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ABSTRACT

The strongest evidence for dark energy at present comes from geometric techniques such as the supernova distance-
redshift relation. By combining the measured expansion history with the Friedmann equation, one determines the
energy density and its time evolution and hence the equation of state of dark energy. Because these methods rely on the
Friedmann equation, which has not been independently tested, it is desirable to find alternative methods that work for
both general relativity and other theories of gravity. Assuming that sufficiently large patches of a perturbed Robertson-
Walker spacetime evolve like separate Robertson-Walker universes, that shear stress is unimportant on large scales, and
that energy and momentum are locally conserved, we derive several relations between long-wavelength metric and
matter perturbations. These relations include generalizations of the initial-value constraints of general relativity. For a
class of theories including general relativity we reduce the long-wavelength metric, density, and velocity potential
perturbations to quadratures including curvature perturbations, entropy perturbations, and the effects of nonzero back-
ground curvature. When combined with the expansion history measured geometrically, the long-wavelength solution
provides a test that could distinguish modified gravity from other explanations of dark energy.

Subject headings: cosmology: theory — gravitation

1. INTRODUCTION

Current evidence for dark energy is based on two key
assumptions.

1. The cosmological principle holds; i.e., on large scales the
matter distribution and its expansion are homogeneous and iso-
tropic, and the spacetime geometry is Robertson-Walker.

2. The cosmic expansion scale factor a(#) obeys the Friedmann
equation, which can be written
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where K is the spatial curvature with units of inverse length
squared (we set ¢ = 1) and 7 is conformal time, related to
cosmic proper time ¢ by dt = a(7)dr. Usually the Friedmann
equation is applied indirectly through an expression for the
angular-diameter or luminosity distance; these formulae depend
crucially on the expression for 7(a) obtained by integrating equa-
tion (1).

The cosmological principle is more general than general rela-
tivity (GR) and is amenable to direct observational test through
measurements of distant objects such as galaxies, Type Ia super-
novae, and the microwave background radiation. The Friedmann
equation, however, is equivalent to one of the Einstein field equa-
tions of GR applied to the Robertson-Walker metric, and, so far at
least, it has not been independently tested. Instead, the Friedmann
equation is used by astronomers in effect to deduce p(a) including
dark energy through measurements of the Hubble expansion rate
H(a).

If the evidence for dark energy is secure, there are four pos-
sible explanations.

1. The dark energy is a cosmological constant or, equiva-
lently, the energy density and negative pressure of the vacuum
(Gliner 1966; Zel’dovich 1967).
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2. The dark energy is some other source of stress-energy, for
example, a scalar field with large negative pressure (Ratra &
Peebles 1988; Steinhardt et al. 1999).

3. General relativity needs to be modified and we cannot use
it to deduce the existence of either a cosmological constant or an
exotic form of energy (Dvali et al. 2000; Lue et al. 2004).

4. General relativity is correct but our understanding of it
is not; e.g., long-wavelength density perturbations modify the
Friedmann equation (Kolb et al. 2005, 2006).

It would be interesting to find observational tests that can
distinguish among these possibilities. The first case can be tested
by measuring the equation of state parameter w = p/p on large
scales; a cosmological constant has w = —1. This test can be
made using methods such as the supernova distance-redshift re-
lation (Riess et al. 1998; Perlmutter et al. 1999) and baryon acous-
tic oscillations (Eisenstein et al. 2005), whose interpretation relies
on the Friedmann equation. Such methods are called geometric
(they measure the large-scale geometry of spacetime) or kinematic
(they rely on energy conservation and on the first time derivative
of the expansion scale factor).

It is more difficult to test the third possibility, namely, that
dark energy represents a modification of GR rather than (or in
addition to) a new form of mass-energy. Redshift-distance tests
invoke the Friedmann equation of GR or its equivalent in other
theories in order to determine the abundance and equation of
state of dark energy. Such tests do not work without a formula
relating a(7) to the cosmic energy density and pressure. While
specific alternative models can be tested, it would be desirable
to have general cosmological tests independent of the Friedmann
equation.

The evolution of density perturbations has been proposed as
an independent test of dark energy and general relativity (Linder
2005; Ishak et al. 2005). For example, weak gravitational lensing
measurements, the evolution of galaxy clustering on large scales,
and the abundance of rich galaxy clusters all have some sensi-
tivity to the gravitational effects of dark energy at redshiftsz < 1.
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These methods can be called dynamic because the evolution equa-
tions for the perturbations are at least second-order in time.

This paper examines what the linear growth of metric, density,
and velocity perturbations can tell us about gravity. By general-
izing previous work on evolution of separate universes (Wands
et al. 2000; Gordon 2005 and references therein), we show that
in GR, on length scales larger than the Jeans length (more gener-
ally, on scales large enough that spatial gradients can be neglected
in the equations of motion), the evolution of the metric and density
perturbations of a background Robertson-Walker universe can
be determined from the Friedmann equation and local energy-
momentum conservation. Generalizing this to arbitrary theories
of gravity, under certain conditions explained in this paper, the
evolution of Robertson-Walker spacetimes (assuming they are
solutions of the gravitational field equations) combined with lo-
cal energy-momentum conservation is sufficient to determine the
evolution of long-wavelength perturbations of the metric and mat-
ter variables.

Because GR is so fully integrated into most treatments of cos-
mological perturbation theory, and because we wish to test grav-
itation more generally, it is worth recalling its basic elements.

1. Spacetime is describable as a classical four-dimensional
manifold with a metric locally equivalent to Minkowski. This is
generalizable to higher dimensions, where matter fields reside on
a three-dimensional spatial brane.

2. Special relativity holds locally. In particular, energy-
momentum is locally conserved. This is more general than GR.

3. The weak equivalence principle holds; i.e., freely falling
bodies follow spacetime geodesics. This is more general than GR.

4. The metric is the solution to the Einstein field equations
subject to appropriate initial and boundary conditions. This is
uniquely true in GR.

The first three ingredients are assumed by most viable theories
of gravitation applied on cosmological scales. They are assumed
to be correct throughout this paper. The Einstein field equations
are not assumed to hold except where explicitly stated below. We
assume throughout that the universe is approximately (or, for
some calculations, exactly) Robertson-Walker.

2. ROBERTSON-WALKER SPACETIMES
AND THEIR PERTURBATIONS

The general Robertson-Walker spacetime is specified by giv-
ing a spatial curvature constant K (with units of inverse length
squared) and a dimensionless scale factor a(7) (normalized so
that a = 1 today). Let us assume that the evolution of a(7) de-
pends on K and on the properties of the matter and energy filling
the universe. Applying the cosmological principle, the matter
must behave as a perfect fluid at rest in the comoving frame. The
pressure of a perfect fluid can be written p(p, S), where p is the
proper energy density and S is the comoving entropy density in
the fluid rest frame. The line element can thus be written

ds* = a*(1,K,S)[—dm* + dx* +r*(x,K)d], (2)
where 7(x,K) = K~ sin (K'?x) for K > 0 (and is analytically
continued for K < 0) and dQ? = d6? + sin’0 d¢?. Initially we
make no assumption about the dynamics except that the evo-
lution of the scale factor depends only on the geometry (K)and
composition () of the (3 4+ 1)-dimensional universe and not,
for example, on parameters describing extra dimensions.' Only

! It would be straightforward to add such parameters to the argument list of
a(7,K, S) and then perturb them.
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below is the Friedmann equation assumed to determine the exact
form of a(1, K, §S).

2.1. Curvature and Coordinate Perturbations

Metric perturbations are obtained by comparing two slightly
different spacetimes. We consider two homogeneous and isotropic
Robertson-Walker spacetimes differing only by their (spatially ho-
mogeneous) spatial curvature. The first spacetime has spatial cur-
vature K; the second one has spatial curvature K(1 + dg), where
Ok 1s a small constant. We write the metric of the second spacetime
as a perturbation of the first, as follows. First, the angular radius
can be Taylor-expanded to first order in dg to give

r?(x K + Kbg) = r*(x, K)(1 = 6k) + xr(x, 4K)8x, (3)
while a(7, K + Kbéx,S) = a(7,K,S) + 6x(0a/0In K). To sim-
plify the appearance of the line element we change variables
T — 7+ a(7) and x — x(1 — k), where o and k are assumed
to be first-order in . In these new coordinates, to first order in
Ok the second spacetime has line element

Olna
dszzaz(T,IQS)(l +2Ha+26K81 K)

x{—(1+2d)d7'2—|—(1—2/<)dx2

+ [(1 = 82 (0 K) + (8x — 26)xr(x, 4K)] sz},
(4)

where H(7, K, S) = 0In a/0r. This line element describes a per-
fectly homogeneous and isotropic Robertson-Walker spacetime
with spatial curvature K(1 + 6x). However, for appropriate choices
of a and & (i.e., the appropriate coordinate transformation), it
takes precisely the same form as a perturbed Robertson-Walker
spacetime with background spatial curvature K and perturbation
v,

ds* = a*(1,K, S)

) {—(1+20)dr? + (1 - 20) [d® + r2(x. K) d?] },

(5)
provided that the following three conditions hold:

1 . Olna
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In other words, a perturbed Robertson-Walker spacetime whose
metric perturbation W(7) is spatially homogeneous is identical
to an unperturbed Robertson- Walker spacetime represented by
a perturbed coordinate system.’

This equivalence is significant because it suggests that long-
wavelength curvature perturbations (for which U is effectively
independent of spatial position) should evolve like patches of a
Robertson-Walker spacetime (Wands et al. 2000; Gordon 2005
and references therein), whose dynamics is more general than gen-
eral relativity. So far we have assumed that the cosmological prin-
ciple holds, but we have not assumed the validity of the Einstein
field equations of general relativity. However, if we know how
a perfect Robertson-Walker spacetime evolves, the evolution of
long-wavelength curvature perturbations follows.

2 In § 4 we generalize eq. (5) to the case of two distinct potentials for the time
and space parts of the metric.
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To make further progress let us assume the form of a(r, K, S),
which requires specifying a theory of gravity. The simplest choice
is to assume the validity of the Friedmann equation, which gives

a —1/2
T(a,K,S):/ {?G&“p(&,S)K&Z] da. (7)
0

Using this, one finds
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We also require conservation of energy, which can be written
0
g @S ==3lp+pp,S)] 9)

When combined with the Friedmann equation, this implies

. 3
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2
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where H = OH(r, K, S)/dr. Combining equations (6), (8), and
(10) yields a relation between the long-wavelength potential ¥
and the curvature perturbation® x:

H? O (a®V
=——|—. 11
" vya* or < H ) (1
For long wavelengths x can depend on the wavenumber £ but

cannot depend on 7, so dk/0r = 0, which implies

2 2
%% {%%(%)] =0 +3(1+cp)HY +3(c; —w)H U
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where

w=PeS) o (g—DS. (13)

By comparing two different Friedmann-Robertson-Walker
models, we have arrived at a second-order differential equation
for the metric perturbation W. The only dynamical equations as-
sumed have been the Friedmann equation and energy conserva-
tion in a homogeneous and isotropic universe. We have not made
use of the perturbed Einstein or fluid equations. Nevertheless, as
we show next, equation (12) is identical with the dynamical evo-
lution equation for long-wavelength curvature perturbations ob-
tained using the perturbed fluid and Einstein equations of general
relativity.

2.2. Linear Cosmological Perturbations in General Relativity

Cosmological perturbation theory has been well studied (e.g.,
Lifshitz 1946; Bardeen 1980; Kodama & Sasaki 1984; Hwang &
Noh 2002). Nonetheless, the curvature and entropy variables rel-

3 For spatially uniform, isentropic perturbations with vanishing shear stress,
 reduces to the ¢ variable of Bardeen et al. (1983). In other cases the two var-
iables differ, with x being simpler in both its dynamics and interpretation.
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evant for long-wavelength density perturbations differ from those
given previously in the literature, so a brief summary is presented
here.

In the conformal Newtonian gauge (Mukhanov et al. 1992;
Ma & Bertschinger 1995), the metric of a perturbed Robertson-
Walker spacetime with scalar perturbations can be written as a
generalization of equation (5),

ds* = a*(n){~(1+2®)d7?+ (1 - 20) [dx* + r* (x, K) d*]}.
(14)

Here ®(x', 7) and ¥(x, 7) are small-amplitude gravitational po-
tentials. The dependence of the scale factor on K and S is sup-
pressed because we are considering now a single universe with
unique values of these parameters and are introducing perturba-
tions only through the potentials.

For scalar perturbations the stress-energy tensor components
can be written in terms of spatial scalar fields 6p, u, and 7, as
follows:

T% = —(p+6p), (15a)
7% = —(p+p)Viu, (15b)

i . 3 . . 1 .
T’J:‘S’j(PJHSp)+§(P+P)<v'vj—§5le)7T> (15¢)

where V; and V' are the three-dimensional covariant derivative
for the spatial line element dx? + r2dQ?, while A = V'V,
Unless stated otherwise, all variables refer to the total stress-
energy summed over all components. The unperturbed energy
density and pressure are p(7) and p(7), respectively, while ép
and dp are the corresponding perturbations measured in the co-
ordinate frame.

In the scalar mode, all perturbations to the metric and the
stress-energy tensor arise from spatial scalar fields and their spa-
tial gradients. For example, the energy flux is a potential field
with velocity potential u(x?, 7). Similarly, the shear stress fol-
lows from a shear stress (viscosity) potential w(x’, 7) (defined
as in Bashinsky & Seljak 2004). For an ideal gas, 7 = 0. Equa-
tions (15a)—(15¢) are completely general for the scalar mode.
Stress-energy perturbations that arise from divergenceless (trans-
verse) vectors contribute only to the vector mode, while divergence-
less, trace-free tensors contribute only to the tensor mode. Vector
and tensor modes are ignored in this paper.

Combining the perturbed Einstein field equations (Bertschinger
1996) with equations (10) and (13) gives the following second-
order partial differential equation for the linear evolution of the
potential W:

2 2
lg [H_i (i@)} — cvsz\If

H Or |va? or \ H
bp—cp 30, ,
— w = 7 A7l. 16
7[7ﬁ+ﬁ b (fem) + Ax|. (16)

Equation (16) is exact in linear perturbation theory of general
relativity and is fully general for scalar perturbations. It was given
in another form by Hwang & Noh (2002). Aside from the right-
hand side and the sound speed term ¢2 AW, it agrees exactly with
equation (12), whose derivation did not assume the validity of the
perturbed Einstein field equations. The right-hand side of equa-
tion (16) includes entropy perturbations proportional to ép — ciép
and shear stress perturbations, both of which were absent in the
Robertson-Walker models of § 2.1.
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In a perfectly homogeneous and isotropic universe the shear
stress must vanish, and a correct treatment of shear stress requires
going beyond the Friedmann and energy conservation equations.
In the universe at low redshift, the shear stress due to photons,
neutrinos, and gravitationally bound structures is orders of mag-
nitude smaller than the mass density perturbations. Unless the
dark energy is a peculiar substance with large shear stress, we
can neglect 7 in the equation of motion for V.

The sound wave term represents the effect of pressure forces in
resisting gravitational instability. For a perturbation of comoving
wavenumber £, fcvsz\I! = kzcv%.\If; for comparison the time de-
rivative terms in equation (16) are ~>W. Thus, for wavelengths
much longer than the comoving Jeans length A; defined by 7/4; =
'H /¢, the sound wave term can be neglected. In the standard cos-
mology, the Jeans length at z < 100 is less than about 20 Mpc.

The entropy source term in equation (16) can also be obtained
by comparing separate Robertson-Walker spacetimes with slightly
different entropies, allowing us to reduce the long-wavelength
evolution entirely to quadratures, as we show next.

2.3. Entropy Perturbations

Consider two Robertson-Walker spacetimes with identical
spatial curvature K but with entropies S and S + S, respectively,
where 6S is a small constant. At a given expansion factor a (a*
plays the role of volume), the density p(a, S') and pressure p(p, S)
will differ slightly in the two spacetimes. Writing the pressure as
p(p(a,S),S), from equations (9) and (13) we obtain

AN Y (Y, (0
(am)s 3eulptp), (as)a(as Jo\as),

(17)

Using equations (9) and (17), we find

(%)p: _(p;rp) 81?1@ Lﬁlp (%)a]' (18)

Using this result, we define a fractional entropy perturbation
variable,

(@.5) 6p —c2op oS (3}7)
o(a,S) = = —
p+p p+p\9S/,

68 0 1 dp
=" 3 0ma [—w (ﬁ)ﬂ' (19)

This is a formal result because for a multicomponent imperfect
fluid one would not evaluate p(a, S') but would instead charac-
terize density and pressure perturbations for the individual com-
ponents, as we show below in § 3.1. For now, we assume that o
can be determined, and we use it to derive a quadrature for the iso-
curvature modes.

The scale factor in the second Robertson-Walker spacetime is
a(t,K,S + 6S) = a(t,K,S) + (0a/0S)6S. Changing time var-
iable 7 — 7 4 a(7) (with no change in spatial coordinates), the
line element for the second spacetime becomes

ds* = a*(1,K, S) (1 + 2Ha + 268 3;;")

x [—(1+2d)dr? +dx* +r*(x,K)dQ*].  (20)

This line element describes a perfectly homogeneous and iso-
tropic Robertson-Walker spacetime with entropy S + 6S. How-
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ever, for an appropriate choice of « (i.e., the appropriate coor-
dinate transformation), it takes precisely the same form as a per-
turbed Robertson-Walker spacetime with background entropy S,
given by equation (5), provided that the following two conditions
hold:

Olna

20 = 4
@ as

¥ = -48

- Ha. (21)

So far we have assumed nothing about gravity. To proceed
further we assume that equation (7) is valid, giving

Olna _ (&/as)a,K
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Combining equations (10), (19), (21), and (22) gives
LE a*v ——6S3 1 dlna
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v

:?/ o(a(r',K.8),S)H(r' K, S)dr'".

(23)

This result agrees exactly with equation (16) for long-wavelength
entropy perturbations in GR with vanishing shear stress potential
w. Therefore, in GR the dynamical evolution of long-wavelength
entropy perturbations in a Robertson-Walker spacetime follows
directly from the Friedmann and energy conservation equations
without requiring the perturbed Einstein field equations. Equa-
tion (23) implies equation (12) when the entropy perturbation
vanishes.

2.4. General Solution for Long-Wavelength
Perturbations in General Relativity

Equations (12) and (23) have a simple exact solution. The ho-
mogeneous solution with o = 0 (curvature perturbations) is (sup-
pressing the dependencies on K and S, which are held fixed)

V()= k¥, (7)+ CV_(7),
H [TAy(a* () |, H

U, (r)= P —(H)Z(T’() ) dr';, V_(r)= el (24)
Here & is the curvature perturbation of equation (11), which gives
the amplitude of the “growing mode” of density perturbations;
because the lower limit of integration for W, (7) is unspecified,
one can add any constant multiple C of the “decaying mode”
solution W_(7) = Ha 2. The decaying mode is a gauge mode
that can be eliminated using the coordinate transformation 7 —
7+ Ca2. The particular solution with ¥ =¥ =0 at 7 =0
(isocurvature perturbations) and ¢ # 0 (again suppressing the
dependencies on K and S) is

U(r) = /OT[‘IM(T)\I'—(T’) = Wy ()W (7)]o(r)a? (1) dr".

(25)
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The general solution of equation (16) with m = AW =0 is
given by adding equations (24) and (25). We see that it is equiv-
alent to integration of

O0lnkK oS
(26)

20 =G+ K, \1/:—Ha+n<1 —281“‘) _ sg9Ina

when the Friedmann equation governs the background expan-
sion. By comparing the evolution of separate Robertson-Walker
universes we have solved equation (26) by the quadratures of
equations (24) and (25). The solution requires only that the back-
ground evolution obeys the Friedmann and energy conservation
equations and that spatial gradient terms are negligible. Later we
drop the assumption of the Friedmann equation to obtain quadra-
tures for any theory of gravity.

Although we have set k> = —A = 0, the solution is valid for
all wavelengths much greater than the Jeans length. One simply
allows k and 6S to depend on wavevector k as determined by
initial conditions. At short wavelengths (shorter than the Jeans
length, for example) « and 8, as obtained using equations (11)
and (19), depend on time.

3. DENSITY AND VELOCITY PERTURBATIONS
AND EINSTEIN CONSTRAINTS

In addition to the metric perturbations, the density and veloc-
ity perturbations of the matter can also be reduced to quadratures
in the long-wavelength limit assuming local energy-momentum
conservation. The density and velocity perturbations then obey
initial-value constraint equations that relate them to the metric
perturbations.

Under the coordinate transformations given in the preceding
sections, the value of 7° ; does not change to first order in the per-
turbations. However, comparing the density field of two different
Robertson-Walker spacetimes at the same coordinate values (7, x/)
gives a density perturbation:*

Jdlna Olna
H“z“(aan)ﬁs”S( o5 )J
oS (Op
+ I Ny
p+p <3S>a

=30 -+ 5= (56

s =-__ _3

p+p

p+p\0S
=3(¥—-k)-3 /T o(T"YH(dr' +4, (27)
0

where A4 is an integration constant. Equation (27) also follows
from energy conservation in a perturbed Robertson-Walker
spacetime, which gives the perturbed continuity equation

64 3Ho =30 + Au, (28)

where u is the velocity potential. For long wavelength pertur-
bations of wavenumber k — 0, Au = —k’u is generally negli-
gible compared with the other terms in the equation.
Determining the velocity perturbations requires considering
spatial variations of the velocity potential, which do not exist in a
perfectly homogenous Robertson-Walker spacetime. Thus, we

4 Note the unusual definition of &; for a gas of particles it gives the relative
number density perturbation rather than the relative energy density perturbation.
The equations simplify with this choice.
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consider a perturbed Robertson-Walker spacetime with metric
(14) and energy-momentum tensor (15). Evaluating V,T*; = 0
gives the first-order result

i+ (1 -3¢ Hu=c26+0o+®+ (A+3K)r. (29)

If the shear stress can be neglected, we can integrate to obtain

1 ! 2 / /! !/ !/
u(r) = W/o {[CW(T )6(r') + o(r') + ()]

<o)+ Nt () 0

where B is an integration constant.

Equations (27)—(30) do not assume the Einstein field
equations—they hold for any theory of gravity provided it is con-
sistent with local energy-momentum conservation. However, the
integral forms of these equations are rarely used. Instead, given
the potential ¥ on long wavelengths, the usual procedure in gen-
eral relativity is to evaluate the density and velocity potential using
initial-value constraints, of which the Poisson equation is one.
That these constraint equations are more general is shown next.

We define the following combinations of metric and energy-
momentum perturbations:

C, = (A+3K)¥ — (6 + 3Hu), (31a)
Cy =V 4+ HD —u, (31b)
Ci="—d— 3. (31c)

Here 6 + 3Hu is the number density perturbation on a hypersur-
face in which T'°; vanishes, i.e., the number density perturba-
tion in the local fluid rest frame.

In general relativity each of the constraints vanishes (C; =
C, = C5 = 0); however, we do not assume this to be automati-
cally true. Differentiating the constraints and using equations (10),
(28), and (29) gives

10
;E(CIC]) - (A + 3K — 3’}/)C2 - H(A + 3K)C3

237(7'(2 +K —H—)u, (32a)

(1) o (Fa) -

_;l[;_[;f;687_(6;;\Il)]—cVZVA\II—'y{U—i—;;_(HZW)—FAW
+ {w(%%Jr 1 +3c§>—@}(H+W—H2—K). (32b)

Here we set v = 47Ga*(p + p) and have assumed nothing about
gravity. If we assume that the Einstein field equations hold, the
right-hand sides of equations (32a) and (32b) vanish. If we make
the weaker assumption that the background is governed by the
Friedmann equation and that AW and 7 (shear stress) can be ne-
glected on large scales so that equation (23) holds, the right-hand
sides still vanish. In keeping with the previous treatment we also
assume ¥ = @ so that C; = 0. With these assumptions we can
integrate equations (32a) and (32b) to obtain

Cy = 3HC, — A,
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where A and B are integration constants. Comparison with equa-
tions (27), (30), and (31a)—(31c) shows that these are exactly the
same initial-value constants obtained from integrating the equa-
tions of energy-momentum conservation. In other words, they
correspond to changing 6 and u without changing W. The third
initial-value constant C appearing in equation (24) contributes
nothing new to the constraints because the pure decaying mode
has § = 3V = —3Hu; the decaying mode can be eliminated by
a change of the time coordinate.

In general relativity, the Einstein field equations give C; =
C, = C;3 = 0 implying 4 = B = 0. However, in other theories
of gravity the constraints can be nonzero without contradicting
equations (32a) and (32b). The initial-value constants follow
from

A = lim STL B =lima*(p + p)u, (34)
(i) e
where T is the temperature. While nonzero values 4 and B are
testable, in principle, by comparing the density and velocity fields
of galaxies with the gravitational potential implied by gravitational
lensing or hydrostatic equilibrium in clusters of galaxies, much
more stringent tests obtain at high redshift, where the 4 and B
terms contribute relatively more to the energy-momentum tensor.
It would be interesting to place limits on these constants using
measurements of the cosmic microwave background anisotropy.

Assuming that 4 and B are small compared with 6 and a*(p +
Pp)u, respectively, at low redshift, and assuming furthermore that
the Friedmann equation and energy-momentum conservation
are valid, then the density and velocity fields in a perturbed
Robertson-Walker spacetime whose metric takes the form of
equation (5) must on large scales obey the same constraint equa-
tions as in general relativity, namely, C; = C; = C3 = 0.

Although the linearized Einstein field equations give three con-
straints, the first two (C; = C, = 0) are initial-value constraints
with no dynamical content. If C; = C, = 0 onan initial time slice,
energy-momentum conservation combined with the other Einstein
equations is enough to ensure C; = C, = 0 for all times. The third
constraint, C; = 0, is a true dynamical constraint because its time
derivative is not forced to vanish as a result of the Einstein field
equations and energy-momentum conservation.

We see below that initial-value constraints exist not only in GR
but in any gravity theory yielding a long-wavelength perturbed
Robertson-Walker solution with local energy-momentum con-
servation. The key distinguishing features of general relativity
are then seen to be the Friedmann equation plus the dynamical
constraint C3 = 0.

3.1. Multicomponent Fluids

Equations (25), (27), and (30) are true quadratures only if o(7)
is known. While equation (19) gives o from p(p, S) or p(a,S),
the entropy depends on the internal degrees of freedom of a fluid.

Consider a multicomponent imperfect fluid whose density and
pressure are described by a set of parameters {X } that can vary
with position at fixed expansion factor a. We replace the single
entropy S by as many parameters as are necessary to characterize
spatial variations in the equation of state of the fluid. For exam-
ple, a system of noninteracting fluids has

pla,X) = Zﬁiri(a)a pla,X) = Zwiﬁﬂ’i(a)’

ri(a) = eXp[3/al(1 +Wz‘)d1“a]’ (35)
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where the j; are independent of a. The w; generally are not spa-
tially varying; for example, w = 0 for cold dark matter (“dust”)
and w = % for a relativistic ideal gas (“radiation”). In this case
the parameters are the abundances of each fluid component,
{X} ={p1, P2, . . .}. The same procedure will work regardless
of what parameters characterize the multicomponent fluid, but
the set {X'} includes only those that can vary with position at a
fixed value of a (@ playing the role of volume).

The net equation of state and sound speed parameters are w =
pla, X )p(a, X ) and c? = (Op/a)/(Op/Oa). The entropy pertur-
bation follows in a manner similar to equation (19):

B oX ([ 0Op 200\ 1 O
U_Zerp(aX cWaX)_ 30Ina’

X (o
€(a,X) :zX:p—Fp (8X>a' (36)

The symbol €, which equals the number density perturbation at
fixed expansion factor a, is introduced here to avoid confusion
with the number density perturbation 6 measured at fixed 7. For
the example of equation (35),

0= Zfz (Wi - CVZV)Q = Zfiwi(ﬁi — ), (37)

i

(P +pi)ri(a) —  _  Opi .
p+p pi + Pi -

Here p; = w;p; and ¢; are both independent of time and f; is the
enthalpy fraction for component 7, normalized so that ), f; = 1.
We see that the entropy perturbation of a superposition of ideal
gases arises entirely from differences in the particle number
density of the different species measured at fixed expansion a.
For example, for cold dark matter (subscript m) and radiation (sub-
script 7) with y(a@) = pw/pr, fm = 3V/By +4), f = 4/(3y + 4),
and o = % Jfifm(er — €y). For a superposition of N fluids there are
N — 1 independent entropy modes corresponding to the N — 1
independent differences of the number density perturbations ;.
In the general case in which the individual components have a
time-varying w; and can also have entropy perturbations,

o= Zﬁ [U,— + (cl.2 — cvzv)el-] = Zf,—[a,— + c,.z(e,- — e)], (39)

where ¢? = [0(w;7,)/0a]/(Ori/Da) and o; are the sound speed
squared and entropy perturbation for each component, respec-
tively. As an example, consider a tightly coupled plasma of pho-
tons and nonrelativistic baryons with w = [3(1 4+ yb)]il, where
yp(a) = pp/p, (subscript b denotes baryons and r denotes pho-
tons). In this case, w =£/(4 — ;) and c2 = %f,, where f, =
4/(3yp + 4). Although this plasma behaves like a single fluid, it
can have a nonzero entropy perturbation arising from initial var-
iations in the baryon-to-photon ratio, o = % fi-fo(e, — €p), where
€ — €, = 0 In (n,/ny), the fractional perturbation in the photon-
to-baryon number density ratio, is constant in time. Thus, by ex-
amining the composition of each fluid component, we can write
the time-dependent total entropy perturbation ¢ in terms of a set
of time-independent constants ¢;. By doing so, we are able to fully
reduce to quadratures the metric perturbation as shown in § 2.4.
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Using the same methods we obtain exact results for the den-
sity of individual fluid components. Here one must be careful to
evaluate the perturbations at fixed (7, x) after the coordinate
transformations 7 — 7 + «(7) and xy — x(1 — k) discussed in
§ 2.1. The density perturbation of component i at fixed 7 is

_ pi(a(7+ o, K+ 5K3X + 5X)3X + 5X) — pi(aaX)
(p+p);
=3(0 — k) + e (40)

(5,'(7')

The ¢; comes from the initial number density perturbation at
fixed a, while 3(x — W) is the fractional change in volume intro-
duced by shifting the initial hypersurface of constant 7. Aver-
aging over all components with weights f; gives the net density
perturbation

6(m) =3(¥ — k) + ¢(7), (41)

where e(7) = e(a(t, K, X), X) is given by equation (36) and we
are holding K and X fixed to lowest order in perturbation theory.
By comparing equations (27) and (41) and using Je¢/dIna =
—30 we see that the constant 4 has been determined.

The velocity potential of individual components follows from
equation (30) with subscript i applying to all quantities except a,
7, and ®. For N uncoupled fluids there are N constants B;. The net
velocity potential is the average over the fluids, u = ", fiu;.

We have succeeded in reducing the long-wavelength density,
velocity, and entropy perturbations of all fluid components to
quadratures. This presentation works for both general relativity and
alternative theories of gravity. In the former case, equations (24)
and (25) reduce the problem entirely to quadratures specified by
asetof constants (k, €1, . . ., ey, By, . . ., By). We explore next
the reduction of the metric perturbation to quadratures for alter-
native theories of gravity.

4. QUADRATURES FOR ALTERNATIVE
THEORIES OF GRAVITY

Much of the treatment given so far assumes the validity of
the Friedmann equation or GR. It is straightforward to redo
the calculations of equations (4)—(11) and (22)—(23) without
making these assumptions. The expansion rate H can depend
only on the scale factor a and curvature K of the background
Robertson-Walker spacetime and the parameters {X } describing
the equation of state as discussed in § 3.1: H = H(a, K, X). In this
case equation (7) is replaced by some function 7(a,K,X) =
[olaH(a, K, X)|~! da. In addition, for an arbitrary theory of grav-
ity the scalar mode has two distinct gravitational potentials,
equation (14). Repeating the derivations of §§ 2.1 and 2.3 with
the metric of equation (14) with ® # ¥ and with an arbitrary
background expansion rate H(a, K, X') gives the following re-
sult for long-wavelength metric perturbations with 7 = 0:

1 0 [a?0
e (7)) re-w
k O [a 0 or or
() o [2“(31“)”*;”(37)“]
kO [a OlnH OlnH
=aor (ﬂ)‘z“(—am)a,x@“( ox )a,,g 42)

The quantities x and 6.X are (for long wavelengths) independent
of time.
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Equation (42) provides one differential equation for two func-
tions, ® and W. Without a second relation, provided by a law of
gravity, we can determine neither ® nor .

Even without a full theory of gravity, however, we can still ob-
tain interesting and useful results if we assume energy-momentum
conservation. In this case we have quadratures (30) and (41). By
combining these equations with equation (42), one can derive the
following results, which generalize the energy-momentum con-
straints C| and C, of general relativity in the limit of vanishing
shear stress (m = 0) and long wavelengths (the spatial Laplacian
A = 0 when applied to all perturbations):

3HB’
4+ 3Hu = 2 43a
A7) (432)
. 0 (H H 0 (HB'
v S=—-a—(— — 4
w10 = g (T e (o) @

where

B'(a)= /0 a{az(p +p) [— 28 @ E Q)X - EX:‘SX (a;(H),K
SO R

The constant B is essentially the same integration constant as in
equation (30). Without loss of generality we can set B =0 in
equation (44).

Equations (41)—(43b) are not all independent. Any three of
the four imply the remaining one. Thus, we can describe the per-
turbations by equations (41), (43a), and (43b). To reduce the sys-
tem fully to quadratures requires one more equation equivalent
to a relation between ® and .

It is worth emphasizing that the reduction to quadratures is
based on only a few assumptions.

1. The spacetime is nearly Robertson-Walker with perturba-
tion amplitude small enough for linear perturbation theory to
apply.

2. Local energy-momentum conservation holds: V, T7*" = 0.

3. In the conformal Newtonian gauge, spatial gradients of
fields are small enough to be neglected in all equations of motion.

4. Shear stress perturbations are negligible.

5. A theory of gravity provides some relation between ¢ and
¥ and possibly the matter perturbations. This assumption is
needed only for a complete reduction to quadratures.

There are no restrictions on the equation of state of matter and
radiation fields. There are no restrictions on the geometry of
perturbations; in particular, there is no assumption of spherical
symmetry. The neglect of spatial gradients becomes invalid on
scales over which nongravitational forces act so as to modify
local energy-momentum conservation. By definition, spatial gra-
dients of pressure are important and modify our results on scales
less than the Jeans length.

Constraints (43a) and (43b) are particularly useful when
B’ = 0. For any theory having a flat Robertson-Walker solution
(including GR), limg_,o(0 In H/0 In K) = 0. When there are no
entropy perturbations, ¢ = 0. Thus, in a flat universe with initially
isentropic perturbations, the only possible contribution to B’ comes
from the >, 6X (0 InH/0 In X') term. If the only dependence
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of H on equation of state parameters X is through the density
p, then

OlnH OlnH
ZéX( . ) —e(p+p) T 45)
a,K ap

which vanishes for isentropic initial conditions € = 0. Thus, for
a broad class of theories, B’ = 0 for curvature perturbations in
a flat universe implying the long-wavelength constraints 6 +
3Hu =0 and ¥V + H® = ~u, where v = —a d(H/a)/Or for
K = 0. From equation (41) we also have § = 3(¥ — k) for long
wavelengths and isentropic initial conditions. In this case we
have three relations between the four time-dependent functions
(®, ¥, 8, u). In the general case we have an additional function,
B’, whose specification requires a theory for the homogeneous
expansion.

Thus, without knowing anything about the underlying gravity
theory except that it is consistent with local energy-momentum
conservation and that it admits a Robertson-Walker solution, we
have deduced initial-value constraints similar to those of GR un-
der the conditions of long wavelengths and negligible shear stress.
One is not free to specify arbitrary metric and matter perturbations
on long wavelengths, at least under the assumption that long-
wavelength perturbations evolve like separate universes.

However, the initial-value constraints (43a) and (43b) com-
bined with equations (36) and (41) are insufficient to fully deter-
mine the growth of perturbations. We need a third constraint, a
relation between ® and ¥ given by some theory of gravity. Such
a dynamical constraint would allow equation (42) to be integrated
and, with the initial-value constraints, reduce (®, ¥, 6, u) fully
to quadratures for long-wavelength perturbations with vanishing
shear stress.

The simplest case of a dynamical constraint on the gravita-
tional fields is ® = W for 7 = 0 as in GR (although this is more
general than GR, since we do not assume the Friedmann equa-
tion). Under this assumption, equation (42) can be integrated com-
pletely, giving (suppressing the dependencies on K and X and
using a as the time variable)

U(a) = kT (a) + Y _(6X)Ux(a) + CU_(a) if & =T,
X
(46)
where
H [ dlnH OlnH ada
Vifa)= ﬁ/o [1 B <(91na>K"X_2<8an>a1X] H
VU_(a) = Ha?, (47)

B H/ <8lnH>aKa;Z{a' 8)

The potential has been reduced entirely to quadratures depend-
ing only on the expansion rate H as a function of expansion,
curvature, and equation of state parameters.

Considering again a flat universe with isentropic initial condi-
tions and assuming equation (45) holds, but now with the added
condition ¢ = WU, we see that ¥ = kW, is determined com-
pletely by the expansion rate H(a, 0, X' ) with constant values of
the equation of state parameters X. The density and velocity po-
tential perturbations follow from 6 = 3(¥ — k) = —3Hu. In this
case the growth of long-wavelength perturbations is completely
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determined by the expansion history H(a) with fixed curvature
(K = 0) and composition (6X = 0).

For example, in the DGP brane-world theory of Dvali et al.
(2000), the Friedmann equatlon is modified by replacing p by
[(p+ )+ (pr)! 212 where pr, isaconstant. If & = ¥, equa-
tion (11) remains valid for the long-wavelength curvature mode
provided that y changes to

l\)lw

Y=H*+K-H=

(1 +W>(H2+K)<—m )

NZET N
(49)

The isocurvature mode is also modified slightly, with v —
~'p/(p + py,) in the last line of equation (23). Equations (27)
and (30) are unchanged.

The solutions implied here are only valid as £ — 0, so spatial
gradient terms can be neglected in the equations of motion. The
DGP model has a length scale r. = (327Gp,,/3)” 12 comparable
to H, . The long-wavelength limit becomes kr, < 1 suggesting
that the formal solution given here is not applicable for wave-
lengths shorter than the present Hubble length. Other theories of
gravity will give different ranges of applicability. In general, any
long-range departures from general relativity will modify the evo-
lution of patches of a Robertson-Walker spacetime.

The results of this section highlight the importance of testing
the dynamical constraint C3; = ¥ — ® — 3~y7 = 0 in general rela-
tivity. The relation between ® and ¥, combined with the back-
ground expansion rate H(a, K, X)), is the key to long-wavelength
perturbations of a Robertson-Walker cosmology.

5. COMPARING GEOMETRIC AND DYNAMIC
METHODS FOR TESTING GRAVITY
AND DARK ENERGY

As we have seen, the evolution of long-wavelength perturba-
tions requires two ingredients: (1) a relation between the two
gravitational potentials ® and ¥ (possibly involving auxiliary
fields) and (2) a generalization of the Friedmann equation for the
background expansion rate. Without the first ingredient, the long-
wavelength perturbations cannot be predicted. Let us assume that
adynamical constraint exists relating ® and ¥ so that equation (42)
can be integrated. Then the evolution of perturbations is deter-
mined by the expansion rate of the universe, the very same infor-
mation that determines the redshift-distance relation used by
geometric methods. Does this mean that dynamic and geomet-
ric methods measure the same thing?

Not necessarily. First, the dependence of perturbation (dy-
namic) methods on the expansion rate necessarily depends on
the value of ® — ¥, which can be nonzero for theories of gravity
other than GR. Second, dynamic methods depend not only on
H(a, K, X ) and its variation with a but also on (0 In H/0 InK),, »
(for curvature perturbations) or (0 In H/0X), x (for entropy per-
turbations; here X are parameters describing the fluid composi-
tion or equation of state). Geometric methods, by comparison,
depend only on H(a, K, X') with fixed K and X. If the universe is
nonflat or if there exist entropy perturbations, dynamic methods
have the potential to reveal information about the dependence of
‘H on K and X that is not present in the expansion history for one
universe with fixed K and X. Finally, the quadrature results for
perturbations are valid only in the limit of long wavelengths; long-
range forces different from Einstein gravity can lead to spatial gra-
dient terms that modify the quadratures on currently observable
scales.
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Fic. 1.—Sensitivity of geometric methods (left; characterized by the comoving distance x to redshift z) and dynamic methods (right; characterized by the
curvature perturbation W, at redshift z) to the equation of state parameter w. A flat model with €2, = 0.3 was assumed. Curves are shown for w = —0.6, —0.7, . . ., —1.1.
Dynamic (perturbation) methods are insensitive to dark energy at high redshift but are more sensitive than geometric methods at low redshift.

Geometric tests are generally cast in terms of the luminosity
distance or angular-diameter distance but in fact depend strictly
on the redshift-distance relation for radial null geodesics,

¥4 dZ/

oaw@

x(z) =71 —7(a,K,X) =
where 79 = 7(1,K,X) and a = (1 +z)~!. The redshift depen-
dence of the long-wavelength curvature perturbation ¥ (z) re-
quires specifying a theory of gravity. If ® = W, for both general
relativity and DGP brane worlds the same result holds on very
long wavelengths:”

ST ¢ 1 dH] dz'
V.(z)=(1+2)H <Z>/z [112(2/) TUEEE) & HE)
(51)

More generally, let us make no assumptions about & — W but
consider a flat universe with negligible shear stress and initially
isentropic curvature fluctuations as predicted by the simplest
inflationary universe models. In this case, equation (42) reduces
to the following relation between H(z), ¥(z), and ®(z) for long
wavelengths:

D) _dv (- W) dH
1+z dz H dz ’

(52)

Here  is independent of redshift on large scales, although , U,
and ® will vary with position or spatial wavenumber. In prin-
ciple, measurements of H(z) from geometric methods and ¥(z)
from perturbations could (for isentropic perturbations of a flat
universe with negligible shear stress) determine ®(z) up to an
additive term proportional to d In H/d In (1 + z) (since the re-
lation between « and ¥ is unknown if the theory of gravity is
unspecified). In particular, such measurements could enable
GR or alternative theories of gravity to be tested without any as-
sumptions about the density and pressure of mass-energy in the
universe.

5 This does not mean that the two theories predict identical perturbations on
scales larger than the Jeans length. The DGP model has a much longer length
scale, 7., below which eq. (51) could be invalid.

This kind of test is difficult to imagine carrying out because of
the difficulty of measuring W(z).° Alternatively, if one assumes
that GR is valid, dynamic methods can be used to provide ad-
ditional constraints on dark energy because the geometric and dy-
namic methods have a different dependence on the equation of
state of dark energy.

Geometric measurements of x(z) at a given redshift depend on
the expansion history at smaller redshifts; dynamic measurements
of U(z) depend on H(z) at higher redshifts. Because the effects
of dark energy typically decline with increasing redshift, pertur-
bation methods are at a disadvantage at high redshift but may be
superior to geometric methods at low redshift.

To assess their relative merits for measuring dark energy
(assuming GR is the correct gravity theory), the methods were
compared using a flat model with €2,, = 0.3 and a dark energy
component with constant w independent of z. While unphysical,
this model is commonly used to compare theories with data. The
logarithmic derivatives of equations (50) and (51) with respect to
w at fixed z were evaluated numerically to produce the results
shown in Figure 1. A large value of |0 In x/Ow| indicates that the
geometric method is relatively powerful—a given measurement
error in In y translates into a smaller uncertainty in w for larger
values of |0 In x/Ow|. The same is true for dynamic methods using
In \II+ .

As expected, perturbation methods are insensitive to the dark
energy parameter w at high redshift. At low redshift, dark energy
dominates more rapidly for smaller w leading to a greater sup-
pression of linear growth and hence a larger variation with w. Geo-
metric methods, on the other hand, are insensitive to w at small
redshift, where the lookback time is much less than the Hubble
time. For the standard Friedmann equation and w ~ —1, dynamic
methods are more sensitive than geometric methods for z < 0.2.
At high redshift the comoving distance remains sensitive to w de-
spite the declining importance of dark energy because x(z) is an
integral over the past light cone. The expansion history at low
redshift affects the redshift-distance relation at high redshift.

The theoretical sensitivities shown in Figure 1 must be com-
bined with the measurement uncertainties of the two methods

© Observations of density perturbations, e.g., from galaxy redshift surveys,
are easier than observations of the gravitational potential perturbations. The
relation between density perturbations and ¥ depends on the theory of gravity
and may require specifying more than just H(z).
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before a reliable estimate can be made of their relative merits.
The perturbation methods face a severe challenge—to achieve a
discriminating power of 0.1 in w requires 2% accuracy in mea-
surement of W, at low redshift.

6. SUMMARY AND OUTLOOK FOR COSMOLOGICAL
TESTS OF GRAVITY

Long-wavelength cosmological perturbations involve at least
two metric perturbations (®, ) and two matter perturbations
(8, u) (density and velocity potential, all in conformal Newtonian
gauge). One might think that without a theory of gravity, no pre-
dictions can be made about relations between these variables.

In fact, we have shown that with minimal assumptions, on large
scales there are automatically three independent relations between
(®, W, 6, u). For an arbitrary theory of gravity these are any three
of the four equations (41), (42), (43a), and (43b). Equations (43a)
and (43b) enforce local energy-momentum conservation. They
generalize the initial-value constraints of general relativity. GR
also has a dynamical constraint on ® — W enabling a complete re-
duction to quadratures. These relations depend on the expansion
rate of the background spacetime and on the dependence of the
expansion rate on spatial curvature (if K # 0) and on the compo-
sition or entropy of the matter filling space (if there are compo-
sition or entropy perturbations).

Thus, the key ingredients needed to specify long-wavelength
perturbations are (1) a relation between the two gravitational po-
tentials ¢ and ¥ and (2) a relation between the expansion rate,
density, and pressure (e.g., the Friedmann equation). Given these
two ingredients, we have shown how to reduce (®, ¥, 8, u) to
quadratures by introducing conserved curvature and entropy var-
iables. Explicit expressions for the time dependence of the metric
perturbations were given for Einstein gravity, equations (24) and
(25), or equations (46)—(48).

In some circumstances (e.g., isentropic fluctuations in a flat
universe with ® = ¥) the long-wavelength growth of perturba-
tions is determined completely by the expansion history H(z). In
such cases measurements of perturbation growth cannot be com-
bined with geometric measurements (e.g., supernova distances)
to discern whether dark energy is a new form of mass-energy or a
failure of the Friedmann equation. A loophole exists in this ar-
gument if ® # WU or if there are significant long-range nongrav-
itational forces. For a flat universe with curvature fluctuations,
the argument can be inverted to yield information about ®(z)
from measurements of H(z) and ¥(z) thereby providing a test of
gravity theories independently of assumptions about the energy
density and pressure.

The long-wavelength limit corresponds to wavelengths larger
than any relevant spatial scales, so spatial gradients can be ne-

glected in the equations of motion. Pressure forces modify the
dynamics on scales smaller than the Jeans length; the dark energy
could plausibly be a scalar field with a Jeans length compara-
ble to the Hubble length. By measuring the wavelength depen-
dence of the linear growth rate on scales greater than 1 Gpc, one
might measure the time dependence of the dark energy Jeans
length and thereby constrain its intrinsic properties. This mea-
surement is exceedingly difficult because the amplitude of den-
sity perturbations in the dark energy is expected to be less than
about 1074,

In addition to providing tests of general relativity, perturbation
measurements can provide constraints on dark energy under the
assumption that general relativity is valid. By comparing the de-
pendence of curvature perturbations and the redshift-distance re-
lation on the dark energy equation of state parameter, we verified
quantitatively the expected conclusion that perturbation meth-
ods are most useful at small redshift when the accelerated ex-
pansion begins to suppress curvature perturbations. A changing
gravitational potential generates cosmic microwave background
anisotropy through the integrated Sachs-Wolfe effect. Measure-
ment of this effect (Padmanabhan et al. 2005) has the potential to
further constrain dark energy (Pogosian et al. 2005).

The analysis in this paper shows the importance of testing
the equality of the two Newtonian gauge gravitational potentials,
® = U, in equation (14). While this equality holds in general
relativity (in the absence of large shear stress), it might not be
true for other theories of gravity. In addition to tests combining
geometric and perturbation methods using equation (52), one can
in principle measure & — ¥ by comparing the deflection of light
by gravitational lenses (an effect proportional to ¥ + &) with the
nonrelativistic motion of galaxies (an effect proportional to ®).
A similar test exists on solar system scales (or in binary pulsars),
where the deflection (or Shapiro delay) of light is compared with
Newtonian dynamics. Thus, for testing modified gravity as an
alternative to GR it is important to extend tests of the param-
eterized post-Newtonian (PPN parameter vyppy = W/® (Will
2006). Stringent limits on |yppy — 1| apply on solar system scales.
It would be worthwhile to improve the limits on megaparsec
and larger scales by combining weak gravitational lensing and
galaxy peculiar velocity measurements or by adding ~ppy to the
parameters used in analyzing cosmic microwave background
anisotropy.
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