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ABSTRACT

Pupil mapping is a promising and unconventional new method for high-contrast imaging being considered for
terrestrial exoplanet searches. It employs two (or more) specially designed aspheric mirrors to create a high-contrast
amplitude profile across the telescope pupil that does not appreciably attenuate amplitude. As such, it reaps significant
benefits in light-collecting efficiency and inner working angle, both critical parameters for terrestrial planet detection.
While much has been published on various aspects of pupil-mapping systems, the problem of sensitivity towave front
aberrations remains an open question. In this paper we present an efficient method for computing the diffraction prop-
agation in a pupil-mapped system. Thismethod can be used for accurate studies of aberration sensitivity in pupilmapping
and other coronagraphs.We demonstrate calculations of sensitivity to Zernike aberrations for a particular pupil-mapping
system, as well as a concentric-ring-shaped-pupil coronagraph.

Subject headinggs: planetary systems — techniques: high angular resolution

Online material: color figures

1. INTRODUCTION

The impressive discoveries of large extrasolar planets over the
past decade have inspired widespread interest in finding and di-
rectly imaging Earth-like planets in the habitable zones of nearby
stars. In fact, NASAhas plans to launch two space telescopes to ac-
complish this, theTerrestrial Planet FinderCoronagraph (TPF-C )
and the Terrestrial Planet Finder Interferometer (TPF-I ), while the
European Space Agency is planning a similar interferometer mis-
sion called Darwin. These missions are currently in the concept
study phase. In addition, numerous ground-based searches are pro-
ceeding using both coronagraphic and interferometric approaches.

Direct imaging of Earth-like extrasolar planets in the habitable
zones of Sun-like stars poses an extremely challenging problem
in high-contrast imaging. Such a star will shine 1010 times more
brightly than the planet. And, if we assume that the star-planet
system is 10 pc from us, the maximum separation between the
star and the planet will be roughly 0B1.

Design concepts for TPF-C.—For TPF-C, for example, the
current baseline design involves a traditional Lyot coronagraph
consisting of a modern eighth-order occulting mask (see, e.g.,
Kuchner et al. 2005) attached to the back end of a Ritchey-Chretien
telescope having an 8 m ; 3:5 m elliptical primary mirror. Alter-
native innovative back-end designs still being considered include
shaped pupils (see, e.g., Kasdin et al. 2003; Vanderbei et al. 2004),
a visible nuller (see, e.g., Shao et al. 2004), and pupil mapping
(see, e.g., Guyon [2003], where this technique is called ‘‘phase-
induced amplitude apodization’’ or PIAA). By pupil mapping
we mean a system of two lenses, or mirrors, that takes a flat input
field at the entrance pupil and produces an output field that is
amplitude-modified but still flat in phase (at least for on-axis
sources).

The pupil-mapping concept.—The pupil-mapping concept
has received considerable attention recently because of its high
throughput and small effective inner working angle (IWA). These

benefits could potentially permit more observations over the mis-
sion lifetime, or conversely, a smaller and cheaper overall tele-
scope. As a result, there have been numerous studies over the past
few years to examine the performance of pupil-mapping systems.
In particular, Guyon (2003), Traub & Vanderbei (2003), Vanderbei
& Traub (2005), and Guyon et al. (2005) derived expressions for
the optical surfaces using ray optics.However, these analysesmade
no attempt to provide a complete diffraction through a pupil-
mapping system. More recently, Vanderbei (2006) provided a de-
tailed diffraction analysis. Unfortunately, this analysis showed that
a pupil-mapping system, in its simplest and most elegant form,
cannot achieve the required 10�10 contrast; the diffraction effects
from the pupil-mapping systems themselves are so detrimental that
contrast is limited to 10�5. InGuyon et al. (2005) andPluzhnik et al.
(2006), a hybrid pupil-mapping systemwas proposed that combines
the pupil-mapping mirrors with a modest apodization of oversized
entrance and exit pupils. This combination does indeed achieve the
needed high-contrast point-spread function (PSF). In this paper
we call such systems ‘‘apodized pupil-mapping’’ systems.

A second problem that must be addressed is the fact that a
simple two-mirror (or two-lens) pupil-mapping system introduces
nonconstant angular magnification for off-axis sources (such as a
planet). In fact, the off-axismagnification for light passing through
a small area of the exit pupil is directly proportional to the am-
plitude amplification in that small area. For systems in which the
exit amplitude amplification is constant, the magnification is also
constant. But, for high-contrast imaging, we are interested in am-
plitude profiles that are far from constant. Hence, off-axis sources
do not form images in a formal sense (the ‘‘images’’ are very dis-
torted). Guyon (2003) proposed an elegant solution to this prob-
lem involving a reverse pupil-mapping system after the initial one
to ‘‘unmap’’ the off-axis beam and thus remove the distortions in-
troduced by the first system.

Sensitivity analysis.—What remains to be answered is how apo-
dized pupilmapping behaves in the presence of optical aberrations.
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It is essential that contrast be maintained during an observation,
which might take hours during which the wave front will un-
doubtedly suffer aberration due to the small dynamic perturba-
tions of the primary mirror. An understanding of this sensitivity is
critical to the design of TPF-C or any other observatory. In Green
et al. (2004) and Shaklan & Green (2005), a detailed sensitivity
analysis is given for shaped pupils and various Lyot coronagraphs
(including the eighth-order image plane mask introduced in
Kuchner et al. [2005]). So far, however, no comparable study has
been done for apodized pupil mapping. One obstacle to such a
study is the considerable computing power required to do a full
two-dimensional (2D) diffraction simulation.

Aberrations given by Zernike polynomials.—In this paper we
present an efficient method for computing the effects of wave
front aberrations on apodized pupil mapping. We begin with a
brief review of the design of apodized pupil-mapping systems in
x 2. We then present in x 3 a semianalytical approach to com-
puting the PSF of systems such as pupil mapping and concentric
rings in the presence of aberrations represented by Zernike poly-
nomials. For such aberrations, it is possible to analytically inte-
grate the integral over the azimuthal angle, thereby reducing the
computational problem from a double integral to a single one,
eliminating the need formassive computing power. In x 4we pres-
ent the sensitivity results for an example apodized pupil-mapping
system and a concentric-ring-shaped-pupil coronagraph and com-
pare the results.

2. REVIEW OF PUPIL MAPPING AND APODIZATION

In this sectionwe review the apodized pupil-mapping approach
and introduce the specific system that we study in subsequent sec-
tions. It should be noted that this apodized pupil-mapping design
may not be the best possible. Rather, it is merely an example of
such a system that achieves high contrast. Other examples can be
found in the recent paper by Pluzhnik et al. (2006). Our aim in this
paper is not to identify the best such system. Rather, our aim here
is to introduce tools for carrying a full diffraction analysis of any
apodized pupil-mapping system in the presence of aberrations.

2.1. Pupil Mapping via Ray Optics

We begin by summarizing the ray optics description of pure
pupil mapping. An on-axis ray entering the first pupil at radius r
from the center is to be mapped to radius r̃ ¼ R̃(r) at the exit
pupil (see Fig. 1). Optical elements at the two pupils ensure that
the exit ray is parallel to the entering ray. The function R̃(r) is
assumed to be positive and increasing or, sometimes, negative
and decreasing. In either case, the function has an inverse that
allows us to recapture r as a function of r̃: r ¼ R(r̃). The purpose
of pupil mapping is to create nontrivial amplitude profiles. An
amplitude profile function A(r̃) specifies the ratio between the
output amplitude at r̃ to the input amplitude at r (in a pure pupil-
mapping system the input amplitude is constant). Vanderbei &
Traub (2005) showed that for any desired amplitude profile A(r̃)
there is a pupil-mapping function R(r̃) that achieves it (in a ray
optics sense). Specifically, the pupil mapping is given by

R(r̃) ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ r̃

0

2A2(s)s ds

s
: ð1Þ

Furthermore, if we consider the case of a pair of lenses that are
planar on their outward-facing surfaces, then the inward-facing
surface profiles, h(r) and h̃(r̃), that are required to obtain the de-

sired pupil mapping are given by the solutions to the following
ordinary differential equations:

@h

@r
(r) ¼ r � R̃(r)

jn� 1j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ nþ 1ð Þ= n� 1ð Þ½ � r � R̃(r)

� �2q ;

h(0) ¼ z; ð2Þ

@h̃

@r̃
(r̃) ¼ R(r̃)� r̃

jn� 1j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ nþ 1ð Þ= n� 1ð Þ½ � R(r̃)� r̃½ �2

q ;

h̃(0) ¼ 0: ð3Þ

Here n 6¼ 1 is the refractive index, and z is the distance sep-
arating the centers (r ¼ 0, r̃ ¼ 0) of the two lenses.
Let S(r; r̃) denote the distance between a point on the first lens

surface r units from the center and the corresponding point on the
second lens surface r̃ units from its center. Up to an additive con-
stant, the optical path length of a ray that exits at radius r̃ after
entering at radius r ¼ R(r̃) is given by

Q0(r̃) ¼ S R(r̃); r̃ð Þ þ jnj h̃(r̃)� h R(r̃)ð Þ
� �

; ð4Þ

where we have assumed that the ray path inside the lenses is par-
allel to the optical axis. Vanderbei & Traub (2005) showed that,
for an on-axis source,Q0(r̃) is constant and equal to�(n� 1)jzj.1

2.2. High-Contrast Amplitude Profiles

The concept of pupil apodization for high-contrast imaging
dates at least as far back as 1964 (Jacquinot & Roizen-Dossier
1964; Slepian 1965).More recently, there has been a resurging of
interest in this field due to the prospects of imaging extrasolar
planets (e.g., Soummer et al. 2003; Nisenson & Papaliolios 2001;
Vanderbei et al. 2003).
If we assume that a collimated beamwith amplitude profileA(r̃),

such as one obtains as the output of a pupil-mapping system, is
passed into an ideal imaging system with focal length f, the elec-
tric fieldE(�) at the image plane is given by the Fourier transform
of A(r̃),

E(�; �)

¼ E0

kif
e�i �

2þ�2ð Þ=kf
Z 1

�1

Z 1

�1
e�2�i x̃�þỹ�ð Þ=k f A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x̃2 þ ỹ2

p� �
dỹ dx̃:

ð5Þ

Here E0 is the input amplitude, which, unless otherwise noted,
we take to be unity. Since the optics are azimuthally symmetric, it
is convenient to use polar coordinates. The amplitude profile A is
a function of r̃ ¼ x̃2 þ ỹ2ð Þ1/2 and the image-plane electric field
depends only on the image-plane radius � ¼ �2 þ �2ð Þ1/2:

E(�) ¼ 1

kif
e�i �

2þ�2ð Þ=kf
Z 1

0

Z 2�

0

e�2�i cos ���ð Þ r̃�ð Þ=kf A(r̃)r̃ d� dr̃

ð6Þ

¼ 2�

kif
e�i �

2þ�2ð Þ=kf
Z 1

0

J0 �2�
r̃�

kf

� �
A(r̃)r̃ dr̃: ð7Þ

1 For a pair of mirrors, set n ¼ �1. In that case, z < 0 as the first mirror is
‘‘below’’ the second.
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The PSF is the square of the electric field,

PSF(�) ¼ E(�)j j2: ð8Þ

For the purpose of terrestrial planet finding, it is important to
construct an amplitude profile for which the PSF at small non-
zero angles is 10 orders of magnitude reduced from its value at
zero. The amplitude apodization profile used in this paper was
computed using the methods in Vanderbei et al. (2003), which
explains how to compute amplitude apodization functions as so-
lutions to certain optimization problems. The high-contrast am-
plitude profile used in the rest of this paper is shown in Figure 2.

2.3. Apodized Pupil-mapping Systems

Vanderbei (2006) showed that pure pupil-mapping systems
designed for a contrast of 10�10 actually achieve much less than
this due to harmful diffraction effects that are not captured by the
simple ray-tracing analysis outlined in x 2.1. For most systems of
practical real-world interest (i.e., systems with apertures of a few
inches and designed for visible light), contrast is limited to about
10�5. Vanderbei (2006) considered certain hybrid designs that
improve on this level of performance, but none of the hybrid de-
signs presented there completely overcame this diffraction-induced
contrast degradation.

In this section we describe an apodized pupil-mapping system
that is somewhat more complicated than the designs presented in

Vanderbei (2006). This is a hybrid design, because it involves sev-
eral components in addition to the pure pupil-mapping system.
They are

1. A preapodizer A0 to soften the edge of the first lens/mirror
so as to minimize diffraction effects caused by hard edges.

2. A postapodizer to smooth out low spatial frequency ripples
produced by diffraction effects induced by the pupil-mapping
system itself.

3. A back-end phase shifter to smooth out low spatial fre-
quency ripples in phase.

Note that the back-end phase shifter can be built into the second
lens/mirror, in which case our hybrid system consists of two clas-
sical apodizers and a pure pupil-mapping system.

A similar setup is presented in Pluzhnik et al. (2006), in which
the authors describe how and why apodizers mitigate diffraction
in pupil mapping and suggest how to optimize a hybrid design.
We have not yet attempted such optimizations but rather present
an example here that we have found to achieve 1010 contrast. Our
apodizers and mirror profiles are different from the design in
Pluzhnik et al. (2006), and we do not oversize our mirrors. Our
preapodizer has the following form (the same as the postapodizer
described by eqs. [3] and [4] in Pluzhnik et al. [2006]):

A0(r) ¼
A(r)(1þ �)

A(r)þ �Amax

;

Fig. 1.—Pupil mapping via a pair of properly figured lenses. Light travels from top to bottom.
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where Amax denotes the maximum value of A(r) and � is a
scalar parameter, which we take to be 0.1. It is easy to see that

1. A(r)/Amax � A0(r) � 1 for all r.
2. A0(r) approaches 1 as A(r) approaches Amax.
3. A0(r) approaches 0 as A(r) approaches 0.

Incorporating a postapodizer introduces a degree of freedom
that is lacking in a pure pupil-mapping system. Namely, it is pos-
sible to design the pupil-mapping system based on an arbitrary
amplitude profile and then convert this profile to a high-contrast
profile via an appropriate choice of back-end apodizer. We have
found that a simpleGaussian amplitude profile that approximately
matches a high-contrast profile works very well. Specifically, we
use

Apupmap(r̃) ¼ 3:35e�22(r̃=D)2 ;

where D denotes the diameter of the input beam and the
lenses/mirrors.

The back-end apodization is computed by taking the actual
output amplitude profile as computed by a careful diffraction anal-
ysis, smoothing it by convolution with a Gaussian distribution,
and then apodizing according to the ratio of the desired high-
contrast amplitude profile A(r̃) divided by the smoothed output
profile. Of course, since a true apodization can never intensify a
beam, this ratio must be further scaled down so that it is nowhere
greater than unity. The Gaussian convolution kernel we used has
mean zero and standard deviation D/ 100;000ð Þ1/2.

The back-end phase modification is computed by a similar
smoothing operation applied to the output phase profile.Of course,
the smoothed output phase profile (measured in radians) must be
converted to a surface profile (having units of length). This con-
version requires us to assume a certain specific wavelength. As a
consequence, the resulting design is correct only at one wave-
length. The ability of the system to achieve high contrast degrades
as one moves away from the design wavelength.

2.4. Star Occulter and Reversed System

It is important to note that the PSFs in Figure 2 correspond to a
bright on-axis source (i.e., a star). Off-axis sources, such as faint
planets, undergo two effects in a pupil-mapping system that dif-
fer from the response of a conventional imaging system: an ef-
fectivemagnification and a distortion. These are explained in detail

in Vanderbei & Traub (2005) and Traub & Vanderbei (2003). The
magnification, in particular, is due to an overall narrowing of the
exit pupil as compared to the entrance pupil. It is thismagnification
that provides pupil-mapped systems their smaller effective IWA.
The techniques in x 3 allow us to compute the exact off-axis
diffraction pattern of an apodized pupil-mapped coronagraph
and thus to see these effects.
While the effective magnification of a pupil-mapping system

results in an IWA advantage of about a factor of 2, it does not
produce high-quality diffraction-limited images of off-axis sources
because of the distortion inherent in the system. As mentioned
earlier, Guyon (2003) proposed the following solution to this prob-
lem. He suggested using this system merely as a mechanism for
concentrating (on-axis) starlight in an image plane. He then pro-
posed that an occulter be placed in the image plane to remove the
starlight. All other light, such as the distorted off-axis planet light,
would be allowed to pass through the image plane. On the back
side would be a second, identical pupil-mapping system (with the
apodizers removed) that would ‘‘unmap’’ the off-axis beam and
thus remove the distortions introduced by the first system (except
for some beam walk; see Vanderbei & Traub 2005). A schematic
of the full system (without the occulter) is shown in Figure 3. Our
apodization is designed to concentrate most of the light into an
IWA of 4k /D (where D ¼ 0:025 m is the diameter of the input
beam) and that is the radius of the occulter we chose to use in our
design. Note that we have spaced the lenses one focal length from
the flat sides of the two lenses. As noted in Vanderbei & Traub
(2005), such a spacing guarantees that these two flat surfaces form
a conjugate pair of pupils.

3. DIFFRACTION ANALYSIS

In Vanderbei (2006) it was shown that a simple Fresnel anal-
ysis is inadequate for validating the high-contrast imaging capabil-
itieswe seek.Hence, amore accurate approximationwas presented.
In this sectionwe give a similar but slightly different approximation
that is just as effective for studying pupil mapping but is better
suited to the full system we wish to analyze.

3.1. Propagation of General Wave Fronts

The goal of this section is to derive an integral that describes
how to propagate a scalar electric field from one plane perpen-
dicular to the direction of propagation to another parallel plane
positioned downstream of the first. We assume that the electric

Fig. 2.—Left: Amplitude profile providing contrast of 10�10 at tight IWAs. Right: Corresponding on-axis PSF.
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field passes through a lens at the first plane then propagates
through free space until reaching a second lens at the second plane
through which it passes. In order to cover the apodized pupil-
mapping case discussed in x 2.3, we allow both the entrance and
exit fields to be apodized.

Suppose that the input field at the first plane is Ein(x; y). Then
the electric field at a particular point on the second plane can
be well approximated by superimposing the phase-shifted waves
from each point across the entrance pupil (this is the well-known
Huygens-Fresnel principle; see, e.g., x 8.2 in Born &Wolf 1999).
If we assume that the two lenses are given by radial ‘‘height’’
functions h(r) and h̃(r̃), then we can write the exit field as

Eout(x̃; ỹ) ¼ Aout(r̃)

Z 1

�1

Z 1

�1

1

kiQ(x̃; ỹ; x; y)

; e2�iQ(x̃; ỹ;x;y)=kAin(r)Ein(x; y) dy dx; ð9Þ

where

Q(x̃; ỹ; x; y) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x� x̃)2 þ ( y� ỹ)2 þ h(r)� h̃(r̃)

� �2q
þ jnj Z � h(r)þ h̃(r̃)

� �
ð10Þ

is the optical path length, Z is the distance between the planar
lens surfaces, Ain(r) denotes the input amplitude apodization at
radius r, and Aout(r̃) denotes the output amplitude apodization at
radius r̃, and where, of course, we have used r and r̃ as shorthand
for the radii in the entrance and exit planes, respectively.

As before, it is convenient to work in polar coordinates:

Eout(r̃; �̃) ¼ Aout(r̃)

Z 1

0

Z 2�

0

1

kiQ(r̃; r; �� �̃)

; e2�iQ(r̃;r;���̃)=kAin(r)Ein(r; �)r d� dr; ð11Þ

where

Q(r̃; r; �) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � 2rr̃ cos �þ r̃2 þ h(r)� h̃(r̃)

� �2q
þ jnj Z � h(r)þ h̃(r̃)

� �
: ð12Þ

For numerical tractability, it is essential to make approxima-
tions so that the integral over � can be carried out analytically,
thereby reducing the double integral to a single one. To this

end, we need to make an appropriate approximation to the square-
root term:

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � 2rr̃ cos �þ r̃2 þ h(r)� h̃(r̃)

� �2q
: ð13Þ

A simple crude approximation is adequate for the 1/Q(r̃; r; �� �̃)
amplitude-reduction factor in equation (11). We approximate this
factor by the constant 1/Z.

The Q(r̃; r; �� �̃) appearing in the exponential must, on the
other hand, be treated with care. The classical Fresnel approxima-
tion is to replace S by the first two terms in a Taylor series expan-
sionof the square-root function about h(r)� h̃(r̃)

� �2
.Aswe already

mentioned, this approximation is too crude. It is critically impor-
tant that the integrand be exactly correct when the pair (r; r̃) cor-
responds to rays of ray optics. Here is a method that does this.
First, we add and subtract S(r̃; r; 0) fromQ(r̃; r; �) in equation (12)
to get

Q(r̃; r; �� �̃) ¼ S(r̃; r; �� �̃)� S(r̃; r; 0)

þ S(r̃; r; 0)þ jnj h̃(r̃)� h(r)
� �

¼ S(r̃; r; �� �̃)2 � S(r̃; r; 0)2

S(r̃; r; �� �̃)þ S(r̃; r; 0)

þ S(r̃; r; 0)þ jnj h̃(r̃)� h(r)
� �

¼ rr̃ � rr̃ cos (�� �̃)

S(r̃; r; �� �̃)þ S(r̃; r; 0)
� �

=2

þ S(r̃; r; 0)þ jnj h̃(r̃)� h(r)
� �

: ð14Þ

So far, these calculations are exact. The only approximation we
nowmake is to replace S(r̃; r; �� �̃) in the denominator of equa-
tion (14) with S(r̃; r; 0) so that the denominator becomes just
S(r̃; r; 0). Putting this all together, we get a new approximation,
which we refer to as the ‘‘S-Huygens ’’ approximation:

Eout(r̃; �̃) �
1

kiZ

Z 1

0

K(r; r̃)

;

Z 2�

0

e2�i �r̃r cos(���̃ )=S( r̃;r;0)½ �=kEin(r; �) d� r dr; ð15Þ

where

K(r; r̃) ¼ Aout(r̃)e
2�i rr̃=S( r̃;r;0)þS( r̃;r;0)þjnj h̃( r̃)�h(r)½ �f g=kAin(r)

ð16Þ

Fig. 3.—Full pupil-mapping system, including a pair of lenses with a pre- and postapodizer to shape the amplitude into a prolate-spheroidal-like amplitude profile, a
focusing lens that concentrates the on-axis starlight into a small central lobewhere an occulter blocks this light, followed by a recollimating lens, and finally, a reverse pupil-
mapping system that reforms the pupil with the starlight removed but any planet light (if present) intact. This final pupil is then fed a final focusing element (not shown) to
form an image of off-axis sources.
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[note that we have dropped an exp (2� inZ /k) factor, since this
factor is just a constant unit complex number that would dis-
appear anyway at the end when we compute intensities].

The only reason for making approximations to the Huygens-
Fresnel integral equation (9) is to simplify the dependence on �
so that the integral over this variable can be carried out analyti-
cally. For example, if we now assume that the input field Ein(r; �)
does not depend on �, then the inner integral can be evaluated ex-
plicitly, and we get

Eout(r̃; �̃) �
2�

kiZ

Z 1

0

K(r; r̃) J0
2�r̃r

kS(r̃; r; 0)

� �
Ein(r)r dr: ð17Þ

Removing the dependency on � greatly simplifies computations,
because we only need to compute a one-dimensional (1D) inte-
gral instead of 2D. In x 3.2 we show how to achieve similar re-
ductions in cases in which the dependence of Ein on � takes a
simple form.

Figure 4 shows plots characterizing the performance of an
apodized pupil-mapping system analyzed using the techniques
described in this section. The specifications for this system are as
follows. The designed for wavelength is 632.8 nm. The optical
elements are assumed to be mirrors separated by 0.375 m. The

system is an on-axis system, and we therefore make the non-
physical assumption that the mirrors do not obstruct the beam.
That is, the mirrors are invisible except when they are needed.
The mirrors take as input a 0.025 m on-axis beam and produce a
0.025 m pupil-remapped exit beam. They are both 0.025 m in
diameter, and both the pre and postapodizer taper down to the value
0 along the circumference of the mirrors as shown in Figure 4, in
order to mitigate the diffraction effects due to sharp edges. After
the second mirror, the exit beam is brought to a focus. The focal
length is 2.5 m. Figure 4 (bottom right) shows the ideal PSF
(black) together with the achieved PSF at three wavelengths: at
70%, 100%, and 130% of the design wavelength. At the design
wavelength, the achieved PSF matches the ideal PSF almost ex-
actly. Note that there is minor degradation at the other two wave-
lengths mostly at low spatial frequencies.
We end this section by pointing out that the S-Huygens ap-

proximation given by equation (15) is the basis for all subsequent
analysis in this paper. It can be used to compute the propagation
between every pair of consecutive components in apodized pupil-
mapping and concentric-ring systems. It should be noted that the
approximation does not reduce to the standard Fresnel or Fourier
approximations even when considering such simple scenarios as
free-space propagation of a planewave or propagation from a pupil
plane to an image plane. Even for these elementary situations, the

Fig. 4.—Analysis of an apodized pupil-mapping system using the S-Huygens approximation with z ¼ 15D and n ¼ 1:5. Top left: Target high-contrast amplitude profile
(solid line) and the amplitude profile computed using the S-Huygens approximation through the apodized pupil-mapping system (dashed line). The other two lines depict
the pre- and postapodizers. Top right: Lens profiles, solid line for the first lens and dashed for the second. The lens profiles h and h̃ were computed using a 5000 point
discretization. Bottom left: Phase map computed using the S-Huygens propagation with a 5000 point discretization. This line exhibits high-frequency oscillations that are
smoothedbefore computing the postapodizer to helpwith chromaticity.Bottom right:PSF computed at three differentwavelengths; the design value, 30%above that value, and
30% below it. [See the electronic edition of the Journal for a color version of this figure.]
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S-Huygens approximation is more accurate than the usual text-
book approximations.

3.2. Propagation of Azimuthal Harmonics

In this section we assume that E(r; �) ¼ E(r)eik� for some in-
teger k. We refer to such a field as a ‘‘kth-order azimuthal har-
monic.’’We show that a kth-order azimuthal harmonicwill remain
a kth-order azimuthal harmonic after propagating from the input
plane to the output plane described in x 3.1. Only the radial compo-
nent E(r) changes, which enables the reduction of the compu-
tation from 2D to 1D. Arbitrary fields can also be propagated, by
decomposing them into azimuthal harmonics and propagating
each azimuthal harmonic separately. Computation is thus greatly
simplified even for arbitrary fields, especially for the case of
fields that can be described by only a few azimuthal harmonics
to a high precision, such as Zernike aberrations, which we con-
sider in x 3.3. This improvement in computational efficiency is
important, because a full 2D diffraction simulation of an apodized
pupil-mapping systemwith a precision greater than 1010 typically
overwhelms the memory of a mainstream computer. By reduc-
ing the computation from 2D to 1D, however, the entire apodized
pupil-mapping system can be simulated with negligible memory
requirements and takes only minutes.

Theorem 1. Suppose that the input field in an optical system
described by equation (15) is a kth-order azimuthal harmonic
Ein(r; �) ¼ Ei(r)e

ik� for some integer k. Then the output field is
also a kth-order azimuthal harmonic Eout(r̃; �̃) ¼ Eo(r̃)eik�̃ with
radial part given by

Eo(r̃) ¼
2�

ikþ1kZ

Z 1

0

K(r; r̃)Ei(r)Jk
2�rr̃

kS(r̃; r; 0)

� �
r dr:

Proof. We start by substituting the azimuthal harmonic form of
Ein into equation (15) and regrouping factors to get

Eout(r̃; �̃) ¼
1

ikZ

Z 1

0

K(r; r̃)

;

Z 2�

0

e2�i �r̃r cos (���̃)=S( r̃;r;0)½ �=kEi(r)e
ik� d� r dr

¼
�

1

ikZ

Z 1

0

K(r; r̃)Ei(r)

;

Z 2�

0

e2�i �r̃r cos (���̃)=S( r̃;r;0)½ �=keik(���̃ ) d� r dr

	
eik�̃:

ð18Þ

The result then follows from an explicit integration over the �
variable:

Eout r̃; �̃

 �

¼
�

2�

ikþ1kZ

Z 1

0

K(r; r̃)Ei(r)

; Jk
2�rr̃

kS(r̃; r; 0)

� �
r dr


eik �̃:

3.3. Decomposition of Zernike Aberrations
into Azimuthal Harmonics

The theorem shows that the full 2D propagation of azimuthal
harmonics can be computed efficiently by evaluating a 1D in-
tegral. However, suppose that the input field is not an azimuthal

harmonic but something more familiar, such as a (l;m) Zernike
aberration,

Ein(r; �) ¼ ei�Z
m
l
(2r=D) cos (m�); ð19Þ

where � is a small number (�/2� and �/� are the peak-to-valley
phase variations across the aperture of diameterD form ¼ 0 and
m 6¼ 0, respectively).

Recall that the definition of the kth-order Bessel function is

Jk(x) ¼
1

2�ik

Z 2�

0

eix cos �eik� d�: ð20Þ

From this definition we see that ikJk (x) are simply the Fourier
coefficients of eix cos (�). Hence, the Fourier series for the com-
plex exponential is given simply by the so-called Jacobi-Anger
expansion

eix cos � ¼
X1

k¼�1
ikJk(x)e

ik�: ð21Þ

The Zernike aberration can be decomposed into azimuthal har-
monics using the Jacobi-Anger expansion:

ei�Z
m
l
(2r=D) cos (m�) ¼

X1
k¼�1

ikJk �Zm
l (2r=D)


 �
eikm� ð22Þ

¼ J0 �Zm
l (2r=D)


 �
þ
X1
k¼1

i kJk �Zm
l (2r=D)


 �
eikm�:

ð23Þ

Note that

jJk(x)j �
1

k!

x

2

� �k

for 0 � xT1. Hence, if we assume that � � 10�3, then the kth
term is on the order of 10�3k . The field amplitude in the high-
contrast region of the PSF is dominated by the k ¼ 1 term and is
on the order of 10�3. If we drop terms of k ¼ 3 and above, we are
introducing an error on the order of 10�9 in amplitude. The error
in intensity is dominated by a cross product of the k ¼ 3 and the
k ¼ 1 term, or 10�12 across the dark region. So, in this case,
Zernike aberrations can be more than adequately modeled using
just three azimuthal harmonic terms. For � � 10�2, the number
of terms goes up to five for an error tolerance of 10�12. In
practice, even this small number of terms was actually found to
be overly conservative.

In order to compute the full 2D response for a given Zernike
aberration,we simply decompose it into a few azimuthal harmonics,
propagate them separately, and sum the results at the end. This
method could also be applied to any arbitrary field.

4. SIMULATIONS

The entire four-mirror apodized pupil-mapping system can be
modeled as the following sequence of seven steps:

1. Propagate an input wave front from the front (flat) surface
of the first pupil-mapping lens to the back (flat) surface of the sec-
ond pupil-mapping lens as described in x 3.

2. Propagate forward a distance f.
3. Propagate through a positive lens with focal length f to a

focal plane f units downstream.
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4. Multiply by the star occulter.

5. Propagate through free-space a distance f then through a
positive lens to recollimate the beam.

6. Propagate forward a distance f.

7. Propagate backward through a pupil-mapping system hav-
ing the same parameters as the first one.

A similar analysis can be carried out for a concentric-ring-
shaped-pupil system, or even a pure apodization system, as
follows:

1. Choose Ain to represent either the concentric-ring binary
mask or some other azimuthally symmetric apodization.

2. Choose h as appropriate for a focusing lens, and let h̃ � 0.

3. Propagate through this system a distance f to the image plane.

4. Multiply by the star occulter.

The theorem can be applied to every propagation step, so that
an azimuthal harmonicwill remain an azimuthal harmonic through-
out the entire system. Hence, our computation strategy is to de-
compose the input field into azimuthal harmonics, propagate each
one separately through the entire system by repeated applications
of the theorem, and sum them at the very end.
Figure 5 shows a cross section plot of the PSF as it appears at

first focus and second focus in our apodized pupil-mapping sys-
tem (the first-focus plot is indistinguishable from the case of ideal

Fig. 5.—On-axis PSF at first focus (before occulter) and at second focus for
cases with and without occulter. Without the occulter, the second-focus PSF al-
most perfectly matches the usual Airy pattern. However, with the occulter, the
second-focus on-axis PSF is suppressed by 10 orders of magnitude. [See the elec-
tronic edition of the Journal for a color version of this figure.]

 �

 �

Fig. 6.—Simulated responses due to off-axis sources in apodized pupil mapping and concentric rings. First row: Pupil mapping, first focus, after the occulter. Second
row: Pupil mapping, second focus (note the expected mirror flip). Third row: Concentric-ring coronagraph. The columns in this figure represent different off-axis source
angles, labeled on the top. All the images represent the same physical area on a CCD, and the optical axis is in the exact center of each image. The dark circles in the centers
of the images on the top and bottom rows are the occulters, with radius of 4f k/D. The intensity scale is logarithmic, spanning 10 orders of magnitude, as shown on the right.
The normalization is to the peak value of the Airy PSF in the case of no coronagraph. [See the electronic edition of the Journal for a color version of this figure.]

Fig. 7.—Cross-sectional plots from the second-row plots in Fig. 6. Note that
for angles of 3k/D and above, the restored PSF looks very much like an Airy
pattern with very little energy attenuation. However, as the angle decreases, the
pattern begins to distort and the throughput begins to diminish. [See the electronic
edition of the Journal for a color version of this figure.]
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apodization or concentric-ring-shaped-pupils). There are two plots
for second focus: one with the occulter in place and one without it.
Note that without the occulter, the PSF matches almost perfectly
the usual Airy pattern. With the occulter, the on-axis light is sup-
pressed by 10 orders of magnitude.

The most basic aberration to simulate is a tilt [i.e., the (1; 1)
Zernike], which is equivalent to an off-axis source at angle (�/�)
(k/D) rad. In Figure 6 we show images at the first and second
focal planes of our apodized pupil-mapping system, as well as for
the concentric-ring-shaped-pupil coronagraph for various tilt angles.
The first three columns are for small tilt angles corresponding
to the small pointing error of the telescope. The hybrid pupil-
mapping systemwe used hasmore degradation than the concentric-
ring pupil mask. Tilts 1k/D and larger, shown in the following five
columns, represent off-axis sources such as a planet. As discussed
earlier, off-axis sources do not form good images at the first focus of
pupilmapping, and this is clearly evident in the top row of Figure 6.
At the second focus, however, the off-axis PSF is mostly restored,
and the images begin to look like standardAiry patterns as the angle
increases from about 2k/D outward. These ‘‘Airy patterns’’ both are
sharper and have larger peak brightness than their counterparts at
first focus, just as in Figure 5. (In practice, only themain lobe of this
Airy pattern is likely to be seen, because planets are so dim.)
Corresponding cross-sectional plots are shown in Figure 7.

In the case of the shaped pupil, the planet PSF is also not
distorted, but it is significantly less sharp and less bright than that

Fig. 8.—Off-axis source attenuation as a function of angle (total throughput).
Note that the 50% point occurs at about 2k/D. [See the electronic edition of the
Journal for a color version of this figure.]

Fig. 9.—Apodized pupil-mapping sensitivities to the first nine Zernike aberrations. In each case, the rms error is 1/100 of a wave. The plots correspond to piston (0; 0),
tilt (1; 1), defocus (2; 0), astigmatism (2; 2), coma (3; 1), trefoil (3; 3), spherical aberration (4; 0), astigmatism second order (4; 2), tetrafoil (4; 4). [See the electronic edition
of the Journal for a color version of this figure.]
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of the pupil mapping at second focus, as shown in the bottom row
of Figure 6. It is also mostly covered by the occulter for tilts
smaller than 4k/D. This clearly shows the throughput and IWA
advantages of pupil mapping.

Figure 8 shows how the off-axis source is attenuated as a func-
tion of the angle from the optical axis, for the case of our apodized
pupil-mapping system (at second focus) and the concentric-ring
coronagraph. For the case of apodized pupil mapping, the 50%
point occurs at about 2:2k/D.

Figures 9 and 10 show the distortions/leakage from an on-axis
source in the presence of various Zernike aberrations, for the apo-
dized pupil-mapping and the concentric-ring-shaped-pupil systems,
respectively. The Zernike aberrations are assumed to be 1/100
wave rms.

Figure 11 shows the corresponding cross section sensitivity plots
for both the apodized pupil-mapping system and the concentric-
ring-shaped-pupil system. From this plot it is easy to see both the
tighter IWAof apodized pupil-mapping systems and their increased
sensitivity to wave front errors. Finally, Figure 12 demonstrates
contrast degradation measured at three angles, 2k/D, 4k/D, and
8k/D, as a function of severity of the Zernike wave front error.
The rms error is expressed in waves.

5. CONCLUSIONS

We have presented an efficient method for calculating the dif-
fraction of aberrations through optical systems such as apodized
pupil mapping and concentric-ring-shaped-pupil coronagraphs.
We presented an example for both systems and computed their

off-axis responses and aberration sensitivities. Figures 11 and 12
show that our particular apodized pupil-mapping system is more
sensitive to low-order aberrations than the concentric-ring masks.
That is, contrast and IWAdegrademore rapidly with an increasing
rms level of the aberrations. Thus, for a particular telescope, our
pupil-mapping system will achieve better throughput and IWA
but suffer greater aberration sensitivity.
We note that there is a spectrum of apodized pupil-mapping

systems, out of which we selected but one example. The two ex-
tremes, pure apodization and pure pupilmapping, both have serious
drawbacks. On the one end, pure apodization loses almost an order
of magnitude in throughput and suffers from an unpleasantly large
IWA. At the other extreme, pure pupil mapping fails to achieve the
required high contrast due to diffraction effects. There are several
points along this spectrum that are superior to the end points. We
have focused on just one such point and leave it to future work to
determine if this is the best design point. For example, clearly one
can improve the aberration sensitivity by relaxing the IWA and
throughput requirements. Such analysis is beyond the scope of this
paper, but we have provided here the tools to analyze the sensitivity
of these kinds of designs.

This researchwas partially performed for the Jet Propulsion Labo-
ratory, California Institute of Technology, sponsored by the National
Aeronautics and Space Administration as part of the TPF archi-
tecture studies and also under JPL subcontract 1260535. The third
author also received support from the ONR (N00014-05-1-0206).

Fig. 10.—Concentric-ring mask sensitivities to the first nine Zernike aberrations. [See the electronic edition of the Journal for a color version of this figure.]
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Fig. 11.—Radial profiles associated with Figs. 9 and 10 overlaid one on the other. The dashed plots are for apodized pupil mapping, whereas the solid plots are for the
concentric-ring mask. [See the electronic edition of the Journal for a color version of this figure.]

Fig. 12.—Contrast degradation measured at three angles, 2k/D, 4k/D, and 8k/D as a function of severity of the Zernike wave front error measured in waves. [See the
electronic edition of the Journal for a color version of this figure.]
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