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ABSTRACT

We present a self-consistent, three-dimensional, magnetohydrodynamics model together with time-dependent
boundary conditions based on the projected method of characteristics at the source surface (photosphere) to accom-
modate the observations. The new physics included in this model are differential rotation, meridional flow, effective
diffusion, and cyclonic turbulence effects in which the complex magnetic field structure can be generated through the
nonlinear interaction between the plasma and magnetic field. This solution, again, is accomplished by including the
time-dependent boundary conditions derived from the method of characteristics. This procedure is able to accom-
modate observations via self-consistent and appropriate data inputs to the boundary. Thus, subphotospheric (i.e.,
convective zone) effects, through observations, are able to be coupled with the corona. To illustrate this new model,
we have employed an observed active region’s (NOAA AR 8100) magnetic field measurements from SOHO MDI
magnetograms to demonstrate the model’s capability. Thus, the evolution of three-dimensional magnetic field, veloc-
ity field, and energy transport are shown, thereby enabling us to study the physical mechanisms of AR evolution.

Subject headinggs: MHD — Sun: activity — Sun: atmospheric motions — Sun: magnetic fields —
Sun: photosphere

Online material: color figures

1. INTRODUCTION

To improve our understanding of the Sun-Earth connection, it
is necessary to acquire knowledge of the Sun’s magnetic field
and plasma, which drive the corona and heliosphere. Specifically,
solar eruptive phenomena are major factors in modulating the
solar wind characteristics at the Earth and other locations. Thus,
an understanding of the sources of solar eruptive phenomena re-
quires knowledge of the evolution of the active region. By look-
ing at the full disk of photospheric magnetograms, it is obvious
that the evolution of sunspots and sunspot groups are the sources
of the most powerful solar eruptions (Zirin 1988; Wang et al.
2002, 2004). Modeling the evolution of the active region is still a
challenge. In an early study, Leighton (1964) modeled the sun-
spots and solar cycle in relation to expansion and migration of
unipolar magnetic regions (UMRs) and bipolar magnetic regions
(BMRs). Since then, a number of investigators (DeVore et al.
1985; McIntosh & Wilson 1985; Sheeley et al. 1985; Sheeley &
DeVore 1986;Wilson &McIntosh 1991;Wang & Sheeley 1991;
McKay 2003) have extensively investigated the magnetic flux
transport in relation to the solar cycle by means of a modified
Leighton model. Wang & Sheeley (1991) presented a numerical
simulation including differential rotation, supergranular diffusion,
and a poleward surface flow (i.e., meridional flow) of the re-
distribution of magnetic flux erupting in the form of BMRs. They
reproduced many of the observed features of the Sun’s large-
scale field that were not encompassed by Leighton (1964).
Wilson & McIntosh (1991) compared the observed evolution of
large-scale magnetic fieldswith the simulated evolution based on
the kinematic model of DeVore & Sheeley (1987). They con-
cluded that there must be significant contributions to the evolv-
ing patterns by nonrandom flux eruptions within the network

structure, independent of active regions.McKay (2003) presented
a magnetic flux transport simulation of the Sun’s surface distri-
bution of magnetic fields during Maunder minimum. All these
works were focused on the large-scale field and long-timescale
(i.e., solar cycle) evolution. Schrijver (2001) has extended the
classic Leighton model with ephemeral regions and the early
phase of decay of the active region to simulate the dynamic pho-
tospheric magnetic field. In another work, Schrijver & Title
(2001) demonstrated that the importance of the combination of
supergranulation-driven dispersal and meridional advection of
the fields leads to a strong polar cap field. Welsch et al. (2004)
developed a new technique, i.e., the induction local correlation
tracking (ILCT) method, to reveal the velocity field on the photo-
spheric surface by including themagnetic induction equationwith
the measured magnetic field.
However, all of the above investigations have not invoked

fullmagnetohydrodynamic (MHD) theory,whichmeans that non-
linear dynamic interactions between the plasma flow field and
magnetic field are ignored. But, some investigators (Shibata
et al. 1989; Matsumoto et al. 1998; Fan 2001) do consider non-
linear interaction of themagnetic field and plasma during the flux
emergence without differential rotation and meridional flow. In
order to include this nonlinear dynamic interaction, Wu et al.
(1993) constructed a quasi-three-dimensional, time-dependent
incompressible MHD model with differential rotation, meridio-
nal flow, and effective diffusion, as well as cyclonic turbulence,
to study the evolution of BMRs. In their limited quasi-three-
dimensional theoretical study, they demonstrated that the observed
complex magnetic field pattern could arise on the Sun’s surface
due to the nonlinear interaction between the flow field and mag-
netic field (i.e.,MHDeffect) and growth and decay of aBMR. If the
MHD effect is ignored, Leighton’s diffusion model is recovered.
More recently, Wu et al. (2005) presented a fully three-

dimensional, time-dependent, compressible MHD model with
differential rotation, meridional flow, effective diffusion due to
random motion of granules or supergranules, and the cyclonic
turbulence effect to study active region evolution. They success-
fully deduced nonpotential magnetic field parameters (Falconer
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et al. 2002) for possible initiation of solar eruptive events using
an empirical procedure for observational inputs.

In this paper we revisit this problemwith direct input of obser-
vations on the photospheric boundary to make our new approach
a data-driven MHD model. The mathematical model and initial
and boundary conditions are presented in x 2. Our numerical re-
sults and concluding remarks are given in xx 3 and 4, respectively.

2. MATHEMATICAL MODEL AND INITIAL
AND BOUNDARY CONDITIONS

2.1. Mathematical Model

The mathematical model appropriate for the physical scenario
we have described in the previous section can be expressed by a
set of compressible, resistive MHD equations identical to those
given by Wu et al. (2005). This set of governing equations con-
sists of conservation of mass, momentum, and energy, and the
induction equation resulting from Maxwell’s equations. These
equations account for the nonlinear dynamic interactions of plasma
flow and magnetic field that produce the complex features in the
solar atmosphere. For completeness, we repeat these governing
equations as follows:

@�

@t
þ: = �uð Þ ¼ 0; ð1Þ

�
@u

@t
þ u = :u

� �
¼ �:pþ 1

4�
: < Bð Þ < Bþ Fg

� 2�w0 < u� �w0 < w0 < rð Þ þ�; ð2Þ

where

� ¼� 2

3
: �t: = uð Þ þ �t 92uþ: : = uð Þ

� �
þ 2 :�tð Þ = :½ �uþ :�tð Þ < : < uð Þ½ �;

@p

@t
þ u = :pþ � p: = u

¼ � � 1ð Þ: = Qþ � � 1ð Þ � J 2 þ �

2
: = uð Þ2

h i
; ð3Þ

@B

@t
¼ : < u < Bð Þ þ k : < Bð Þ þ �92B: ð4Þ

In these equations, � is the plasma mass density, u is the plasma
flow velocity vector, p is the plasma thermal pressure, B is the
magnetic induction vector, J is the electric current, and Q is the
heat conduction. The other quantities are defined as follows: w0

is the angular velocity of solar differential rotation referring to the
center of the solar coordinate system given by Snodgrass (1983).
The meridional flow profile used here is given by Hathaway
(1996). Fg is the gravitational force, and �, �, k, and � are the
specific heat ratio (1.05), the viscosity, and the coefficients of
cyclonic turbulence and effective diffusion. Finally, � repre-
sents the viscous dissipation.

This set of MHD equations differs from first-principle ideal
MHD theory because of the inclusion of additional physics. For
example, the additional terms in equation (2) represent the in-
ertial coriolis force (i.e., 2�w0 < u) and the centrifugal force
[�w0 < (w0 < r)] due to the Sun’s differential rotation. The terms
�92B and k(: < B) in equation (4) represent the effective dif-
fusion due to random motion of granules or supergranules and
the cyclonic turbulence effect, respectively.

2.2. Initial and Boundary Conditions

To seek a numerical solution for this mathematical model
given in x 2.1, we have cast the set of governing equations in a
rectangular coordinate system. The computational domain in-
cludes six planes (i.e., four side planes, and top and bottom). The
boundary conditions used for the four sides and top plane are
nonreflective. In order to accommodate the observation at the
bottom boundary, the evolutionary boundary conditions must be
used; thus, the method of projected characteristics, originated
by Nakagawa (1980, 1981a, 1981b) and implemented by Wu &
Wang (1987), is used for the derivation of such boundary con-
ditions. If it is not used, spurious results are likely. The briefly
described derivation and its resulting time-dependent boundary
conditions are given in the Appendix. In such a way, these bound-
ary conditions are capable of accommodating the observations,
which then are able to model the emerging and submerging mag-
netic flux in a self-consistent way. The numerical technique used
for this study is a classical total variation diminishing (TVD) Lax-
Friedrichs formulation (Harten 1983; Toth & Odstrčil 1996). To
implement this evolutionary simulation of the active region, there
are two steps: (1) initialization of the active region model, and
(2) simulation of the active region evolution.

2.2.1. Initialization of the Active Region Model

The procedures to initialize the active region MHD model
consists of the following steps:

1. Use the observed magnetic field data from the photo-
spheric magnetogram with a potential field model to construct
a three-dimensional field configuration. In order to match the
chromosphere /corona interface conditions, the magnitude of the
field strength is reduced by a factor of 100.

2. Since there are no density measurements on the photo-
sphere, we simply assume that the density distribution at the bot-
tom boundary is directly proportional to the absolute value of the
magnitude of the transverse magnetic field and then decreases
exponentially with the scale height; thus �(x; y; z; 0) ¼ ½(B2

x þ
B2
y )/B

2
0 �

1=2�0e
�z=Hg , where �0 and B0 are constant reference val-

ues, which are given with Hg as the scale height (i.e., Hg ¼
RT0 /g0, g0 being the gravitational constant on the surface). In this
calculationwe have chosenT0 ¼ 105 K,R ¼ 1:653 ; 10�2 km2 s�2

K�1, and g0 ¼ 0:27 km s�2 to giveHg as 6:2 ; 103 km.When the
magnetic field becomes purely radial (i.e., Bx ¼ By ¼ 0), we sim-
ply choose the value of the density as the average value of the neigh-
boring fourgrids.This assumptiondoesbear somephysicalmeaning;
that is, usually the observed brighter feature on the surface corre-
sponds with the higher density, which also corresponds with the
closed magnetic field. Furthermore, we recognize that the den-
sity of the solar atmosphere decreases exponentially with respect
to the height in order to maintain hydrostatic equilibrium.

3. We input the results of steps 1 and 2 into the MHD model
described in x 2.1 without differential rotation and meridional
effects. Because the density is arbitrarily prescribed it makes the
pressure gradient not balanced by the gravity force, which in-
duces the velocity by way of the momentum equation. The in-
duced velocity will cause the magnetic field change; thus, the
magnetic field is no longer potential. Thewhole relaxation process
begins. Subsequently, the MHD equilibrium state is achieved.
This equilibrium state, then, will be the initial state from which
we study the active region’s evolution. It should be noted that the
prescribed pre-initial state is arbitrary. The relaxation of the set of
governing equations, in principle, will lead to the MHD equilib-
rium state. However, the closer the prescribed initial values, the
easier it will be to obtain an equilibrium state.
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2.2.2. Simulation of the Active Region Evolution

To evolve the corona on the basis of the evolution of an active
region, we input the observed photospheric magnetogram, ob-
tained by the Solar and Heliospheric Observatory (SOHO) MDI
instrument, in 6 s time steps in accordance with numerical time
step constraints. After each step, we allow the corona to respond
to the changes in the lower boundary condition. Since the cadence
of theMDImeasurement is 96minutes,we have prepared the data
by simply taking the difference of the two time sequences of the
data and then linearly increasing with time (every 6 s) at the lower
boundary with the differential rotation and meridional flow to
drive the evolution. The expression used to input the observed
magnetogram data is given by

Bz x; y; tð Þ ¼ Bz x; y; 0ð Þ þ
X
t 0

X960
n¼1

�Bz x; y; t 0ð Þ ð5Þ

with

�Bz x; y; t 0ð Þ ¼ Bz x; y; t 0 þ 1ð Þ � Bz x; y; t 0ð Þ
960

; ð6Þ

where t 0 is the time step corresponding to the cadence of theMDI
magnetograms. Since the computational time step is 6 s, it takes

960 steps to achieve the cadence of MDImagnetogrammeasure-
ments. It should be noted that equation (5) will replace one of the
compatibility equations (A17).

3. SIMULATION RESULTS

In order to illustrate the capability of this new model, we have
chosen the observed active region NOAA AR 8100 on 1997
October 31 to compute the initial state, which includes the mag-
netic field topology, density, and velocity distributions. Follow-
ing this initial state, we compute its evolutionary state. These
results are presented in the following sections.

3.1. Initial Magnetohydrodynamic Equilibrium State
of NOAA AR 8100

We use the procedures described in x 2.2.1 by inputting the
SOHO MDI magnetic field measurements of NOAA AR 8100
at 14:27UTon 1997October 31. Since the SOHOMDI fieldmea-
surements of the active region have a resolution of �200 with
198 ; 198 pixels, in order to assure compatibility of the compu-
tational grid with the measurement, the computational domain
is set as a rectangular box with 99 ; 99 ; 99 grid points in
Carrington longitude (x), latitude ( y), and height (z), respectively.
To match the data with the grids, we have taken a two-point av-
erage from the measurements. The measurements are used at
the four corners. After we input the data together with the density

Fig. 1.—Simulated initial state of AR 8100 at 14:27 UT on 1997 October 31. (a) Transverse magnetic field vectors (5 G � Btj j � 6 G) and contours of the LOS
magnetic field (Bz), with the solid and dotted lines representing positive and negative polarity, respectively. The gray-scale bar on the upper right side indicates the
strength of the LOS magnetic field (�10 G � Bz � 10 G) contours. (b) Transverse velocity (maximum is 1.9 km s�1) and Bz contours. (c) Density contours at the
surface with the transverse magnetic field. (d ) Plasma beta [� ¼ 16�nkTð Þ/B2] distribution on the surface. The gray-scale bar on the lower right side is for both density
and � contours. [See the electronic edition of the Journal for a color version of this figure.]
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distribution, described in x 2.2.1, we allow the numerical model
to establish a new equilibrium state via the commonly used
numerical time relaxation method. To carry out this procedure,
we prescribe a pre-initial arbitrary state as we have discussed in
x 2.2.1 into the set of governing equations, in which the system
will evolve through a computation loop until an equilibrium state
is reached. The criteria of equilibrium is given as ( f nþ1 � f n)/
f n < �, where f represents all the physical quantities (Hung &
Macagno 1966). In this calculation, we have selected � to be 10�3.
Reaching this equilibrium state takes about 10 Alfvén times.

Physically, this state represents an MHD equilibrium state
for NOAA AR 8100 at 14:27 UT, 1997 October 31. Figure 1a
shows the contours of the line-of-sight (LOS) component of
the magnetic field (the solid and dotted lines represent the posi-
tive and negative polarities, respectively) and transverse field
vectors at the bottom boundary (i.e., chromosphere /corona in-
terface). Figure 1b shows the transverse velocity vector at the
bottom boundary with the same contours of the LOS component
of the magnetic field. Figure 1c shows the density distribution
where the bright and darker patches represent the high and low
intensity of the density with transverse magnetic field vectors,
and finally Figure 1d shows the plasma beta [� ¼ (16�nkT )/B2]
distributions. Figure 2 shows the corresponding three-dimensional
perspective of magnetic field lines and surface density intensity.
By viewing these results, we are able to recognize the dynamical
physical characteristics of this active region at this particular time.
These properties are as follows:

1. The high-density region is at the top of the coronal loops
where the stronger transverse magnetic field is concentrated. On
the other hand, the core region has low density with most of the
field directed radially outward, as shown in Figure 2, and where
plasma � is low (Fig. 1d ).

2. The transverse velocity at the surface (i.e., chromosphere
and coronal interface) exhibits an inflow toward the center,
shown as a reverse ‘‘Evershed’’ flow (Athay 1986) at the chromo-
spheric level (Fig. 1b), and a downflow if we view this panel
together with Figure 5, which is discussed below.

Fig. 2.—Simulated three-dimensional magnetic field configuration of AR 8100
at 14:27 UT on 1997 October 31. [See the electronic edition of the Journal for a
color version of this figure.]

Fig. 3.—Simulated evolution of magnetic field at 14:27 UT (top left), 16:03 UT (top right), 17:39 UT (bottom left), and 19:12 UT (bottom right) on 1997 October 31.
The representation is similar to Fig. 1. The gray-scale bar on the right-hand side indicates the strength of LOS magnetic field. The white arrows represent the
nonpotential transverse magnetic field, and black arrows represent the potential transverse magnetic field. [See the electronic edition of the Journal for a color version of
this figure.]
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3. The plasma � distribution exhibits chromosphere and co-
rona interface characteristics (i.e., � is less than 1 everywhere),
and the Alfvén speed is inversely proportional to the square
root of �. The Alfvén speed values are between 1.1 and 2.5 ;
103 km s�1 for this calculation.

3.2. Evolutionary State of NOAA AR 8100

Figure 3 shows the nearly 5 hr evolution of transverse mag-
netic fields and contours of the LOS magnetic field. The gray
scale indicates the strength of the magnetic field ( light indi-
cates high field strength in the positive-polarity region, and dark
indicates high strength in the negative-polarity region; black
indicates high strength with negative polarity). The black ar-
rows represent the potential transverse magnetic field, and the
white arrows represent the nonpotential (MHD) transverse field.
The positive and negative polarities are represented by solid and
dotted lines, respectively. By looking at the results, one clearly
recognizes that the field is getting stronger and the shear is
growing.

Figure 4 shows the corresponding transverse velocity distri-
butions and the contours of the LOS magnetic field. Again, we
see the inflow motion toward the center around the dark (neg-
ative polarity) and the bright (positive polarity) regions where
the field lines are radial. The transverse velocity shows a signifi-
cant increase as time progresses; during the period of simulation
(�5 hr), the lower limit of the transverse velocity has increased
from 0.0002 to 0.0164 km s�1, and the higher limit has increased
from 1.9 to 7.1 km s�1. Figure 5 shows the vertical velocity map

corresponding to Figure 4. The siphon flow is clearly recognized
from the stronger positive-polarity field (solid contours; as shown
in Fig. 1b) to the rather weaker negative-polarity magnetic field
region (dotted contours). The magnitude of vertical velocity is a
about a few tenths km s�1. In a recent study, Ryutova & Shine
(2006) found the establishment of arclike flows during the flux
emergence based on observations that are similar to those that we
have obtained in this MHD simulation.
Figure 6 shows the evolution of the amount of magnetic energy

(B2 /8�) across the bottom boundary at each pixel of the 1 km
layer (i.e., chromosphere/corona interface). From these results, we
see that there are locations where the magnetic energy is increased
and in others decreased; these simulated features represent mag-
netic flux emergence and submergence (or cancellation) as result-
ing from data. If we integrate with respect to the active region’s
area,we obtain a totalmagnetic energypassing through the bound-
ary on the order of 1032 ergs, reaching to 1033 ergs at the end of
the simulation. The other modes of energy (i.e., thermal, kinetic,
and gravitation) are an order of magnitude smaller. Thus, themag-
netic energy is, as expected, the dominant source of energy in the
active region.
Finally, we examine the energy flux through the lower bound-

ary due to surface flow effect, by using the expression given by
Demoulin & Berger (2003) in ergs as follows:

dE

dt

� �
s

¼ � 1

4�

Z
s

Bt = Vtð ÞBndS þ 1

4�

Z
s

B2
t VndS; ð7Þ

Fig. 4.—Simulated evolution of surface transverse velocity vector (Vt), and the contours of the LOSmagnetic field for AR 8100 on 1997 October 31 at 14:27UTwith
0:0002 km s�1 � jVt j � 1:9 km s�1 (top left), 16:03 UT with 0:0018 km s�1 � jVt j � 3:7 km s�1 (top right), 17:39 UT with 0:0088 km s�1 � jVt j � 5:0 km s�1

(bottom left), and 19:12 UT with 0:0164 km s�1 � jVt j � 7:1 km s�1 (bottom right). [See the electronic edition of the Journal for a color version of this figure.]
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where the subscripts t and n represent the transverse and normal
components of the respective quantity.

Figure 7 shows the energy flux (dE /dt)s across the lower
boundary as a function of the times considered above. It is clearly
seen from the above expression that the first term is due to sur-
face floweffect and the second term represents the amount of mag-
netic flux carried into the active region by the incoming plasma
flow, which can be considered to be a direct contribution from
emerging and submerging magnetic flux. By examining the re-
sults shown in Figure 7, the net magnetic flux emergence is the
dominate feature for the growth of the active region at the early
stage of about 1 hr. Soon, the term due to the surface flow will
take over. This term reflects the importance of the dynamic ef-
fect; that is, when the transverse velocity grows, the energy flux
term due to the surface flowwill also grow. This is consistent with
the energy transport by shearingmotions found in simulations by
Magara & Longcope (2003) andManchester et al. (2004). Look-
ing at the results shown in Figure 4, the transverse velocity has
grown by a factor 82 in the lower limit and a factor of �3 in the
higher limit. Thus, energy flux growth due to surface flow is faster
than the net magnetic flux emergence. This feature can be un-
derstood further; when the magnetic flux emerges from the sub-
photospheric surface, the field is not potential and thereby carries

currents; thus, through MHD processes, it induces plasma flow
according to a nonlinear procedure described by the magnetic in-
duction equation (i.e., eq. [4]). The induced plasma velocity con-
tributes to the first term of equation (7). Since the velocity grows
with the emergence of the magnetic flux, the surface effect rep-
resented by the first term overtakes the direct flux emergence.
These results are consistent with the analyses based on the ob-
servations given by Lites et al. (1995) and Leka et al. (1996).
These investigators argued that the plasma flow that drags the
field-line-producing shear is not an efficient process in com-
parison with the emergence of current-carrying magnetic field
(i.e., twisted field). This scenario can be explained by the MHD
process described here. When the emergence of the magnetic
field is potential, the current is zero, such that the Lorentz force in
equation (2) is zero. The magnetic shear can only be generated
from the effects of differential rotation and meridional flow, as
shown by Wu et al. (1993). This process is a very slow process.
In this case, the first term of equation (7) is much smaller than the
second term. In short, since the magnetic field measurements
(i.e., twisted field) are used as an input for the present simulation,
our results show that the magnetic shear can be developed in a
rather short time via MHD processes. It is also worth noting that
recent analytical work and simulations have demonstrated that

 

Fig. 5.—Evolution of the vertical velocity ( km s�1) of AR 8100 at the same four times on 1997 October 31 as in Fig. 4: 14:27 UT (top left), 16:03 UT (top right),
17:39 UT (bottom left), and 19:12 UT (bottom right). The gray-scale bar on the right-hand side represents the magnitude of the vertical velocity, where the positive-
polarity region (solid lines) gives the upward velocity and the negative region (dotted lines) gives downward velocity. [See the electronic edition of the Journal for a
color version of this figure.]
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Fig. 6.—Magnetic energy (1022 ergs km�2) across the low boundary to AR 8100 at the same four times on 1997 October 31 as in Fig. 4: 14:27 UT (top left), 16:03 UT
(top right), 17:39 UT (bottom left), and 19:12 UT (bottom right).



the Lorentz force drives shearing motion during flux emergence
(Manchester & Low 2000; Manchester 2001).

4. CONCLUDING REMARKS

In this paper,wehavepresented a data-driven, three-dimensional,
time-dependent, MHD model with differential rotation and me-
ridional flow to investigate an active region’s evolution. In order
to allow themodel to be driven by observations, the time-dependent
boundary conditions derived from the method of characteristics
are incorporated into the model. Since we use observations to

drive the model self-consistently, the subphotospheric effects are
embedded in the measurements. Hence, this model has the ca-
pability to couple the photosphere and corona.

To illustrate this model, the example of AR 8100 is presented.
We show that the model is able to simulate (1) equilibrium struc-
tures and (2) active region evolution on the basis of the observa-
tions. We also reveal that the twisted field is the most important
factor for the growth of the active region, as shown in Figure 7.

In the present study, some simplifications aremade. The plasma
properties at the lower boundary are those of a low-� plasma; thus,
realistic photospheric properties could not be simulated. However,
the plasma properties used here are very close to the characteris-
tics at the chromosphere and corona interface (i.e., n0 ¼ 108 cm�3,
T0 ¼ 105 K). Recently, Wu et al. (2005) constructed a transition
region model to study the propagation of MHDwaves; we intend
to incorporate this transition regionmodel for the improvement of
the current model. Furthermore, the surface velocity distribu-
tion has not been directly compared with the ILCT results given
by Welsch et al. (2004); however, the present results do show
some similarity. In fact, we expect that some differenceswill occur
because of the full MHD features in which the major forces (i.e.,
Lorentz, pressure, and inertia forces) generate interactions that
have great influence on the plasma flow. It should be noted that
the ILCT method is based only on the nonresistive magnetic in-
duction equation. Thus, the nonlinear dynamic interaction be-
tween the plasma flow and magnetic field of the active region
could not be fully recognized in that method. A direct compar-
ison will be made in the future. Finally, it is worth noting that the
differential rotation and meridional flow effects are for long-
timescale simulations (days, weeks, and more), as demonstrated
in our previous work (Wu et al. 1993). The present simulation is
driven by the magnetic flux emergence and submergence.
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APPENDIX

APPLICATION OF THE METHOD OF PROJECTED CHARACTERISTICS FOR THE DERIVATION
OF BOTTOM BOUNDARY CONDITIONS

To seek a numerical solution for the mathematical model given in x 2.1, we have cast the set of governing equations in a rectangular
coordinate system. The computational domain includes six planes (i.e., four side planes, and top and bottom). The boundary conditions
used for the four sides and top boundary are nonreflective. In order to accommodate the observation at the bottom boundary, the evo-
lutionary boundary conditions must be used; thus, the method of projected characteristics originated by Nakagawa (1980, 1981a, 1981b)
and implemented by Wu & Wang (1987) are used for the derivation of such boundary conditions.

Using the method of projected characteristics (Nakagawa et al. 1987; Wu & Wang 1987), the bottom boundary conditions are ob-
tained. For a three-dimensional MHD problem, the governing equations are cast in vectorial form,

@U

@t
¼ �A

@U

@x1
� B

@U

@x2
� C

@U

@x3
þ S;

where U and S are column vectors consisting of primary physical quantities such as density, temperature, and the three components of
velocity and magnetic field. It should be noted that the differential rotation and meridional flow effects are ignored for the derivation of
the boundary conditions. To obtain these characteristics on the boundary, we have chosen the unit normal n on the boundary to be along

Fig. 7.—Simulated energy flux through the photosphere for AR 8100.
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the z-direction. Thus, the characteristics along the projected normal will be found in the z-t plane. At the z-t plane, for a small time
difference �t, the projected characteristics are given by

dz

dt
¼ ki; i ¼ 1; 2; : : : ; 8;

and can be approximated by straight lines as shown in Figure 8, where ki ¼ (uz; uz; uz þ VA; uz � VA; uz þ Vf ; uz � Vf ; uz þ Vs;
uz � Vs) are eigenvalues. The projected characteristics passing the point P at the time ( pþ 1)�t and the spatial location (l, m, n) then
intersect the p�t axis at L1, L2, L3, L4, L5, L6, L7, and L8. For Vf > VA > Vs > uz > 0, the projected characteristic PL1 can be identified
with k5 ¼ uz þ Vf , PL2 with k3 ¼ uz þ VA, PL3 with k7 ¼ uz þ Vs, PL4,5 with k1;2 ¼ uz, PL6 with k8 ¼ uz � Vs, PL7 with k4 ¼ uz �
VA, and PL8 with k6 ¼ uz � Vf . With their left eigenvectors, the projected normal characteristic equations (i.e., compatibility equations)
are

h j

@U

@t
þ kjh j

@U

@z
¼ �h jA

@U

@x
� h jB

@U

@y
þ h jS; j ¼ 1; 2; : : : ; 8: ðA1Þ

They are as follows:
dz/dt ¼ uz

a2 @�

@t
� @p

@t
¼ �a2u = :�þ u = :p; ðA2Þ

@Bz

@t
¼ �u = :Bz � Bz
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@uz
@x

þ By
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: ðA3Þ

dz/dt ¼ uz þ VA

�ByBz
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þ ByVA
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� BxVA

@By
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dz/dt ¼ uz þ VA

þByBz
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Fig. 8.—Schematic description of the projected characteristics passing the point P at time ( pþ 1)dt.
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dz/dt ¼ uz þ Vs

þBxBzVs
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@t

� V 2
s � V 2

A

� � @p
@t

� BxV
2
s

@Bx

@t
� ByV

2
s

@By

@t
¼ Cþ: ðA8Þ
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For the bottom boundary, if the eigenvalue (i.e., wave speed) is negative, that means the boundary condition will be affected by the
computational domain, and we have to use the compatibility equation to determine the physical parameter. The number of compatibility
equations that have to use is determined by the number of negative eigenvalues.

As an example, if uz > 0 and uzj j � VA;Vs;Vf , then only uz � VA, uz � Vs, and uz � Vf will be negative. In this case, three out of
eight physical parameters have to be determined by three compatibility equations, and five could be specified or solved by using
compatibility equations. If relaxing the condition in which uz < 0 and uzj j � VA; Vs; Vf , then uz (note that this involves two degen-
erated eigenvalues), uz � VA, uz � Vs, and uz � Vf could be negative. In this case, five out of eight physical parameters have to be
determined by five compatibility equations, and three could be given by using compatibility equations for their solutions. For the first
case, the expressions that describe the physical parameters of pressure, density, and the components of velocity and magnetic field vary
with time on the boundary and are
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where the coefficients A�, B�, and C� are given as follows:
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C� ¼ uz � Vsð Þ
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The Alfvén speed
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