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ABSTRACT

Studies of solar-flare cosmic-ray particle transport in the interplanetary medium and data analysis of the fluctuating
solar wind magnetic fields have revealed the existence of dominating, two-dimensional transverse magnetic fluc-
tuations. Here it is demonstrated that the filamentation instability of counterstreamingmagnetized plasmas provides a
plausible mechanism for the origin of this two-dimensional turbulence component. Solar coronal mass ejections into
the interplanetary medium, as well as overtaking solar wind streams in the appropriate center of plasma mass ref-
erence system, correspond to energetic collisions of plasma shells with different nonrelativistic velocities. By analyz-
ing the dispersion relation, it is shown that these plasma shell collisions quickly lead to the onset of purely growing
aperiodic plasma instabilities perpendicular to the flow direction if the flow velocity difference is larger than 1þ rnð Þ1=2
times the local Alfvén speed, where rn denotes the density contrast of the colliding shells. For typical coronal mass
ejections and parameters that allow overtaking the solar wind stream, the instability condition is well fulfilled, and the
calculated growth rates of the fluctuations are short compared to the dynamical flare timescales.

Subject headinggs: cosmic rays — interplanetary medium — turbulence

1. INTRODUCTION

The data analysis of fluctuating solar wind magnetic fields
assuming axisymmetric transverse fluctuations in a composite
two-dimensional (2D) plus slab turbulence model (Bieber et al.
1996) revealed that as much as � � 15% of the fluctuation en-
ergy is associated with the slab component, while 1� �ð Þ � 85%
of the fluctuation energy comes from the 2D component. Such
a dominating presence of the 2D component is also supported
by numerical simulations regarding the cascading of nearly in-
compressible MHD turbulence (Montgomery & Turner 1981;
Matthaeus et al. 1990). The advantage of viewing solar wind
MHD turbulence as consisting of a superposition of a 2D com-
ponent and a slab component was realized by Bieber et al. (1994)
and Jaekel et al. (1994). Bieber et al. (1994) found good agree-
ment between the mean free path inferred from solar particle
events and theoretically calculated mean free paths k predicted
by slab quasi-linear transport theory if only � � 15% of the fluc-
tuation energy is associatedwith the slab component. This resultwas
based on the assumption that 2D turbulence does not contribute
to cosmic-ray scattering. It was proved by Shalchi & Schlickeiser
(2004) that 2D turbulence contributes much less effectively to
cosmic-ray scattering, justifying the approximation k� ’ kslab /�
of the composite model (Bieber et al. 1994; Dröge 2003).

It is the purpose of the present investigation to propose a
physical mechanism for the origin of the 2D turbulence com-
ponent in magnetized cosmic plasmas based on the filamentation
instability of counterstreaming plasmas. Flares in the solar wind
are one prominent example of energetic collisions of plasma
shells with different properties (temperature, density, composi-
tion, etc.). It is well known experimentally (Kapetanakos 1974;
Tatarakis et al. 2003) and from numerous particle-in-cell (PIC)
simulations (e.g., Lee & Lampe 1973; Nishikawa et al. 2003;
Silva et al. 2003; Frederiksen et al. 2004; Sakai et al. 2004;
Jaroschek et al. 2005) that such collisions lead to the onset of
linear plasma instabilities perpendicular to the flow directions

both in unmagnetized and slightly magnetized plasmas and sub-
sequently to the development of nonlinear filamentary structures.
In the center of the plasma mass system, the colliding shells can
be described as two interpenetrating collisionless particle streams
of different densities and speeds. The resulting filamentation is
a manifestation of the Biot-Savart attractive current-current in-
teraction between stream particles that can predominate over the
dynamics when the plasma shields out electrostatic interactions
(Molvig 1975).
In the case of unmagnetized plasmas, the filamentation insta-

bility has been proposed as a mechanism to magnetize the early
universe (Gruzinov 2001; Okabe &Hattori 2003; Schlickeiser &
Shukla 2003; Schlickeiser 2005), the pulsar wind nebula at the
termination of pulsar winds (Gallant et al. 1992), and �-ray burst
sources (Medvedev & Loeb 1999). Physically, the instability is
similar to a two-stream instability in which the relative motion
between two interpenetrating electron streams generates currents
that are the source of the magnetic field. This magnetic field gen-
eration process sets in when the streaming velocity exceeds a
critical threshold speed.When the spatial scale of the excited fields
is of the order of the electron gyroradius, the magnetic fields sat-
urate at subequipartition levels due to the magnetic trapping of
electrons in the wave potential.
The treatment of the filamentation instability in initially mag-

netized anisotropic plasmas is theoretically much more involved
due to longitudinal and transverse mode-coupling effects. It is
known experimentally (Kapetanakos 1974) that a strong enough
guiding magnetic field inhibits the filamentation instability. This
result is supported by PIC simulations of two-stream instabilities
in the presence of ambient magnetic fields (Hededal &Nishikawa
2005). Molvig (1975) showed that in an electron plasma, a beam
with bulk velocity �c is stabilized if the nonrelativistic electron
gyrofrequency �ce > !b� 1� �2ð Þ�1/2 regardless of its temper-
ature, where !b denotes the electron beam plasma frequency.
Here for the case of magnetized four-stream instabilities of

overall neutral electron-proton or electron-positron streams, we
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derive the critical magnetic field strength Bc, above which the
filamentation instability is inhibited, in terms of the streaming
speeds and the local plasma parameters. The critical field strength
Bc is then calculated for typical interplanetary and solar-flare
streaming conditions. Significant 2D turbulence can be generated
by the filamentation instability only if the ambient magnetic field
strength is smaller than the critical field (B0 < Bc). In addition, in
the case of solar flares, theminimumgrowth time has to be smaller
than the flare duration.

2. MAGNETIZED NEUTRAL
FOUR-STREAM INSTABILITIES

We consider a plasma system consisting of two cold streams
(i ¼ 1 and 2), each consisting of an equal number of positively
and negatively charged particles, moving with different veloci-
ties Ui along an ordered magnetic field. The total gyrotropic
particle distribution function is

f p?; pk
� �

¼ � p?ð Þ
2�p?

h
N1� pk � �1mþU1

� �
þ N1� pk � �1m�U1

� �
þ N2� pk þ �2mþU2

� �
þ N2� pk þ �2m�U2

� �i
; ð1Þ

where �i ¼ ½1� Ui /cð Þ2��1/2
.

Because of the assumption of an equal number of positively
and negatively charged particles, no restrictions apply to the
values of N1, N2,U1, andU2 in order to avoid large-scale charge
and current densities. In this respect, our distribution function (1)
differs from previous investigations that have assumed either one
counterstreaming plasma component traversing a second plasma
component at rest (Lee 1969), an electron beam along a magnetic
guide field in a charge- and current-neutralized two-temperature
Maxwellian plasma (Molvig 1975), or plasma streams with equal
densities N1 ¼ N2 (Lee 1970; Shivamoggi 1982; Saito & Sakai
2004). The neutral four-stream instability investigated here is
closely related to the so-called electromagnetic counterstream-
ing instability (Saito & Sakai 2004; Medvedev & Loeb 1999),
with the anisotropic temperatures replaced here by cold particle
beams. This configuration is often referred to as an extreme form
of temperature anisotropy (Jaroschek et al. 2005). The cold
plasma approximations in equation (1) have been chosen mainly
for mathematical convenience; they allow a straightforward ana-
lytical analysis of the instability conditions from inspecting a
polynomial dispersion relation (see below). An extension of
the analysis to nonzero temperatures would be a more realistic
representation of the interplanetary environment. However, the
respective dispersion relation of perpendicular waves in counter-
streaming Maxwellian plasmas (Tautz & Schlickeiser 2006,
eqs. [14] and [15]) involves the regularized hypergeometric func-
tion 2F2, and the instability analysis becomes less transparent.

A second argument to justify the chosen extreme form of
temperature anisotropy of equation (1) comes from the work of
Molvig (1975), who, for an electron plasma with thermal dis-
persion, demonstrated that the stability condition is independent
of the electron temperature. A corresponding temperature in-
dependence for multicomponent plasmas, therefore, is likely,
although not guaranteed.

2.1. General Dispersion Relation

The distribution function (1) implies nine elements of the di-
electric tensor (Schlickeiser 2002, p. 212; Melrose 1980, p. 59).

In the case of wave propagation perpendicular to the ordered
magnetic field (kk ¼ 0), one has

 11 ¼  22 ¼ 1�
X
n¼1;2

1þ �ð Þ!2
pn

�n

;
!2 � ��2=�2

n

� �
!2 � �2=�2

n

� �� �
!2 � �2�2=�2

n

� �� � ;

 33 ¼ 1�
X
n¼1;2

1þ �ð Þ!2
pn

!2�3
n

� k2?
!2

X
n¼1;2

1þ �ð Þ!2
pnU

2
n

�n

;
!2 � ��2=�2

n

� �
!2 � �2=�2

n

� �� �
!2 � �2�2=�2

n

� �� � ;
 12 ¼ � 21 ¼ iD;

with

D ¼ 1� �2
� �

!
X
n¼1;2

!2
pn�

�2
n !2 � �2=�2

n

� �� �
!2 � �2�2=�2

n

� �� � ;

 13 ¼  31 ¼
k?

!

X
n¼1;2

1þ �ð Þ!2
pnUn

�n

;
!2 � ��2=�2

n

� �
!2 � �2=�2

n

� �� �
!2 � �2� 2=�2

n

� �� � ;
 23 ¼ � 32 ¼� ik?� 1� �2

� �
;
X
n¼1;2

!2
pnUn

�2
n !

2� �2�2=�2
n

� �� �
!2 � �2=�2

n

� �� � ;

the nonrelativistic electron gyrofrequencies �¼ eB0 /m�c, the
nonrelativistic electron plasma frequencies!pn ¼ 4�e2Nn /m�ð Þ1=2,
and the mass ratio �¼ m� /mþ.

For the Maxwell operator, we then obtain (with k ¼ k?)

�ij ¼  ij �
kc

!

� �2

�33 þ �22ð Þ

¼

 11 iD  13

�iD  11 �
kc

!

� �2

 23

 13 � 23  33 �
kc

!

� �2

0
BBBBB@

1
CCCCCA; ð2Þ

so that the dispersion relation det�ij ¼ 0 in this general case
yields a polynomial equation of the sixth order in !2. Simplifica-
tion factorization occurs under the following restrictions:

1. For equal mass flows, such as pair flows, the mass ratio is
� ¼ 1, so thatD ¼ 0 and 23 ¼ 0 throughout, and the dispersion
relation factors as

0 ¼  11 �
kc

!

� �2
" #

 11  33 �
kc

!

� �2
" #

�  2
13

( )
: ð3Þ
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2. For symmetric, counterstreaming flowsU2 ¼ �U1, imply-
ing �1 ¼ �2, one has  13 ¼ 0, leaving

0 ¼  33 �
kc

!

� �2
" #

 2
11 � D2 � kc

!

� �2

 11

" #
: ð4Þ

3. An even simpler form results for symmetric counter-
streaming pair plasmas,

0 ¼  33 �
kc

!

� �2
" #

 11 �
kc

!

� �2
" #

 11: ð5Þ

In the following we consider nonrelativistic flows UiTc,
appropriate for solar flares and many interstellar applications.

2.2. Nonrelativistic Flows

For nonrelativistic flows UiTc, so that �i ’ 1, which is
appropriate for solar flares, we obtain

 13 ¼  31 ’
k

!
1þ �ð Þ !2 � ��2

!2 � �2
� �

!2 � �2�2
� � X

n¼1;2

!2
pnUn

¼ k

!
1þ �ð Þ4�e

2

m�

!2 � ��2

!2� �2
� �

!2� �2�2
� � X

n¼1;2

NnUn; ð6Þ

 23 ¼ � ik�(1� �2)

!2 � �2
� �

!2 � �2�2
� � X

n¼1;2

!2
pnUn

¼ � ik�(1� �2)

!2 � �2
� �

!2 � �2�2
� � 4�e 2

m�

X
n¼1;2

NnUn; ð7Þ

In the plasmamass center system, the conditionN1 mþ þ m�ð ÞU1þ
N2 mþ þ m�ð ÞU2 ¼ 0 holds, yielding the constraint

N1U1 þ N2U2 ¼
X
n¼1;2

NnUn ¼ 0; ð8Þ

so that equations (6) and (7) reduce to  13 ¼ 0 and  23 ¼ 0,
respectively. With respect to the observer’s frame of reference,
the center of the plasma mass system moves with velocity

Vc ¼
P

n¼1;2 Nn(mþ þ m�)unP
n¼1;2 Nn(mþ þ m�)

¼
P

n¼1;2 unNnP
n¼1;2 Nn

; ð9Þ

where ui denotes the flow velocities in the observer’s frame. For
nonrelativistic flows, the Galilean velocity transformation is
simply Ui ¼ ui � Vc, immediately yielding

U1 ¼
u1 � u2ð ÞN2

N1 þ N2

; U2 ¼
u2 � u1ð ÞN1

N1 þ N2

; ð10Þ

which satisfy condition (8).
In the center of the plasma mass system, the dispersion rela-

tion then becomes

0 ¼ �33 �
kc

!

� �2
" #

�11 �11 �
kc

!

� �2
" #

� D2
c

( )
; ð11Þ

with

�11 ’ 1�
X
n¼1;2

1þ �ð Þ!2
pn

!2 � ��2

!2 � �2
� �

!2 � �2�2
� � ;

�33 ’ 1�
X
n¼1;2

1þ �ð Þ!2
pn

!2

� k 2

!2

X
n¼1;2

1þ �ð Þ!2
pnU

2
n

!2 � ��2

!2 � �2
� �

!2 � �2�2
� � ;

Dc ¼ 1� �2
� �

!
X
n¼1;2

!2
pn�

!2 � �2
� �

!2 � �2�2
� � :

The dispersion relation (11) factorizes into the two modes

�11 �11 �
kc

!

� �2
" #

� D2
c ¼ 0; ð12Þ

�33 ¼
kc

!

� �2

: ð13Þ

The last mode (eq. [13]) includes the filamentation instability
and reads

k 2c2 ¼ !2 � 1þ �ð Þ
X
n¼1;2

!2
pn

� 1þ �ð Þk 2 !2 � ��2

!2� �2
� �

!2 � �2�2
� � X

n¼1;2

!2
pnU

2
n : ð14Þ

It is appropriate to introduce the density ratio rn ¼ N1/N2 and the
total plasma frequency

!2
p ¼ 1þ �ð Þ

X
n¼1;2

!2
pn

¼ 1þ �ð Þ!2
p1 1þ N2

N1

� �
¼ 1þ �ð Þ!2

p1

1þ rn

rn
: ð15Þ

Then equation (8) yields

(1þ �)
X
n¼1;2

!2
pnU

2
n ¼ rn!

2
pU

2
1 :

The dispersion relation (14) then becomes

0¼!2�!2
p �k2c2�!2

p rnU
2
1 k

2 !2 � ��2

(!2 � �2)(!2 � �2�2)
; ð16Þ

yielding the cubic dispersion relation

M ( f ) ¼ f 3 � Af 2 þ Gf � C ¼ 0; ð17Þ

with f ¼ !2,

A ¼ !2
p þ k 2c2 þ (1þ �2)�2 > 0; ð18aÞ

G ¼ �2�4 þ (1þ �2)�2 !2
p þ k 2c2

� �
� !2

p rnk
2U 2

1 ; ð18bÞ

C ¼ ��2 ��2 !2
p þ k 2c2

� �
� !2

p rnk
2U 2

1

h i
: ð18cÞ
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In the case of an electron-proton plasma with density ratio
rn ¼ 1, dispersion relation (16) agrees with equation (6) of Lee
(1970) for equal proton and electron speedsUp ¼ Ue, as assumed
here.

2.3. Condition for Aperiodic Fluctuations

We write k 2c2 in dispersion relation (16) as a function of
!2, i.e.,

k2c2¼
!2 � !2

p

1þ !2
p rn U1=cð Þ2 !2 � ��2

� �
=(!2 � �2)(!2 � �2�2)

� � ;
and investigate aperiodic fluctuations characterized by!2 ¼ ��2.
In this case, one of the solutions, ��, leads to purely growing
aperiodic fluctuations with zero real part of the frequency
(!R ¼ i�). Scale �2 ¼ x�2 to obtain

k 2c2

�2
¼ F(x) ¼ � (xþ �)(xþ �2)(xþ 1)

(xþ �2)(xþ 1)� g(xþ �)
; ð19Þ

with � ¼ (!p /�)
2 and g ¼ �rn(U1 /c)

2. Aperiodic solutions with
purely imaginary frequency ! and real wavenumber k result if
x and F(x) are positive. We limit our analysis here to electron-
proton plasmas with � ¼ 1/1836.

Obviously,

F(x) ¼ � Z(x)

N (x)
: ð20Þ

For x > 0, the numerator Z(x) is always positive. The denomi-
nator is a second-order function with a minimum at

xmin ¼ � 1

2
(�2 þ 1� g); ð21Þ

Nmin(x) ¼ � 1

4
(�2 þ 1� g)2 þ �(�� g): ð22Þ

There are two cases:

1. g < �2 þ 1 , xmin < 0: for x > 0 > xmin, the derivation
dN /dx is positive. Hence, N (x) > N (0) ¼ �(�� g).

(a) g < �: N (x) is positive and there exist no positive roots.
(b) � � g � �2 þ 1: N (0) < 0. Positive roots are possible.
2. g > �2 þ 1 , xmin > 0: with equation (22) the minimum

becomes negative and at least one positive root exists.

The condition for aperiodic solutions, therefore, reads g > �.
Factorizing the denominator in equation (19) then yields

F(x) ¼ � (xþ �)(xþ �2)(xþ 1)

(x� x1)(xþ x2)
; ð23Þ

with

x1 ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(g� 1� �2)2 þ 4�(g� �)

q
þ (g� 1� �2)


 �
> 0;

x2 ¼ �X2 ¼
1

2

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(g� 1� �2)2 þ 4�(g� �)

q

� (g� 1� �2)

#
> 0:

For all g > �, the root x1 is real and positive, whereas the root
�x2 is real and negative. For the function F(x), this behavior
causes one pole at the positive value x1 and one pole at the neg-
ative value �x2. The function F(x) > 0 in the range 0 � x � x1
(see Fig. 1). A minimum wavenumber for aperiodic fluctuations
results at x ¼ 0,

k 2 > k 2
min ¼

�2

c2
F(0)¼ �2

c2
��

g� �

¼
!2
p

c2
1

g=�ð Þ�1
¼

!2
p

!2
p rnU

2
1

� �
= ��2
� �h i

� c2
; ð24Þ

corresponding to spatial scales

L < Lmax ¼
2�

kmin

¼ 2�
c

!p

ffiffiffiffiffiffiffiffiffiffiffiffi
g

�
� 1

r
: ð25Þ

For large values g/� ¼ 1836g31, the maximum scale can be
approximated by

Lmax¼ 270
r1=2n U1

�
¼ 270

r1=2n ju1 � u2j
(1þ rn)�

cm; ð26Þ

scaling inversely proportional to the ordered magnetic field
value.

2.4. Instability Conditions

In order to have nonnegative values of k 2
min in equation (24),

the streaming velocity threshold is

U 2
1 � ��2c2

rn!2
p

: ð27Þ

The threshold condition (26) together with equation (10a) gives
an upper limit for the magnetic field strength B � Bc,

Bc ¼
m�

e

ffiffiffiffiffi
rn

�

r
!pjU1j¼

m�

e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �

�(1þ rn)

s
!p1ju1 � u2j: ð28Þ

Fig. 1.—Sketch of the function F(x).
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In terms of the Alfvén speed,

VA1 ¼
Bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4�N1(m� þ mþ)
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
�

1þ �

r
�c

!p1

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
1þ rn

rn

r
�c

!p

;

the threshold condition (27) reads

ju1 � u2j � VA1

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ rn

p
: ð29Þ

For electron-proton flows, the critical magnetic field value in
equation (28) is (with ui ¼ �ic)

Bc;electron-proton ¼ 0:138j�1 � �2j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ne1=1 cm�3

p
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ rn

p G ð30Þ

2.5. Growth Rate of Filamentation Instability

In order to derive the growth rate � of the aperiodic fluctua-
tions we consider the two cases of (1) very large wavenumber
values of k 2 ! 1 and (2) wavenumbers slightly larger than k 2

min.
For large enough values of k 2, Figure 1 indicates that x ’ x1,
implying the maximum growth rate for high wavenumbers,

�max ’ �x
1=2
1 ¼ �

21=2


 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(g� 1� �2)2 þ 4�(g� �)

q

þ (g� 1� �2)

�1=2
’ �

�(g� �)

1� g


 �1=2
; ð31Þ

where the last approximation holds for gT1. The maximum
growth rate is independent of wavenumber.

For xTx1, we Taylor expand function (23) to first order
around x ¼ 0, so that

F(x) ’ F(0)þ dF

dx

���
x¼0

� �
x:

With equation (24) and

dF

dx

���
x¼0

¼ 1

�(g� �)2
�2(g� �)þ g�(1þ �2 � �)
� �

; ð32Þ

we obtain

x ¼ � 2

�2
’ 1

dF=dxjx¼0

c2k 2

�2
� c2k 2

min

�2


 �
;

yielding

� ’ cjg� �j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�

�2(g� �)þ g�(1þ �2 � �)

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2min

q
:

ð33Þ

3. APPLICATION TO SOLAR FLARES

We consider two applications in the interplanetary medium
that are relevant for energetic particles. In each case we derive
the plasma and outflow parameter for which the filamentation
instability operates and calculate the spatial scale of the fluctu-
ations together with the growth rate for aperiodic fluctuations.

3.1. Solar Coronal Mass Ejections

As a first application we consider solar flares that result from
solar coronal mass ejections (CMEs). CMEs are a major form of
eruptive phenomena in the solar corona involving masses of the
order of ’1015–1016 g and kinetic energies of ’1030–1032 ergs.
The leading-edge speeds of CMEswithin about 5R� of the surface
range from less than 50 to greater than 2000 km s�1 (Howard et al.
1985; Benz 1993; Sheeley et al. 2000), with an estimated Alfvén
speed of VA1 ¼ 400 km s�1. Adopting B0 ¼ 0:01 G, a density
N1 ¼ 3000 cm�3 is implied for the outflow plasma. Here we rep-
resent this nonrelativistic outflow as an electron-proton out-
flowwith u1 ¼ 2000 kms�1 andN1 ¼ 3000 cm�3, overtaking the
electron-proton interplanetary medium at rest (u2 ¼ 0).
According to condition (29), an unstable situation arises only

if the density contrast rn � 24, i.e., for an interplanetary electron
density N2 � N1/24 ¼ 125 cm�3. Adopting N2 ¼ 200 cm�3,
i.e., rn ¼ 15, we find that the velocity of the plasma mass system
in equation (9) in this case is Vc ¼ 1875 km s�1, yielding U1 ¼
125 km s�1 and U2 ¼ �1882 km s�1 for the flow velocities in
equation (10) in the plasma mass system. In this case the param-
eter ratio g/� ¼ 1:47 yields the maximum growth rate in equa-
tion (31) of the filamentation instability as

�max ¼ 65:7(B0=0:01 G) Hz: ð34Þ

The minimum growth time 	 ¼ ��1
max ¼ 0:015(B0 /0:01 G)�1 s is

significantly shorter than any other dynamical CME or solar-
flare timescale. According to equation (25), the spatial scales of
the fluctuations are smaller than Lmax ¼ 4 ; 104 cm.

3.2. Overtaking Solar Wind Streams

As a second application, we consider the overtaking of a
slow electron-proton solar wind stream (u2 ¼ 300 km s�1, N2 ¼
20 cm�3) by a fast electron-proton stream (u1 ¼ 600 km s�1,
N1 ¼ 10 cm�3) with an interplanetary magnetic field of 10�4 G.
In this case VA1 ¼ 69 km s�1, and the density contrast is rn ¼
0:5. In this case, again the instability condition (24) is fulfilled
because ju1 � u2j ¼ 300 km s�1 is larger than VA1 1þ rnð Þ1/2¼
85 km s�1.
In this example, the parameter g/� ¼ 12:53, so that

�max ¼ 3:3(B0=10
�4 G) Hz: ð35Þ

The minimum growth time 	 ¼ ��1 ¼ 0:3(B0 /10
�4 G)�1 s is

sufficiently short compared to typical (of order several hours)
long-duration solar-flare timescales. According to equation (26),
in this case the spatial scales of the fluctuations are smaller than
Lmax ¼ 2:2 ; 106 cm.

4. SUMMARY AND CONCLUSIONS

Studies of the solar-flare cosmic-ray particle transport in the
interplanetary medium and the data analysis of the fluctuating
solar wind magnetic fields have revealed the existence of dom-
inating two-dimensional transverse magnetic fluctuations. Here
we demonstrated that the filamentation instability of counter-
streaming magnetized plasmas provides a plausible mechanism
for the origin of this 2D turbulence component. Solar coronal
mass ejections into the interplanetary medium, as well as over-
taking solar wind streams in the appropriate center of plasma
mass reference system, correspond to energetic collisions of
plasma shells with different nonrelativistic velocities.
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Analyzing the dispersion relation we showed that these plasma
shell collisions quickly lead to the onset of purely growing ape-
riodic plasma instabilities perpendicular to the flow directions.
The instability threshold can be formulated in two equivalent
conditions: either (1) the plasma magnetic field strength must be
less than a critical field strength Bc given by the flow velocity
differences (eq. [28]), or (2) the flow velocity difference must be
larger than the local Alfvén speed times 1þ rnð Þ1/2, where rn
denotes the density contrast of the colliding shells (eq. [29]). For
typical coronal mass ejections and overtaking solar wind stream
parameters, the instability conditions are well fulfilled, and the
calculated growth rates of the fluctuations are short compared to
the dynamical flare timescales.We have shown that the maximum
spatial scale increases inversely proportional to the strength of the
ordered magnetic field. The relatively large values of the ordered

magnetic field in the two applications discussed limit the spatial
scales of the aperiodic fluctuations to 4 ; 104 and 2 ; 106 cm,
respectively. Larger spatial scales would result for smaller guiding
magnetic field strengths. Therefore, our results are consistent with
studies of the filamentation instability without guiding ordered
magnetic fields where no limiting restrictions on the maximum
fluctuation scale result. It appears that a viable physical realization
of the 2D turbulence fields has been established.
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