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ABSTRACT

A microscopic analysis of the viscous energy gain of energetic particles in (gradual) nonrelativistic shear flows is
presented. We extend previous work and derive the Fokker-Planck coefficients for the average rate of momentum
change and dispersion in the general case of a momentum-dependent scattering time �( p) / p� with � � 0. We
show that in contrast to diffusive shock acceleration, the characteristic shear acceleration timescale depends inversely
on the particle mean free path, which makes the mechanism particularly attractive for high-energy seed particles.
Based on an analysis of the associated Fokker-Planck equation we show that above the injection momentum p0,
power-law differential particle number density spectra n( p) / p�(1þ� ) are generated for � > 0 if radiative energy
losses are negligible. We discuss the modifications introduced by synchrotron losses and determine the contribution
of the accelerated particles to the viscosity of the background flow. Possible implications for the plasma composition
in mildly relativistic extragalactic jet sources are addressed.

Subject headinggs: acceleration of particles — galaxies: jets

1. INTRODUCTION

Shear flows are a natural outcome of the density and velocity
gradients in extreme astrophysical environments, and in the case
of active galactic nuclei (AGNs), for example, are observation-
ally well established (see Laing&Bridle 2002; Laing et al. 2006;
Rieger & Duffy 2004). The acceleration of energetic particles
occurring in such flows can represent an efficient mechanism for
converting a significant part of the bulk kinetic energy of the
flow into nonthermal particles and radiation, as has been suc-
cessfully shown in a number of contributions (e.g., Ostrowski
1990, 1998; Stawarz & Ostrowski 2002; Rieger & Duffy 2004,
2005c). Early theoretical progress in the field has been achieved
based on a detailed analysis of the Boltzmann transport equation
(Berezhko&Krymskii 1981; Earl et al. 1988;Webb 1989). Some-
what similar to the microscopic picture for Fermi acceleration,
shear acceleration is essentially based on the fact that particles
can gain energy by scattering off (small-scale) magnetic field
inhomogeneities moving with different local velocities due to
being embedded in a collisionless shear flowwith a locally chang-
ing velocity profile (see Rieger & Duffy 2005b for a recent
review). In a scattering event, particles are assumed to be ran-
domized in direction, with their energies being conserved in the
local (comoving) flow frame. As the momentum of a particle trav-
eling across a velocity shear changes with respect to the local
flow frame, scattering leads to a net increase in momentum with
time for an isotropic particle distribution. In contrast to second-
order Fermi acceleration, however, not the random but the sys-
tematic velocity component of the scattering centers is assumed
to play the important role. In the present paper we present a mi-
croscopic analysis of shear acceleration in which the underly-
ing physical picture becomes most transparent. Section 2 gives
the derivation of the Fokker-Planck coefficients for a simple,
nonrelativistic ( longitudinal) gradual shear flow. Section 3 an-
alyzes the corresponding Fokker-Planck transport equation,
providing time-dependent and steady state solutions for spe-
cific cases. The contribution of the accelerated particle to the
viscosity of the background flow is determined in x 4, while
implications for mildly relativistic jet sources are addressed in
x 5.

2. DERIVATION OF FOKKER-PLANCK COEFFICIENTS

For a gradual nonrelativistic shear flow, Jokipii & Morfill
(1990) have calculated the Fokker-Planck coefficients using a mi-
croscopic treatment restricted to amean scattering time �c ¼ const.
independent of momentum (see also Rieger & Duffy 2005a).
However, since under realistic astrophysical conditions the scat-
tering off magnetic turbulence structures is momentum-dependent
(e.g., gyro, Kolmogorov, or Kraichnan type), we extend this anal-
ysis to the more general case where the local scattering time �c
is a power-law function of momentum, i.e., �c( p)¼ �0 p

� ,� � 0.
We consider a simple nonrelativistic two-dimensional continuous
shear flow with velocity profile given by u¼ uz(x)ez. Similarly,
as in Jokipii & Morfill (1990) we choose a spherical coordinate
system inwhich � denotes the angle between the x-axis and the ve-
locity vector v ¼ (vx; vy; vz) of the particle and � is the azimuthal
angle such that tan � ¼ vy/vx. Letm be the relativisticmass, p1 the
initial momentum of a particle relative to its local flow frame, and
p2 the corresponding momentum after the next scattering event.
As the particle travels across the shear, its momentum (and thus
its mean free path) changes with respect to the local flow frame.
Denoting by �̃ ¼ �h i the mean scattering time averaged over mo-
mentum magnitude, one obtains

�̃ ¼ �c þ
1

2

@�c( p1)

@p1
�p ¼ �c 1þ 1

2
�
�p

p1

� �
ð1Þ

in the limit �p/p1 ¼ ( p2 � p1)/p1T1, where collisions are as-
sumed to produce only a small change in the momentum of parti-
cles, with large changes occurring only as a consequence of many
small changes.Within the time �̃ a particle travels a distance � x̃ ¼
vx�̃ ¼ ( p1/m) cos ��̃ in the x-direction across the shear, and the
flow velocity changes by an amount �u ¼ �ũez, where

�ũ ¼ @uz
@x

�x̃ ¼ �u 1þ 1

2
�
�p

p1

� �
ð2Þ

and �u � (@uz/@x)( p1/m) cos ��c. Contenting ourselves with a
Galilean transformation for the nonrelativistic flowspeeds involved,
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the particle’smomentum relative to the flowwill thus have changed
to p2 ¼ p1 þ m�u; i.e., one obtains

p22 ¼ p21 þ 2m �ũ p1; z þ m2(�ũ)2

¼ p21 1þ 2
m �ũ

p1
sin � cos �þ m2 �ũ2

p21

� �
: ð3Þ

As the next scattering event is assumed to preserve the magni-
tude of the particle momentum relative to the local flow frame,
the particle magnitude will have this value in the local frame. To
second order in �u, one thus finds

p2 ’ p1

�
1þ m

p1
�u sin � cos �þ m2

p21
�u2

� 1

2

m2

p21
�u2 (1� � ) sin2� cos2�

�
: ð4Þ

By using spherical coordinates and averaging over all momentum
directions for an isotropic particle distribution, the Fokker-Planck
coefficients (Chandrasekhar 1943) describing the average rate of
momentum change and the average rate of momentum dispersion
(associated with a broadening of the distribution) can be deter-
mined as follows:

�p

�t

� �
� 2 p2 � p1h i

�c
¼ 4þ �

15
p

@uz
@x

� �2

�c; ð5Þ

(�p)2

�t

� �
�

2 ( p2 � p1)
2

� �
�c

¼ 2

15
p2

@uz
@x

� �2

�c; ð6Þ

where the index 1 has been dropped on the right-hand side,
revealing that a net increase in momentum proportional to the
square of the flow velocity gradient occurs with time. Obviously,
the stronger the shear and the larger the particle mean free path,
the higher the possible impact of scattering and thus the higher the
rate of momentum change. For a constant scattering time, i.e.,
for � ¼ 0, these expressions reduce to those found by Jokipii &
Morfill (1990) apart from the factor of 2 that properly takes the
time average into account. The Fokker-Planck coefficients are
related by the equation

�p

�t

� �
¼ 1

2p2
@

@p
p2

(�p)2

�t

� �� �
¼ �

p2
@

@p
p4�c
	 


; ð7Þ

where � on the right-hand side denotes the shear flow coefficient
(see Earl et al. 1988), which, for the flow profile chosen, is given
by

� ¼ 1

30

@ui
@xj

þ @uj
@xi

� �2

� 2

45

@ui
@xi

@uj
@xj

¼ 1

15

@uz
@x

� �2

: ð8Þ

Equations (5) and (7) indicate that for the adopted scaling �c /
p� , acceleration occurs as long as � > �4. Comparison with
previous approaches shows that the average rate of momen-
tum increase �p/�th i ¼ (4þ � )�p�c as given by equation (5)
agrees with the nonrelativistic limit of the full shear accelera-
tion coefficient derived in Rieger & Duffy (2004) and the results
found by Berezhko & Krymskii (1981) and Earl et al. (1988).

Equation (5) implies a characteristic acceleration timescale for
particle acceleration in nonrelativistic gradual shear flows of

tacc ¼
p

�p=�th i ¼
c

(4þ � )�k
; ð9Þ

which is inversely proportional to the particle mean free path
k ’ c�c, in remarkable contrast to the diffusive shock accelera-
tion in which tacc / k (e.g., Kirk & Dendy 2001). As the mean
free path of a particle increases with energy, it follows that higher
energy particles will be accelerated more efficiently than lower
energy particles. This characteristic behavior makes shear accel-
eration particularly attractive for the acceleration of high-energy
seed particles and the production of ultra-high-energy cosmic
rays (e.g., Rieger & Duffy 2005c). In the case of a particle mean
free path proportional to the gyroradius rg, for example, the ac-
celeration timescale scales with the particle Lorentz factor in the
same way as the timescales for synchrotron and inverse Compton
losses.

3. PARTICLE TRANSPORT
AND POWER-LAW FORMATION

The propagation of energetic charged particles in nonrelativ-
istic shear flows can be cast into a Fokker-Planck-typemomentum
diffusion equation (see Melrose 1980). Taking synchrotron los-
ses into account the isotropic phase-space distribution function
f ( p; t) (averaged over all momentum directions) then satisfies

@f ( p; t)

@t
¼� 1

p2
@

@p
p2

�p

�t

� �
þ ṗsh i

� �
f ( p; t)

� �

þ 1

2p2
@2

@p2
p2

(�p)2

�t

� �
f ( p; t)

� �
þ Q̃( p; t); ð10Þ

where Q̃( p; t) denotes the source term, ṗsh i is the synchrotron
loss term given by

ṗsh i ¼ ��sp
2 ð11Þ

with �s ¼ 4B2e4/(9m4c6) when expressed in Gaussian units, and
where the coefficients are related by equation (7). In the absence
of losses and injection, equation (10) reduces to a momentum
space diffusion equation,

@f

@t
¼ 1

p2

@

@p
p2D

@f

@p

� �
; ð12Þ

where D ¼ �p2þ� �0 is the momentum space diffusion coeffi-
cient. Equation (7) is known as the principle of detailed balance
(e.g., Blandford & Eichler 1987) and is a condition that must be
satisfied for the Fokker-Planck equation to reduce to the case of
pure diffusion. It is interesting to note that second-order Fermi
acceleration as a result of scattering from forward and reverse
Alfvén waves is also described by momentum space diffusion
(Skilling 1975). It is also possible to analyze such a process on
the microscopic level, deriving the Fokker-Planck coefficients
and demonstrating the principle of detailed balance (see Duffy &
Blundell 2005 for details). In the following, equation (10) is used
to analyze the evolution of the particle distribution function for
some particular cases.

3.1. Time-dependent Solutions for an Impulsive Source

First consider the case in which radiative synchrotron losses
are negligible and particles are injected monoenergetically at
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time t0 ¼ 0 with momentum p0, i.e., Q̃( p; t) ¼ Q�( p� p0)�(t).
Equation (10) then reduces to

@f ( p; t)

@t
¼ 1

p2
@

@p
�p4þ� �0

@f ( p; t)

@p

� �
þ Q�(t)�( p� p0):

ð13Þ

The same equation is obtained if one uses the generalized Parker
transport equation (Earl et al. 1988, eq. [6]) for the shear flow
profile under consideration. As shown in the Appendix, the math-
ematical solution of equation (13) for � 6¼ 0 takes the form (see
eq. [A6])

f ( p; t) ¼ Qp
�(�þ1)
0

�j j��0t
p0

p

� �(3þ� )=2

exp � p�� þ p��
0

�2��0t

� �

; I 1þ3=�j j
2

�2��0 p
�
0 t

p

p0

� ���=2
" #

; ð14Þ

where I�(z) is the modified Bessel function of the first kind (see
Abramowitz& Stegun 1972). The corresponding differential par-
ticle number density p2f is illustrated in Figure 1 using a momen-
tum dependence of � ¼ 1. Obviously, the position of the peak
shifts to the left and decreases with time (thus ensuring particle
number conservation), while the distribution becomes broader and
the relative strength of its tail increases (as a consequence of
dispersion and acceleration). For small z ! 0 the modified
Bessel function is known to approach I�(z) � (z/2)�/�̃(� þ 1) for
� 6¼ �1;�2; : : :with �̃(� þ 1) denoting the gamma function. It
thus follows that for � > 0 and pk p0, the phase-space distri-
bution approaches a power law f / p�(3þ� ) on a characteristic
timescale tc ¼ 1/(�2��0 p

�
0 ) (see Berezhko 1982). For p � p0

the time-integrated solution of equation (13) will thus show the
same power-law behavior (see eq. [19]). Note that the Fokker-
Planck description employed is only valid at late and not at very
early stages, since the resulting transport equation is essentially
noncausal; i.e., equation (10) is a parabolic partial differential
equation. Its solutions thus share with those of the heat equa-
tion the mathematical properties of an infinite speed of prop-

agation (i.e., the distribution is nonzero everywhere for t > 0), a
smoothing of singularities, and a decrease and broadening with
time. In general, the problem of infinite propagation can be over-
come by using a modified diffusion equation of the (hyperbolic)
telegrapher’s type (e.g., Cattaneo 1948;Morse&Feshbach 1953).
Formally, equation (10) relies on the diffusion approximation and
therefore only provides an adequate description of the particle
transport for times much larger than the mean scattering time,
i.e., as long as �( p)Tt, which constrains themaximummomen-
tum range for a given time t over which the solution given in
equation (14) can be considered appropriate. Complementary,
from a physical point of view, particle energization is expected to
occur only on a characteristic timescale determined by the sys-
tematic acceleration in equation (9) (e.g., Ball et al.1992), which
constrains the characteristic maximum momentum p(t) achiev-
able within a given time interval.

3.2. Time-integrated (Steady State) Solutions

Defining the time-integrated phase-space distribution function

F( p) ¼
Z 1

0

f ( p; t) dt ð15Þ

and integrating the Fokker-Planck equation (10) over time as-
suming a monoenergetic source term Q̃( p; t) ¼ Q�( p� p0)�(t)
gives

@

@p
�p4þ� �0

@F( p)

@p

� �
þ @

@p
�sp

4F( p)
� �

¼ �Qp20�( p� p0):

ð16Þ

Note that the time-integrated function F( p) is proportional to the
steady state solution of equation (10) for continuous injection,
since equation (16) coincides with equation (10) if @f /@t ¼ 0.
The general solution of equation (16) is of the form

F( p) ¼ Qp20
��0

c1� H( p� p0)½ �e��( p)

Z p

p0

dp0
e�( p

0)

p04þ�
þ c2e

��( p);

ð17Þ

where H( p) is the Heaviside step function, c1 and c2 are con-
stants to be determined by the boundary conditions, and

�( p) ¼
� �s

(� � 1)��0
p�(��1); � 6¼ 1;

�s

��0
ln p; � ¼ 1:

8>><
>>: ð18Þ

If synchrotron losses are negligible (�s ¼ 0) the time-integrated
phase-space distribution follows a simple power law above p0
with momentum index �(3þ � ) (see Rieger & Duffy 2005a),
i.e., one finds

F( p) ¼ Qp20
(3þ � )��0

1

p3þ�
H( p� p0)þ

1

p3þ�
0

H( p0 � p)

� �

ð19Þ

for � > 0 and boundary conditions F( p ! 1) ! 0 and
@F/@p ! 0 for p ! 0. Thus, in the case of a mean scattering
time scalingwith the gyroradius (i.e., Bohm case:� ¼ 1), for ex-
ample, this corresponds to a differential power-law particle
number density n( p) / p2F( p) / p�2 above p0 and n( p) / p2

 
      

 

 

Fig. 1.—Characteristic evolution of the differential particle number density
n( p; t) / p2f ( p; t) for� ¼ 1 (see eq. [14]) as a function of momentum p/p0 in the
case of impulsive injection of particles with p0 at t ¼ 0. The distribution function
is plotted at three different times t where t ¼ t 0tc with tc ¼ 1/(��0p0). The inlay
shows the same in double logarithm representation and already indicates the for-
mation of a power-law tail n( p; t) / p�2 for t 0 � 0:3.
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below p0. If losses are nonnegligible, the solutions become more
complex. For � < 1 we end up with expressions involving ex-
ponential integrals (see Abramowitz & Stegun 1972). The char-
acteristic evolution of the phase-space particle distribution function
is illustrated in Figure 2. For � < 1 the acceleration efficiency is
generally constrained by synchrotron losses, which results in a
cutoff at pmax ¼ 4þ �ð Þ��0/�s½ �1/ 1��ð Þ

, where the acceleration
timescale tacc (see eq. [9]) matches the cooling timescale tsyn ¼
1/(�sp). If pTpmax cooling effects are negligible and the particle
distribution follows a power law as described in equation (19).
For � ¼ 1 the ratio tacc/tsyn becomes independent of momentum.
Hence, if conditions are such that �s/(��0) < 5 (see eq. [10]) is
satisfied, particle acceleration is no longer constrained by synchro-
tron losses, and for �s/(��0) < 4 the resulting particle distribu-
tion above p0 becomesF( p) ¼ Qp20/(4��0 � �s)p

�4, as expected
from equation (19). For � > 1 shear acceleration becomes pos-
sible (and is essentially unconstrained by synchrotron losses)
when particles are injected withmomenta above a threshold pmin ¼
�s/ 4þ �ð Þ��0½ �f g1/ ��1ð Þ. For p3 pmin cooling effects are com-

pletely negligible, and the particle distribution approaches a power
law with momentum index as given in equation (19). Note that if
losses are unimportant, a proper physical steady state situation
may be achieved in instances where particles are continuously in-
jected with momentum p0 and considered to escape above a fixed
momentum pmax 3p0, where the associated particle mean free
path becomes of order the size of the system. Formally, this can
be done by adding a simple momentum-dependent escape term
Q( p0/pmax)

2�( p� pmax) on the right-hand side of equation (16).

4. COSMIC-RAY VISCOSITY

As particles gain energy by scattering off inhomogeneities
embedded in a background flow, efficient shear acceleration es-
sentially draws on the kinetic energy of that flow. In principle,
efficient cosmic-ray acceleration can thus cause a nonnegligible
deceleration even for (quasi-collimated) large-scale relativistic
jets, although a proper assessment of its significance in compar-
ison with other mechanisms (e.g., entrainment) will require de-
tailed source-specific modeling. In any case, for the purposes of
our (nonrelativistic) analysis here, the resulting dynamical ef-
fects on the flow can be modeled by means of an induced vis-

cosity coefficient 	s > 0 that describes the associated decrease in
flow mechanical energy per unit time, e.g.,

Ėkin ¼ �	s

Z
@uz
@x

� �2

dV ; ð20Þ

for our case of a (nonrelativistic) two-dimensional gradual shear
flow uz(x)ez (Landau&Lifshitz 1982, x 16).We candetermine this
viscosity coefficient using Ėkin ¼ �Ėcr, where Ecr ¼

R

cr dV is

the energy gained by the cosmic-ray particles (see also Earl et al.
1988). If particle injection is described by a continuous source
term Q�( p� p0), the density 
̇cr of power gained becomes


̇cr ¼ 4�

Z 1

0

p2E( p)
@f ( p; t)

@t
dp� 4�QE p0ð Þp20; ð21Þ

where E( p) denotes the relativistic kinetic energy. Note that due
to the constraints discussed at the end of x 3.1, special care has to
be taken if one wishes to evaluate the integral in equation (21), as
done in Earl et al. (1988) by replacing the time derivative of f
with the Fokker-Planck expression of equation (13) for the chosen
source term.1 From an astrophysical point of view, we are most
interested in steady stateYtype situations in which particles are in-
jected quasicontinuouslywithmomentum p0 and, in the absence of
significant radiative losses, are considered to escape above a mo-
mentum threshold pmax at which k( pmax) becomes larger than the
width of the acceleration region. The density of power gained then
becomes 
̇cr ’ 4�Qp30c pmax/p0 �1ð Þ ’ 4�Qp2

0
pmaxc for pmax 3

p0 3m0c2. This implies a viscosity coefficient

	s ’
3�

15
k( p0)n0pmax; ð22Þ

for � > 0, where k( p0) ’ �c( p0)c denotes the mean free path
for a particle with momentum p0 and n0 ¼ 4�

R pmax

0
p2f ( p) dp is

the number density of cosmic-ray particles in the acceleration
region.

5. APPLICATIONS

Efficient shear acceleration of cosmic-ray particles is likely
to occur in a number of powerful jet sources, including Galactic
microquasars and extragalactic FR I and FR II sources (e.g.,
Stawarz & Ostrowski 2002; Laing & Bridle 2002; Laing et al.
2006). Whereas a proper analysis of powerful AGN-type jets
requires a fully relativistic treatment (see Rieger & Duffy 2004),
application of the results derived above may allow useful in-
sights in the case of moderately relativistic jet sources. As an
example, let us consider the possible role of shear acceleration
in wide-angle-tailed radio galaxies (WATs), deferring a detailed
discussion of particle acceleration in microquasar jets to a sub-
sequent paper. WATs are central cluster galaxies and appear as
‘‘hybrid’’ sources (Jetha et al. 2006), showing both FR I and FR
II morphologies. Their inner jets extend tens of kiloparsec, seem
to have central speeds in the range vj ’ (0:3�0:7)c (provided
Doppler-hiding effects can be neglected), are apparently very
well collimated on the kiloparsec scale, and exhibit spectra close
to S(�) / ��0:5, with evidence pointing to a steeper spectrum
sheath likely to be induced by the strong interactions between the
jet and its environment (e.g., Katz-Stone et al. 1999; Hardcastle
1999; Hardcastle et al. 2005; Jetha et al. 2006). Phenomenological

1 Note that as shown above we cannot independently choose a power-law
index for f (e.g., as suggested in Earl et al. 1988) once we have chosen a mo-
mentum index for the particle mean free path.

 

 

  

 

Fig. 2.—Evolution of the normalized phase-space particle distribution func-
tion f ( p) as a function of momentum p/p0 for different power indices of themean
scattering time � / p� . The thin dotted lines are drawn to guide the eyes and cor-
respond to power-law distributions f ( p) / p�3:5 and p�5, respectively. For � ¼
0:5 the maximum particle momentum, at which acceleration is balanced by losses,
has been chosen to be pmax ¼ 1000p0, whereas for� ¼ 2 aminimummomentum
pmin ¼ p0/2 has been used.
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studies suggest a velocity transition layer width for the large-
scale jet of �r ¼ � kpc (�P 0:5) and a fiducial jet magnetic field
strength of B ¼ 10�5b0 G (b0k 1 for equipartition). As a likely
scenario, let us consider the case in which energetic seed particles
required for efficient shear acceleration are provided by internal
shock-type (Fermi I) processes operating in the jet interior and
giving rise to a power-law proton distribution fQ( p)¼ nQ p1/(4�p

4)
in the momentum range p1 ’ 2mpc � p � p2, where p2 3p1
can be determined either from the condition of lateral confine-
ment (e.g., p2 � 1010�b0mpc for k � rg) or via the balance of ra-
diative synchrotron losses, and where nQ is the number density
of accelerated particles. The minimum (Bohm diffusion) time-
scale for nonrelativistic shock acceleration is of order tacc( p) �
6rgc/u

2
s , where us is the shock speed as measured in the up-

stream frame (e.g., Rieger & Duffy 2005c). For typical param-
eters us � 0:1c, k � rg, and a simple linear shear profile with
� � (vj/�r)2/15, shear acceleration (see eq. [9]) will dominate
over shock-type processes for protons with Lorentz factors above
c � 109b0�, so that protons with momenta p � pc ¼ cmpc can
be considered as being effectively injected into the shear accelera-
tion mechanism, resulting in a rate of injected particles of Q ’
ns/t0, where ns ’ nQ( p1/pc) � 2 ; 10�9nQ, t0 � tacc( pc)/Pesc,
and Pesc ’ 4u2/c is the escape probability of a particle from the
shock (with u2 measured in the shock frame). This yields a vis-
cosity coefficient 	s � nspmaxc/(15�t0). Now, the Navier-Stokes
equations imply that in a viscous flow of density �f and viscosity
coefficient 	s, the characteristic viscous damping timescale T for
the decay of velocity structures of size L is of order T � �f L

2/	s
(e.g., Earl et al. 1988). For L ’ �r the numbers estimated above
give a characteristic decay timescale T of order

T � �f
maxnsmp

vj
c

 �2
t0 � 2 ; 104

�f
nQmp

�

0:3
yr: ð23Þ

Requiring T to be larger than the timescale tl set by the apparent
stability of the jet flow, i.e., tl � Lj/vj � 2 ; 105 yr for a typical
jet length Lj � 30 kpc and vj � 0:5c, gives a minimum density
ratio contrast of cold matter to energetic protons �f / nQmp

	 

�

10(0:3/� ). Therefore, if similar to the supernova remnant or solar
wind case, at most a fraction �0.01 of the overtaken thermal
particles are injected into the shock acceleration process (e.g.,
see Trattner & Scholer 1991; Duffy et al. 1995; Baring et al.
1999), then significant velocity decay effects are unlikely even if
the total power of WAT jets should still be dynamically domi-
nated by a cold (thermal) proton component. We note that such a

case (slight thermal proton dominance) appears not to be im-
possible and may indeed be consistent with the notion thatWATs
are intermediate stages in a broader framework where FR I jets
appear as pair-dominated sources and FR II jets as mainly com-
posed of electrons and protons (e.g., Celotti 1997), although cir-
cumstantial evidence based on jet bending seems to suggest
that WAT jets are rather light (Hardcastle et al. 2005; Jetha et al.
2006).

6. CONCLUSIONS

Turbulent shear flows are widely expected in astrophysical
environments. Using a microscopic analysis we have shown
that, in the absence of strong synchrotron losses, the accelera-
tion of energetic particles occurring in such flows can give rise to
power-law differential particle number densities n( p) / p�(1þ� )

above the injection momentum p0 for a scattering time �c /
p�; � > 0. Dependent on the details of the underlying turbu-
lence spectrum, shear acceleration can thus allow for different
power-law indices. As efficient shear acceleration generally requires
sufficiently energetic seed particles, this implies an interesting
corollary: if energetic seed particles are provided by shock-type
acceleration processes, the takeover by shear acceleration may
reveal itself by a change of the power-law index above the cor-
responding energy threshold. Perhaps even more interesting is
the fact that the characteristic timescale for particle acceleration
in gradual shear flows is inversely proportional to the particle
mean free path, i.e., tacc / 1/k. Shear acceleration thus leads to a
preferred acceleration of particles with higher magnetic rigid-
ity. Indeed, detailed analyses show that in realistic astrophysical
circumstances efficient shear acceleration works usually quite
well for protons, but appears restricted for electrons (e.g., Rieger
& Duffy 2004, 2005c). As shear acceleration essentially draws
on the kinetic energy reservoir of the background flow, the asso-
ciated viscous drag force can, depending on the intrinsic plasma
characteristics, significantly contribute to a deceleration of the
large-scale jet flow. This suggests that shear acceleration may
have important implications for our understanding of the accel-
eration of cosmic-ray particles, the plasma composition, and the
velocity evolution in astrophysical jet sources.
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APPENDIX

DERIVATION OF TIME-DEPENDENT SOLUTIONS FOR IMPULSIVE SOURCES

For an impulsive source where Q particles are assumed to be injected with momentum p0 at time t ¼ 0, the shear Fokker-Planck
equation reads

@f ( p; t)

@t
¼ 1

p2

@

@p
�p4þ� �0

@f ( p; t)

@p

� �
þ Q�(t)�( p� p0): ðA1Þ

For � 6¼ 0 we choose new variables t̂ � ��0t and x � p�� , for which the homogeneous part of equation (A1) becomes

x
@2f (x; t̂ )

@x2
� 3

�

@f (x; t̂ )

@x
� 1

�2

@f (x; t̂ )

@ t̂
¼ 0: ðA2Þ
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Equation (A2) can be identified with the Kepinski partial differential equation (Kepinski 1906)

@2f

@x2
þ mþ 1

x

@f

@x
� n

x

@f

@ t̂
¼ 0; ðA3Þ

for n � 1/�2 and m � �(3þ � )/� . For the initial condition f ( t̂ ¼ 0; x) ¼ f̃ (x), the solution of the Kepinski partial differential equa-
tion is known and of the form (Kepinski 1906)

f (x; t̂ ) ¼ n

t̂

Z 1

0

k
x

� �m=2

exp �n
xþ k
t̂

� �
Ijmj 2n

ffiffiffiffiffi
xk

p

t̂

 !
f̃ (k) dk; ðA4Þ

where I�(z) denotes the modified Bessel function of the first kind (see Abramowitz & Stegun 1972). For our initial condition
Q�( p� p0) at t ¼ 0 we have

f̃ (k) ¼ Qj� jp�(�þ1)
0 �(k� k0); ðA5Þ

where k0 ¼ p��
0 . Using the original set of variables ( p; t), the full solution of equation (A1) for � 6¼ 0 thus becomes

f ( p; t) ¼ Qp
�(�þ1)
0

�j j��0t
p0

p

� �(3þ� )=2

exp � p�� þ p��
0

�2��0t

� �
Ij1þ3=� j

2

�2��0p
�
0 t

p

p0

� ���=2
" #

: ðA6Þ

Equation (A6) agrees with the solution presented in Berezhko (1982) and can be shown to reduce to f ( p; t) ! Q�( p� p0) in the limit
t ! 0þ. In the case of � ¼ �2 we use that

I1=2(z) ¼
1ffiffiffiffiffiffiffi
2�z

p ez � e�zð Þ ðA7Þ

to obtain

f ( p; t) ¼ Qp0

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4���0t

p exp � ( p� p0)
2

4��0t

� �
� exp � ( pþ p0)

2

4��0t

� �� �
; ðA8Þ

which agrees with the solution derived for this particular case by Earl et al. (1988, see their eq. [13]). For � ¼ 0 we use the variables
z � ln pþ 3t̂, where t̂ � ��0t, to obtain the characteristic diffusion equation @

2f /@z2 ¼ @f /@ t̂ for the homogeneous part of equation (A1)
with fundamental solution f (z; t̂ ) ¼ exp �z2/ 4t̂ð Þ½ �/(4�t̂ )1/2. Thus, for � ¼ 0, the solution of equation (A1) becomes (see also Kardashev
1962)

f ( p; t) ¼ Q

p0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4���0t

p exp
� ln p=p0ð Þ þ 3��0t½ �2

4��0t

( )
: ðA9Þ
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