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ABSTRACT. We report on improvements made to the standard NICMOS processing pipeline. The calculation
of the uncertainties on the signal accumulation rate has been modified to include the statistical correlations
between the consecutive readouts. This leads to a ∼30% correction in the photometric weight of individual pixels
containing faint objects. In order to correct a problem with the existing cosmic-ray rejection algorithm, we have
developed and implemented a joint fit procedure, where the accumulating signal is fit as linear functions of time
with the same rate both before and after the cosmic-ray (CR) impact. This procedure leads to significantly smaller
uncertainty in the count rate for pixels affected by CRs. We also show that regions neighboring CRs found by
the standard NICMOS pipeline are systematically brighter. This interpixel correlation substantially increases the
footprint of CR impacts and is treated for the first time by our new pipeline. The new processing is most relevant
for photometry from deep observations of faint targets, for which accurate, optimal, and unbiased uncertainty
estimates are important. We present examples of these improvements for deep NIC2 images of a high-redshift
supernova from the Supernova Cosmology Project. The net improvement is a factor of 2 reduction in the number
of 3 j photometric outliers.

1. INTRODUCTION

The Near-Infrared Camera and Multi-Object Spectrometer
(NICMOS; Thompson et al. 1998) is one of the most successful
instruments of the Hubble Space Telescope (HST), providing
infrared images free of atmospheric influence. The instrument
data have contributed to more than 100 publications in the last
5 years.

At the heart of the instrument are three HgCdTe256 # 256
infrared arrays manufactured by Rockwell Scientific (Hodapp
et al. 1992; Skinner et al. 1998). Imaging with these arrays is
different from imaging with CCD-based devices in several as-
pects. The two features that are most relevant to this paper are
the existence of an operation mode with multiple nondestructive
readouts (MULTIACCUM), and a relatively high readout noise
(26 vs. 5 typical for the CCDs; Schultz et al. 2005; Heyer� �e e
& Biretta 2005).2 Common to both types of arrays is significant
cosmic-ray (CR) pollution caused by operation in space (Cal-
zetti 1997). The MULTIACCUM readout mode allows one to
follow the time development of the signal in a given pixel
(Schultz et al. 2005). This information can be used to extract
the source count rate from the time development of the signal,

1 Based in part on observations made with the NASA/ESA Hubble Space
Telescope, obtained at the Space Telescope Science Institute, which is operated
by the Association of Universities for Research in Astronomy, Inc., under
NASA contract NAS5-26555. These observations are associated with programs
GO-8088 and GO-9075.

2 This number (26 ) is typical for a differenced pair of readouts.�e

as is done in the NICMOS data-processing pipeline. The in-
formation from multiple readouts effectively reduces the impact
of the large readout noise and gives a better count-rate estimate
than the simple difference of the final and initial readouts (Gar-
nett & Forrest 1993; Offenberg et al. 2001; Fixsen et al. 2000;
Thompson et al. 1998; Sparks 1998). The timing information
also allows one to correct for the CR impacts and potential-
well saturation on a per pixel basis (Bushouse 1997).

In this paper, we show that the standard NICMOS pipeline
correctly determines the count rate, but not the count-rate un-
certainties. The pixel-level uncertainties are important for pho-
tometry, as they directly propagate to the estimated uncertainty
on the derived magnitude. For some scientific applications,
such as cosmological studies, a correct evaluation of the un-
certainties is of paramount importance. Even though one can
obtain an estimate of the average uncertainty from the rms of
the sky pixels, in practice correct implementation of such a
measurement is complicated by the large spatial variation of
the quantum efficiency across the array and corruption and
increased uncertainty for pixels with CR hits.

These considerations motivated us to make several im-
provements to the NICMOS pipeline processing, which are
especially important for studies of faint sources. Our first
modification to the pipeline results in a better estimate of the
pixel-level count-rate uncertainty. We also report on tech-
niques for improved detection and enhanced suppression of
CR hits. All improvements described in this paper are in-
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corporated into an IRAF/STSDAS3-compatible C program,
which we call CALNICCR, originally derived from the stan-
dard NICMOS pipeline.

The rest of the paper is organized as follows. In § 2 we
discuss a deficiency of the existing error determination and
present an improved technique. In § 3 we describe several
problems with the treatment of CRs in the standard NICMOS
pipeline and then describe our improved procedure for handling
CR hits. We show a comparison between the default processing
and our own in § 4, followed by our conclusions in § 5.

2. LINEAR FIT AND POISSON SIGNAL
CORRELATIONS

The targets of most NICMOS observations do not show
variability on the timescale of an exposure. Since HST guiding
is very accurate (Schultz et al. 2005), we can expect the count
rate of the source to be constant in each pixel. Typically, the
sky background does not vary during an observation, except
when there is a scattered Earthlight at the ends of an exposure
(Williams et al. 2000). However, the recommended “biaseq”
procedure (Mobasher & Roye 2004), designed to remove spu-
rious quadrant bias jumps occurring between readouts, line-
arizes the time development of the average counts in a quadrant.
This procedure therefore removes any changes in the sky back-
ground, so the incoming photon flux in any pixel is seen to be
constant in time after preprocessing. The response of the
HgCdTe arrays has been well characterized (Thompson et al.
1995; Skinner et al. 1998), and nonlinearity corrections are
applied in a processing step prior to the count-rate determi-
nation (Bushouse 1997). Therefore, it is natural to expect that
the readout values in a pixel, , are accumulating linearly withyi

time, . One can then extract the count rate iny p a � b time
a pixel, b, by performing a linear fit to the readout values4

(Bushouse 1997).
For the purpose of the following discussion, it is useful to

distinguish two components of the signal, , read out from ayi

detector pixel during the ith readout: a Poisson count due toPi

photon sources, and a Gaussian-distributed readout noise ,ri

inherent in the detector and its electronics. The Poisson term
includes counts from astronomical objects and from back-
ground components, such as “amplifier glow,” discussed below.
The readout noise introduces a jitter on top of the signal,
thereby changing the readout from the true Poisson countyi

3 IRAF is distributed by the National Optical Astronomy Observatory, which
is operated by the Association of Universities for Research in Astronomy, Inc.,
under cooperative agreement with the National Science Foundation. The Space
Telescope Science Data Analysis System (STSDAS) is distributed by the Space
Telescope Science Institute.

4 NICMOS arrays exhibit a time- and wavelength-dependent nonlinear be-
havior. It was first observed in Bohlin et al. (2005) and further investigated
in Mobasher & Riess (2005), de Jong et al. (2006), and Bohlin et al. (2006).
The correction prescribed in de Jong (2006) involves tuning an image after
the pipeline is run, and pixel-level count rates are determined to a first
approximation.

: . The exact value of for an individual readoutP y p P � r ri i i i i

is not known. It is generally assumed that the electronics func-
tion in the same way independently for all readouts. In this
case the are uncorrelated, and they have constant standardri

deviation, R, which can be measured separately using, e.g., bias
calibration images.

The signal from the photon sources results in correlation
between the readouts, since the signal accumulated by the time
of one readout affects the statistics of the following readouts.
The correlation coefficient between readouts i and isi � k

Picorr (i, i � k) p . (1)
2 2� �P � R P � Ri i�k

The standard least-squares linear fit formulae for the count
rate, which assume statistically independent readout values, are
shown in Appendix A. They account for a weighting factor,

, associated with readout . For independent data samples thej yi i

minimum variance estimate for the weight factors is set equal
to the readout variance, It is this for-2 2j p Var (y ) p P � R .i i i

malism that is implemented in the standard NICMOS pipeline.
However, as is evident from equation (1), the assumption of

statistical independence of the readouts is not strictly true, and
is violated to a degree dependent on the relative strength of
the Poisson photonic noise and the readout noise. In the limit
where the photon counts are small compared to the readout
noise, the correlation between the readouts vanishes, and the
standard formulae shown in equations (A1)–(A4) become a
reasonable approximation.

The NICMOS devices are afflicted by amplifier glow, where
the amplifiers positioned at the corners of the four quadrants
warm up during each readout and become a source of thermal
radiation to which the infrared detectors are sensitive (Skinner
et al. 1998). This effect results in deposition of a 10–15 �e
signal in the center of the detector per readout (Schultz et al.
2005) and an order-of-magnitude larger signal in the corners.
The size of the effect scales linearly with the number of read-
outs (Hodapp et al. 1992, 1996).

Both a model of the glow, G, and a model of the dark current,
D, are subtracted from each readout prior to the count-rate
derivation, but the assigned errors (aforementioned weighting
factors ) are derived using the original counts. In the rest ofji

the paper, we use the notation to indicate the background-′yi

subtracted readouts, . It is the values′ ′y p y � (GN � Dt ) yi i read i i

that are used in the linear fit to extract a count rate for a pixel.
For long exposures with over 20 MULTIACCUM readouts

the amplifier glow is more significant in the center of the de-
tector than other sources of background photons, such as dark
current and zodiacal light, and its variance is comparable to
that of the readout noise. In this case the correlations between
the readouts become appreciable. The correlations are even
more important for bright targets, and for objects imaged in
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Fig. 1.—Ratio of the true standard deviation of the count rate and that
derived according to the uncorrelated linear fit formulae (A2)–(A4) as a func-
tion of the count rate. Ignoring the correlated uncertainties leads to significant
error on the quoted uncertainties, by a factor ranging from 1.26 for faint objects
to about 3.5 for the brightest objects. Using the proper noise value of 19 �e
in the fit would bring the error factor to 1.62 for faint objects.

the corners of the detector, which are more severely affected
by the amplifier glow.

Note that NICMOS Instrument Handbook (Schultz et al.
2005) quotes the noise value for a pair of differenced readouts,
and it is this value that the standard NICMOS pipeline uses as
a noise estimate (value of R in the formulae above). It makes
more sense to use the noise per single readout, which is smaller
by a square root of 2, in the count-rate derivation for a given
pixel. We used a single readout noise value in CALNICCR,
and also in the standard pipeline when a comparison of different
ways of processing is made.

Given the presence of correlations, one can ask (1) whether
the implemented formulae are optimal (giving the smallest un-
certainty), (2) whether they are biased, and (3) whether the
count-rate uncertainty derived from the fit is correct. To answer
the first two questions, we performed Monte Carlo simulations
using nominal input parameters: a gain of 5.4 ADU�1, am-�e
plifier glow of 15 per readout, readout noise of 19 , dark� �e e
current of 0.050 s�1, and a MIF1024 (Schultz et al. 2005)�e
readout sequence with 26 readouts.5

These simulations indicate that including the correlations in
the fit improves the scatter of the count-rate estimate by at most
15% for a background-limited object located in a corner of the
array. The improvement is only 3% for a background-limited
object at the center of the array. Since our targets are generally
near the center of the array, we did not modify the formalism
of the count-rate derivation in the NICMOS pipeline. These
simulations also indicate that the uncorrelated linear fit does
not introduce a bias in the count-rate estimate.

However, the accuracy of the uncertainty assigned to the count
rate using the standard method is not sufficiently accurate. The
count-rate uncertainty derived according to equations (A2)–(A4),

, underestimates the true standard deviation, . Fig-j (b) j (b)uncorr T

5 The number of trials for this and other Monte Carlo simulations reported
in this paper are at least comparable to the number of pixels in the NICMOS
detectors.

ure 1 shows the ratio as a function of the sourcej (b)/j (b)T uncorr

rate. One can see that the uncertainty derived according to
equations (A2)–(A4) underestimates the true standard deviation
by a factor of 1.6 for the sky pixels. For pixels with a source
rate of 5 s�1, the standard uncertainty estimate is off by a�e
factor of 2.9. The ratio has an asymptotic value of 3.5 for very
high count rates.

We note that the large readout noise value used in the stan-
dard pipeline can serve as a “fudge factor” alleviating the de-
ficiency of the uncertainty estimates. For instance, if we use
19 as the readout noise value for Monte Carlo data gen-�e
eration and use 26 as the noise value in count-rate recon-�e
struction from the same data, then the aforementioned factor
of 1.6 for sky pixels is reduced to 1.3.

In the absence of readout noise, the independent variables
are the accumulated differences between the subsequent read-
outs. After rewriting the formulae via the differences dy pi

, one can estimate the part of theP � P � r � r � P � Pi i�1 i i�1 i i�1

b variance that is due to the correlations. The part of the b
variance due to the readout noise can be estimated separately,
as an additional independent component. The formalism is
shown in Appendix B, formulae (B1)–(B5). We note that this
concept has been fully described by Sparks (1998), who derived
formulae for the case of unweighted data. The formulae were
rederived in Gordon et al. (2005) for Spitzer data analysis. They
are shown here for completeness, and as a precursor to the
more sophisticated case that we address in § 3. We verified the
correctness of the formulae (B1)–(B5) with Monte Carlo
simulations.

To check the performance of the uncertainty estimates on
real data, we constructed a histogram of the values of b/j(b)
for images with flat sky background and a small number of
astronomical sources. The histogram for such images should
be close to a Gaussian with unit standard deviation if the de-
rived uncertainties reflect the true scatter of the sky fluctuations.
For data taken with MIF1024 and SPARS64 readout sequences,
we see that the distribution of pixel values is close to Gaussian,6

with a width too narrow by a factor of 1.38 (Fig. 2). We consider
this to be a major improvement compared to the factor of 1.61
obtained with the same data using the old formulae (eqs. [A2]–
[A4]), resulting in a ∼30% adjustment to the photometric
weights for pixels containing faint sources. The histograms for
both cases are shown in Figure 2. The remaining 30% deviation
from unity could be due to a number of causes, including the
accuracy of calibration (flat-fielding, response linearity, readout
noise and gain characterization, and systematic bias offsets),
or possibly the count-rate ramp-up effect discussed in Bohlin

6 The histograms show some obvious departures from an ideal Gaussian
distribution. Real astronomical objects in the images contribute to the high
end of the distribution. “Hot” and “cold” pixels, unaccounted for in the bad
pixel mask, add to both high and low tails. For these reasons, we fit the Gaussian
function to the central region within �2 j to derive the width. The reduced

varies between 0.9 and 1.3 in such fits.2x
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Fig. 2.—Distribution of the pixel count rate divided by its estimated uncertainty in a background-dominated image after sky subtraction. The solid line corresponds
to new uncertainty estimates from CALNICCR, accounting for the correlations between different readouts. The dotted line corresponds to the default uncertainty
estimates in the NICMOS pipeline. The histogram on the left is made assuming the default readout noise value in the pipeline processing. The histogram on the
right is made assuming the proper noise value, which is smaller by . See text for discussion.�2

et al. (2005), Mobasher & Riess (2005), de Jong et al. (2006),
and Bohlin et al. (2006). Whatever the causes, they also con-
tribute to the factor of 1.61 for the standard pipeline.

3. PIXELS AFFECTED BY COSMIC RAYS

As discussed in § 1, the existence of multiple nondestructive
readouts allows one to better account for cosmic rays. In the
case of a cosmic-ray hit in a pixel, there is a jump in the signal
accumulation with time. It can be identified as an outlier in
the consecutive readout differences normalized to the time be-
tween the readouts. In the standard NICMOS pipeline, the se-
quential, uncertainty-normalized differences between the de-
viation of the readout values from the linear fit are used to find
CR candidates:

′ ′jump p [y � (a � bt )]/j � [y � (a � bt )]/j .i�1 i�1 i�1 i�1 i i i

(2)

In the case of a real CR, the deviation is likely to be positive
after the jump and negative before the jump. In the standard
pipeline, the default threshold for identifying CRs is set to
4 j (i.e., ). In principle, the one-sided detection ofjump 1 4i�1

the jump leads to a bias in an average count rate. However,
for reasonable detection parameters, the size of the bias is small,

on the scale of a typical count-rate uncertainty in a pixel (see
Fig. 5).

3.1. CR Detection Sensitivity

False-positive CR detections will occur, with a likelihood
depending on the detection threshold. The jump quantity in-
volves a subtraction of two correlated deviations, each of which
is Gaussian-distributed around zero, with the width narrower
than unity due to the exaggerated noise value. Without the
correlation, the threshold of 4 j would be similar to a 2.83 j

threshold for a single Gaussian. Using this, one might try to
calculate a rough estimate of the fraction of false-positive de-
tections in an exposure by multiplying the number of jump
estimates with the single-sided Gaussian tail probability. This
naive estimate gives a false CR detection rate of 5.6%, which
is significantly different from the 0.015% we obtain with a full
Monte Carlo simulation. There are two reasons for this dis-
crepancy—the presence of correlation between the readouts and
a wrong noise value—which affects the definition of j.

There is another way to look at the jump identification in
equation (2). We note that in the case of sky pixels the un-
certainties for consecutive readouts have similar values,

. Therefore, the jump value can be approximated asj ≈ ji�1 i

. The value in the denominator[(y � y ) � b(t � t )] /ji�1 i i�1 i i�1

increases with time, whereas the difference in the numerator
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Fig. 3.—Monte Carlo simulation results giving the false-positive CR detection as a function of readout number. The left panel is for the default NICMOS
pipeline, and the right panel uses our modified jump definition, as described in eq. (3).

Fig. 4.—CR detection sensitivity as a function of the false-positive CR
identification fraction. In this example, the sensitivity is defined as the amount
of CR deposition that has a 50% probability of being detected. We show Monte
Carlo simulation results for three CR identification and processing methods:
(1) the standard NICMOS pipeline, (2) a technique of CR identification and
correction by fitting the readout segments before and after a putative CR jump
as independent linear functions (Hesselroth et al. 2000; Gordon et al. 2005),
and (3) CALNICCR. A lower CR detection sensitivity at the same false-positive
rate corresponds to an improved ability to identify weaker CRs. The actual
number of CRs detected also depends on the distribution function of the charge
deposition per pixel per CR.

is nearly constant. This leads to a decrease in CR identification
efficiency with the number of readouts, as shown in Figure 3
(also see Fig. 4 for the relation between CR detection sensitivity

and a false detection rate of Fig. 3). To remove this undesirable
effect, we changed the jump definition for CALNICCR to be

∗′ ′jump p [(y � y ) � b(t � t )]/j ,i�1 i�1 i i�1 i i�1

∗ 2�j p . (3)b(t � t ) � G � D(t � t ) � 2Ri�1 i�1 i i�1 i

The main difference compared to the previous definition is in
the expression for , which is defined here to reflect the∗ji�1

variance in . The change in definition causes the′ ′ ′dy p y � yi�1 i

CR detection rate to be time independent in our method
(Fig. 3), while maintaining the simplicity of the criterion.
Monte Carlo simulations also indicate that this modified CR
detection threshold leads to a modest improvement in CR de-
tection sensitivity over the standard pipeline (see Fig. 4).

We note that there is also an alternative method of CR iden-
tification used in Hesselroth et al. (2000) and Gordon et al.
(2005), in which the jump measurement precision is improved
using the values of linear fits to the readouts before and after
the jump:

∗∗ ∗∗ 2�jump p [a � b t � (a � b t )]/j , j p .dP � Ri�1 2 2 i�1 1 1 i i

(4)

The quantity is estimated from the linear fit to readouts priordPi

to the jump candidate. The origin of the expression for the
error on the jump estimate, , is not clear; it is similar to∗∗j

our expression for except for the prefactor for the readout∗j

noise variance. Moreover, our equation (3) was derived to be
used with the readout values themselves, not the fit functions
estimates, where a more complicated error analysis might be
necessary. In practice, using equation (4) for selecting a best
jump candidate can lead to a modulation of CR detection sen-
sitivity with a readout number.
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Fig. 5.—Average sky level shift for pixels unaffected by CRs as a function
of false-positive CR identification fraction. The shift is due to a bias caused
by one-sided jump identification (eqs. [2] and [3]). We show Monte Carlo
simulation results for the same three CR identification and processing methods
as in Fig. 4: (1) the standard NICMOS pipeline, (2) the technique of Hesselroth
et al. (2000) and Gordon et al. (2005), and (3) CALNICCR. A larger shift
corresponds to a larger bias. A typical count-rate uncertainty for long exposures
is about 0.005 counts s�1.

Fig. 6.—Ratio of sky rms with and without CR identification triggered for
pixels unaffected by CRs as a function of false-positive trigger rate. We show
Monte Carlo simulation results for the same three CR identification and pro-
cessing methods as in Fig. 4: (1) the standard NICMOS pipeline, (2) the
technique of Hesselroth et al. (2000) and Gordon et al. (2005), and (3) CAL-
NICCR. A lower rms ratio at the same false-positive rate corresponds to a
better CR correction technique.

Additional techniques can be used to tune the initial selection
of CR candidates (as opposed to evaluate their significance).
For instance, Hesselroth et al. (2000) used a computationally
intensive global likelihood fit to all possible jump scenarios to
find the readout containing the most likely CR prior to using
the jump-based selection. In Gordon et al. (2005), two-point
differences are considered prior to the more careful jump eval-
uation. We have not included these aspects of Hesselroth et al.
(2000) and Gordon et al. (2005) in our Monte Carlo simula-
tions. The uncertainty definition and potential readout number
modulation notwithstanding, the idea of using the fit function
values to obtain a more precise jump evaluation does lead to
an increase in CR detection sensitivity (see Fig. 4).

3.2. Correction for Detected CRs

One needs to account for an identified CR in the pipeline
processing of data from a pixel when deriving the count rate
and its uncertainty. The standard NICMOS pipeline procedure
is to shift the data following the jump on the basis of the two
readout values straddling the CR hit, , andd(y ) p y � yi�1 i�1 i

then refit the new sequence of data to the linear function using
formulae (A1)–(A4).

Some of the pixels affected by cosmic rays and processed

according to that standard procedure can still be visually iden-
tified in images as outliers. We attribute this to the finite pre-
cision of the jump measurement. The readout noise contribution
can make differ from the “true” value of the CR de-d(y )i�1

position by an amount comparable to the standard deviation of
the readout noise. For a given pixel, the difference systemat-
ically shifts the values of all post-CR readouts from what would
have been an unbiased estimate in the absence of the CR. (The
direction of the shift is random.) This affects both the count-
rate determination and its assigned uncertainty.

To avoid the CR processing effect described above, we de-
veloped a joint fit procedure whereby both the readouts before
and after the CR jump are fit to linear functions with the same
slope: . In this wayy p a � b # time; y p a � b # time1 1 2 2

the fit naturally accounts for the jump on thed(y) p a � a2 1

basis of all available readouts, and there are no artificial shifts
in the data. Since we employ a different definition of the jump
quantity, a comparison of the performance of the two methods
for the same jump threshold is inappropriate. Rather, compar-
ison should be made for thresholds that yield the same rate of
false-positive CRs for both methods. For example, we find the
same rate of false positives for a threshold of 4.0 in the standard
pipeline as for a threshold of 4.37 in CALNICCR. In such a
comparison, the effects of false-positive identification—the size
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Fig. 7.—Jump value (in units of the standard deviation; see eq. [2]) in the neighboring pixel vs. the primary pixel for an exposure prior to any pipeline correction.
Top: Side neighbors. Bottom: Corner neighbors. All the pixels with an identified CR jump in the primary pixel are plotted if the neighboring jump falls in the
selected ordinate range. The range was chosen to focus on the near-threshold behavior of the neighboring pixels, which do feature large jumps in cases when a
CR directly interacts with more than one pixel. The statistical information for the plotted data is given in Table 1. To enhance its visibility, the zero-deviation
line ( ) is shown in gray in these plots.Y p 0

TABLE 1
Correlation between Pixel Jump Value and Average Jump of Its Neighbors

Primary Pixel Jump
(N j)

Side Neighbors Corner Neighbors

Average Neighbor Jump
(N j)

rms
(j) N Pixels

Average Neighbor Jump
(N j)

rms
(j) N Pixels

4 ! y ! 50 . . . . . . . . . . 0.62 � 0.03 1.87 5155 0.28 � 0.02 1.44 5682
50 ! y ! 100 . . . . . . . . 0.78 � 0.05 1.73 1181 0.20 � 0.04 1.47 1340
100 ! y ! 150 . . . . . . 1.13 � 0.08 1.70 406 0.29 � 0.08 1.65 486
150 ! y ! 200 . . . . . . 1.42 � 0.14 2.18 251 0.46 � 0.09 1.48 290
200 ! y ! 250 . . . . . . 1.83 � 0.21 2.07 96 0.70 � 0.15 1.67 118
250 ! y ! 300 . . . . . . 2.42 � 0.34 1.91 32 0.52 � 0.15 0.86 34

Notes.—Statistical information on a correlation between a pixel jump value and an average jump of its neighbors
at the same readout. The same data are plotted in Fig. 7.

of the average rate shift and rms spread (Calzetti 1997)—are
greatly reduced for our method (see Figs. 5 and 6). The exact
formulae for this procedure are presented in Appendix C.

For comparison, the CR correction algorithm included in the
Spitzer instruments pipeline (Hesselroth et al. 2000; Gordon et
al. 2005) evaluates the count rate separately from each of the
segments of the readout sequence (partitioned by the CRs), and
then the measurements are combined. Our method gives a sim-
ilar estimate of the count rate, but it is more precise, due to

the use of a uniform count-rate estimator (b) for all segments.
Indeed, as shown in Figures 5 and 6, our method does achieve
a more accurate count-rate estimate, producing a smaller rms
and suffering less bias.

We note that in the case of a CR detection the increase in
the count-rate uncertainty depends on the time of the impact.
The worst-case scenario of a CR occurring in the middle of
the exposure increases the uncertainty by about a factor of 2,
due to the decreased time axis range of the fit (two halves
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Fig. 8.—Subarray of the reprocessed last readout frame from a NICMOS NIC2 exposure, shown in the top panel of the figure. The darker pixels indicate larger
counts, which could be due to cosmic rays. The dark region at the bottom is a field galaxy. The pixels with a CR detection are indicated by white contours.
Known bad pixels are crossed. The selected pixel black box is used as an example in Fig. 9. The box was selected to contain a concentrated CR to illustrate3 # 3
the effect of the primary CR on the neighboring pixels. The time development of the counts in the box is shown in the bottom panel of the figure. The3 # 3
numbers in the plots show the calculated significance of the jump, occurring at ∼350 s. The jump location is indicated with a gray dashed line for each pixel.
The default threshold is 4 j. Note that only one of the side neighbors of the central pixel is above this threshold (labeled “Lower Neighbor” on the plot subpanel),
but several other side pixels are also significantly affected.
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Fig. 9.—Jump value after a pipeline correction vs. the original one for side neighboring pixels. Top: Standard NICMOS pipeline, run with jump threshold of
4.00 (see eq. [2]). Bottom: CALNICCR, run with jump threshold of 4.37 (see eq. [3]). The thresholds are chosen to have a similar CR rejection performance for
the two pipelines. This figure is similar to the top plot in Fig. 7, and it shows the data from the same exposure. The emphasis here is made on the data features
after a pipeline correction is applied. The gray points on the bottom plot are due to a single special pixel with extremely peculiar signal time development.

combined are worse than one whole). The “shifting” procedure
in the standard NICMOS pipeline does not account for this
effect, when calculating the uncertainty.

3.3. CR Correction of Neighboring Pixels

On examination of the processed images, we noted one ad-
ditional artifact: a number of “sky” pixels adjacent to CR-
affected regions visually appeared to be positive outliers. The
readout sequences of the neighboring pixels show moderately
significant jumps at the same time as the nearby CR-affected
pixels. However, as these correlated jumps are below the CR
detection threshold, a substantial number of CR-affected pixels
are not treated in the standard NICMOS pipeline. The effect
is illustrated in Figure 7 and quantified in detail in Table 1,
which demonstrate the correlation between the temporally co-
incident jumps for the neighboring pixels. We note that the
correlation is obvious for the side neighbors, but not for the
corner neighbors. This pattern is consistent with laboratory
studies of HgCdTe array responses to CRs (Offenberg et al.
2001; Figer et al. 2004; Garnett et al. 2004). We show an
example of this effect on a real exposure in the Figure 8. This
phenomenon may be attributable to CR particles interacting
with the array material, possibly spawning secondary particles
such as delta electrons and bremsstrahlung radiation.

To remove this bias, we process the images in two passes.
The CR identification algorithm is run during the first pass.
The time locations of the CR jumps are flagged for each pixel
in the array. Then the flags are propagated to the same time
locations for the side neighbors. Finally, the second pass of the
algorithm is run to refit the data while taking into account the
previously identified jumps, and the count rates are extracted
for all pixels. This procedure drastically reduces the number
of outliers remaining in the images and removes the correlation
for side neighboring pixels (Fig. 9).

4. PROCESSING COMPARISON

In this section, we demonstrate the difference between the
CALNICCR processing and the standard NICMOS pipeline us-
ing real data. First, a visual example is shown, then results from
a more quantitative photometric study are given. The data used
to illustrate these improvements consist of NICMOS camera 2
(NIC2) images of a high-redshift Type Ia supernova discovered
by the Supernova Cosmology Project, obtained with either the
MIF1024 or the SPARS64 readout configuration, and having
durations ranging from 1026 s (for MIF1024) to 1280 s (for
SPARS64). A typical supernova light-curve measurement con-
sists of two to eight such exposures at each epoch. In our typical
analysis, the supernova is fit with a model point-spread function
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Fig. 10.—NICMOS NIC2 count-rate image of a high-redshift supernova target. The darker pixels correspond to higher count rates. Image (a) is obtained with
the standard NICMOS pipeline processing, while image (b) is obtained with CALNICCR. Images (c) and (d) correspond to (a) and (b), except that the sky-
subtracted count rates were divided by their estimated uncertainties. The supernova is near the center of the field. There are two faint field galaxies: one on the
right-hand side of the picture, and another at about the same distance directly below the supernova. We vetoed pixels along 128th row, 128th and 129th columns,
and at the coronagraphic hole location from processing. This created visual peculiarities in the images: middle horizontal and vertical lines and a circle in the
upper left quadrant. The 45� streak in the lower left quadrant is a diffraction spike from a star outside the field.
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Fig. 11.—Fraction of photometric 3 j outliers as a function of the input
flux for the standard pipeline (open circles) and CALNICCR ( filled circles).
Also shown is the intermediate case, in which only the uncertainty estimate
is modified ( filled triangles).

(PSF), and the underlying galaxy is removed using a combination
of modeling and reference images. The modeling region can
easily extend over an block of pixels; 10%–50% of these11#11
pixels are likely to have suffered a CR hit during one of its
exposures at a given epoch. Thus, accurate uncertainties and
proper treatment of CRs is critical for obtaining a robust su-
pernova light-curve measurement suitable for measuring the
accelerating expansion of the universe.

We show an example of the effect of our processing in Fig-
ures 10a and 10b. By visual examination of the same exposure
processed with the standard pipeline and CALNICCR, one sees
that the number of outliers is reduced. However, this is only
half of the story; the uncertainty on the rate is an equally
important ingredient in assessing the quality of the results. As
discussed in § 3, the uncertainty necessarily increases for the
pixels affected by CRs. (This is one of the arguments for using
the measured count-rate error information in all photometric
procedures.) Therefore, it is instructive to examine the images
after the sky-subtracted count rates are divided by their esti-
mated uncertainties. As shown in Figures 10c and 10d, there
is a clear improvement in the case of CALNICCR. The sky
regions of the new image are very uniform, indicating that the
pixels that look like outliers in the count-rate images have
correctly estimated uncertainties and are therefore consistent
with the sky level on that scale. (Recall that a histogram of
such an uncertainty-normalized image was shown in Fig. 2.)

To quantify the effect of CALNICCR on point-source pho-
tometry, we also performed a photometric study with a point

source embedded in a real image at random locations. The PSF
was generated using the Tiny Tim simulation model (Krist &
Hook 2004). After the source was added to the image, PSF
photometry was performed at its location to measure the flux.
The procedure was performed for the same image processed
with both the standard NICMOS pipeline and CALNICCR,
over a range of input fluxes (PSF amplitudes). We then counted
the fraction of times that the output flux was different from
the input flux by more that 3 times the calculated uncertainty.
The results are shown in Figure 11.

Several features are clear in the figure. The fraction of the
photometric outliers is substantially larger for low source count
rate than for the higher rates. This is to be expected, as the
photometric fit is just as likely to converge on a random deviant
pixel as on the true point-source signal when their fluxes are
comparable. The fraction of outliers is roughly a factor of 2
less for CALNICCR than for the standard NICMOS pipeline.
Most of the difference is due to the improvement in the CR
processing algorithm.

5. CONCLUSIONS

We have improved the NICMOS pipeline processing in three
areas: (1) We made the count uncertainty estimates substantially
closer to being correct. (2) We improved the CR detection and
rejection procedure. (3) We have corrected for spillover in the
pixels neighboring cosmic rays.7

The improvements are most relevant for analyses in which
accurate, optimal, and unbiased uncertainties are important, and
for observations of faint objects, where subtle effects from CRs
are important. For such cases, our new pipeline improves the
photometric weight by ∼30% in comparison with the standard
NICMOS pipeline.

The relevance of our improvements for future space-based
infrared instruments, such as those for the James Webb Space
Telescope (JWST) or the Joint Dark Energy Mission (JDEM),
depends on the amount of the readout noise the infrared arrays
possess. Larger noise calls for more consideration to be given
to the pipeline processing, and for more readouts during an
exposure. Fortunately, modern NIR arrays possess substantially
lower readout noise than those of NICMOS. Better CR handling
will be important for the photometry of faint sources for JWST
and JDEM, as the CR pollution rate will be worse than that
experienced by the HST.

We are grateful to Eddie Bergeron, Howard Bushouse, Chris
Bebek, Al Schultz, and Ralph Bohlin for discussions regarding
the NICMOS features, performance, and calibration. We thank
Tony Spadafora for feedback regarding the manuscript. We
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of the paper.

7 The new code implementing these improvements, CALNICCR, is available
at http://www-supernova.lbl.gov/∼fadeyev/calniccr.tar.gz.
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APPENDIX A

LINEAR FIT FORMULAE FOR UNCORRELATED DATA

Equations (A1)–(A4) are the linear fit formulae for
uncorrelated data. The dependence of signal (photon counts)

on the readout time is fit to the linear dependence , andy x yi i i

the count rate b is derived:

1
b p (SS � S S ), (A1)xy x yDet

1
j(b) p , (A2)�Det

2Det p SS � S , (A3)xx x

n n n 21 x xi iS p , S p , S p ,� � �x xx2 2 2j j jip1 ip1 ip1i i i

n n
y x yi i iS p , S p . (A4)� �y xy2 2j jip1 ip1i i

APPENDIX B

COUNT-RATE ERROR FOR THE CASE OF INTER-READOUT CORRELATIONS

Equations (B1)–(B5) present the count-rate estimate
accounting for the inter-readout correlations:

1
2 2�j(b) p , (B1)j(P) � j(G)

D

2D p S � S /S, (B2)xx x

n 2S S dyx xk k2 2j(P) p S � , (B3)� k ( )S S gainkp2 k

n 21 Sx2 2j(G) p R � x , (B4)� k( )4j Skp1 k

k�1 n1 x
S p , S p . (B5)� �k xk2 2j jip1 ipk�1i i

Here the term comes from the Poisson part of the readout2j(P)
values, and is due to the Gaussian readout noise.2j(G)

APPENDIX C

COUNT-RATE ERROR FOR PIXELS AFFECTED BY COSMIC RAYS

Here we fit both the readout sequences before and after a
CR jump to linear functions with the same slope: y p a �1 1

.b # time; y p a � b # time2 2

For the case of a single CR jump, we can define the joint
as follows:2x

k n2 2[y � (a � bx )] [y � (a � bx )]i 1 i i 2 i2x p � . (C1)� �2 2j jip1 ipk�1i i

To minimize , we take partial derivatives with respect to2x

, , and b, and equate them to zero:a a1 2

k2�x y � (a � bx )i 1 ip p 0, (C2)� 2�a jip11 i

n2�x y � (a � bx )i 2 ip p 0, (C3)� 2�a jipk�12 i
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k2�x x [y � (a � bx )]i i 1 ip � 2�b jip1 i

n
x [y � (a � bx )]i i 2 i� p 0. (C4)� 2jipk�1 i

This is a system of linear equations with respect to , ,a a1 2

and b. We introduce a superscript to the quantities S, , ,S Sx xx

, and defined in equation (A4) to differentiate sums overS Sy xy

different parts of the readout sequence and rewrite the equations
as follows:

1 1 1a S � bS p S ,1 x y

2 2 2a S � bS p S ,2 x y

1 2 1 2 1 2a S � a S � b(S � S ) p S � S . (C5)1 x 2 x xx xx xy xy

In the case of N CR jumps, the readout sequence will have
partitioned segments, the will have terms, and2N � 1 x N � 1

there will be linear equations to solve for and b.N � 2 ai

Nonetheless, the equations are simple enough to be solved
manually. We derive the following expressions for b and inai

the general case:

1 i i i ib p (S S � S S ), (C6)� xy x y
D i

i i 2 iD p [S � (S ) /S ], (C7)� xx x
i

i i ia p (S � bS )/S . (C8)i y x

For the case of a single segment (no CR jump), equations
(C6)–(C7) are reduced to (A1)–(A4).

For we derive an expression similar to equation (B1):j(b)

1 2 2�j(b) p � [j(P) � j(G) ], (C9)i ii
D

ni i i 2S S dyx xk k2 i 2j(P) p (S ) � , (C10)�i k ( )i iS S gainkp2 k

ni i 21 Sx2 2j(G) p R � x . (C11)�i k( )4 ij Skp1 k
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