solution is Ėtot � B2
0r

2
Lc (e.g., McKinney 2006).

The jet flow consists of a region of collimated flux within the
light cylinder rL, where���c ¼ 0:0384, and a quasi-collimated
region outside rL, where�c <�<�1 ¼ 0:133. The power flow
in the collimated jets is Ėcjet ¼ Ė0

R�c

0
d� ½�H(�)� ¼ 0:0155Ė0.

The power flow in the quasi-collimated flows is Ėqcjet ¼
Ė0

R�1
�c

d� ½�H(�)� ¼ 0:0595Ė0. The power flow in the disk
wind is Ėdwind ¼ 0:0767Ė0. Thus, about 10% of the total power
goes into the collimated jet, 40% into the quasi-collimated flow,
and 50% into the disk wind.

3.1.1. Radial Force Balance of Jet

For conditions in which a collimated jet exists, the z de-
rivatives in equation (1) vanish. The pulsar equation can then be
written as

d

dr
B2
z þ

1

r2
d

dr

�
r2(B2

� � E2
r )

�
¼ 0; ð8Þ

Fig. 2.—Quasi-spherical wind solution similar to that of Contopoulos et al.
(1999). The jump inH at z ¼ 0 is related to the equatorial poloidal current sheet
shown in Fig. 1a.
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which expresses the radial force balance. Multiplying this equa-
tion by r2 dr and integrating from the axis to r gives the radial
virial equation

H 2 ¼ r2 �1
� � d�

dr

� �2

þ 2

Z r

0

dr

r

d�

dr

� �2

; ð9Þ

following Lovelace et al. (1991).
Figure 4 shows the two sides of equation (9) obtained from

our numerical solution at z ¼ 5. There is a �10% difference
between the two sides of the equation. Calculations in a much
larger region are required to determine whether or not the quasi-
collimated flux outside the light cylinder becomes collimated at
very large distances.

3.1.2. Vertical Force Balance of Disk

The field solution shown in Figure 3 satisfies equation (1)
accurately everywhere except close to the equatorial plane at
r2 31. The reason for the discrepancy in this region can be
understood by considering the vertical force balance for z2Tr2

and r2 31 where B2
zTB2

r . For these conditions, equation (1) is
approximately

�r2
@ 2�

@z2
¼ � 1

2

dH 2

d�
¼ � 1

2

@H 2

@z

1

@�=@ z
:

This can be rewritten as

� @

@	
� 1

2

@�

@	

� �2

þ 1

2
H 2

" #
¼ 0; ð10Þ

where 	 � z/r. This expresses the vertical force balance near
the equatorial plane. The term �(@�/@	)2 represents the neg-
ative pressure of the electric field, and it gives an upward force.
The H 2 term is magnetic pressure due to the toroidal magnetic
field, and it exerts a downward force.

Figure 5 shows the vertical profiles of � and H. These pro-
files do not satisfy equation (10). The reason is that equation (1)
omits the plasma kinetic energy density in all space including
z ¼ 0, where the magnetic field reverses direction. Therefore
we include the influence of the kinetic energy density as a term
K(�)/2 within the square brackets of equation (10). The origin
of the kinetic energy is from the annihilation of the magnetic
field. [A term of this form can be derived from the relativistic GS
equation of Lovelace et al. (1986). The right-hand side of eq. (86)

Fig. 3.—Pulsar magnetosphere with jet obtained by successive iteration of
eq. (1) with the constraint that

R�eq

0
d�F ¼ 0. The value of H(�) within the

light cylinder is given by eq. (6) with kH ¼ 2:48 and � ¼ 0:9995.

Fig. 4.—Two sides of eq. (9) obtained from our numerical solution at z ¼ 5.
RHS denotes the right-hand side of the equation.

Fig. 5.—Vertical profiles of � and H at r ¼ 4. At large z, �1 ¼ 0:133 and
H1 ¼ 0:638.
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of this work includes a term �4��r2 dJ (�)/d�, where J ¼

(1� rv� /c) is the Bernoulli constant and 
 is the Lorentz fac-
tor. We can write �r2 ¼ f (�) and dK /d� ¼ 8�f (�)dJ (�)/d�.
The radial flow speed is vr ¼ �cH�1(@�/@	), so that �r2vr ¼
fct(�).] Thus we obtain

@�

@	

� �2

¼ K(	)þ H 2(	)� H 2
1; ð11Þ

where H1 is the constant value of H at large 	. Clearly, it is
necessary to have K þ H 2 	 H 2

1. Because H(0) ¼ 0 and
(@�/@	)	¼0 ¼ 0, K(0) ¼ H 2

1. Because (@�/@	) ! 0 as 	 in-
creases, we have K ! 0 as 	 increases. A sufficient condition for
having E2 < B2 ¼ B2

r þ B2
� is K < H 2

1. To illustrate the behav-
ior we consider the dependences H 2 ¼ H 2

1½1� exp (�	2 /	2H )�
and K ¼ H 2

1 exp (�	2 /	2K) with � � 	K /	H > 1.
Figure 6 shows the 	 dependences of�,H, and rEz calculated

from equation (11) for an illustrative case that maintains the
conditions of Figure 5 of �� ¼ �eq ��1 ¼ 0:185 andH1 ¼
0:638. For this case we have taken � ¼ 2. As a result, 	K ¼
0:286, which corresponds to a half-angle thickness of the disk of
�16



. Near the equatorial plane, the magnetic field has the form

of anArchimedes spiral, namely, dr/d� ¼ �rL(1� ��2)1/2.With
this modification of the disk configuration, the global field solu-
tion involves no delta-function current sheets.

4. CONCLUSIONS

This work describes a new solution for the structure of the
magnetosphere of an aligned rotator described by the force-free
pulsar equation. This is obtained by adjusting the current flow
along the poloidal field lines that remain within the light cylinder.
When this current flow is sufficiently large, a collimated jet forms
within the light cylinder, and a quasi-collimated flow forms out-
side of it. The solution is not unique. The jet is collimated by the
toroidal magnetic field. At the same time, an anticollimated disk
wind forms in the vicinity of the equatorial plane. The anti-
collimation is due to the toroidal magnetic field. The vertical
force balance of the diskwind requires the inclusion of a finite ki-
netic energy density near the equatorial plane. Roughly one-half
of the open field lines go into the jets and the other half to the disk
wind. The total current flow in the jets is equal and opposite to
the current flow in the disk. Thus, there is no current sheet inside
or outside of the light cylinder.
Our jet /disk-wind solution represents an alternative to the

quasi-spherical wind solutions where a major part of the current
flow is in a current sheet. Such a current sheet is unstable to
magnetic field annihilation. Furthermore, the way in which the
configuration is reached is expected to be important. Consider a
possible simulation experiment in which the configuration is
reached by dynamical evolution from an initially nonrotating
star. The presence, distribution, and density of the initial plasma
is important in that it is essential for the current flow as the star is
spun up to a final rate. The value of the density of the background
plasma was found to have a crucial role in determining the in-
flation magnetic loops threading a differentially rotating disk in
relativistic particle-in-cell simulations (Lovelace et al. 2005).
The transition from one type of equilibrium to another remains to
be investigated.
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