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ABSTRACT

We formulate the problem of magnetic field dissipation during the accretion phase of low-mass star formation, and
we carry out the first step of an iterative solution procedure by assuming that the gas is in free fall along radial field
lines. This so-called ‘‘kinematic approximation’’ ignores the back reaction of the Lorentz force on the accretion flow.
In quasi–steady state and assuming the resistivity coefficient to be spatially uniform, the problem is analytically
soluble in terms of Legendre’s polynomials and hypergeometric confluent functions. The dissipation of the magnetic
field occurs inside a region of radius inversely proportional to the mass of the central star (the ‘‘Ohm radius’’), where
the magnetic field becomes asymptotically straight and uniform. In our solution the magnetic flux problem of star
formation is avoided because the magnetic flux dragged in the accreting protostar is always zero. Our results imply
that the effective resistivity of the infalling gas must be higher by at least 1 order of magnitude than the microscopic
electric resistivity, to avoid conflict with measurements of paleomagnetism in meteorites and with the observed
luminosity of regions of low-mass star formation.

Subject headinggs: ISM: clouds — ISM: magnetic fields — MHD —
planetary systems: protoplanetary disks — stars: formation

1. INTRODUCTION

If the magnetic field of a collapsing interstellar gas cloud re-
mained frozen in the gas, the resulting surface magnetic field of
the newborn protostar would exceed observed stellar fields by al-
most 4 orders of magnitude (the so-called ‘‘magnetic flux prob-
lem’’; see, e.g., Mestel & Spitzer 1956). It follows that the excess
magnetic flux of a cloud must be dissipated at some stage during
the process of star formation. Assuming ideal magnetohydro-
dynamic (MHD) conditions, Galli et al. (2006, hereafter Paper I)
obtained an analytical solution for the inner regions of an iso-
thermal, magnetized, rotating cloud undergoing gravitational col-
lapse and showed that the long lever arms of the strong field
trapped in the central protostar in a split-monopole configuration
would cause so much magnetic braking as to make impossible
the formation of a centrifugally supported disk around the cen-
tral object (see also Allen et al. 2003b, 2003a). Thus, the dissipa-
tion of magnetic field must occur prior or simultaneously to the
formation of a circumstellar disk. In the current paper we remove
the assumption of field freezing by allowing the nonideal effect
offinite electric resistivity to operate, and we determine the value
of the resistivity coefficient required to solve the magnetic flux
problem during the accretion phase of low-mass star formation.

The paper is organized as follows. In x 2 we formulate the
basic equations of the problem; in x 3 we estimate the value of
the resistivity coefficient in the central region of collapse from
the available observational constraints; in x 4 we check the va-
lidity of our approximations; in x 5 we compare our results with
those of previous works; and finally, in x 6 we summarize our
conclusions. The reader not interested in the mathematical der-
ivation of our results can go directly to equation (31).

2. FORMULATION OF THE PROBLEM

Neglecting the effects of ambipolar diffusion (but see x 6), the
evolution of the magnetic field in a collapsing cloud is governed
by the induction equation with ohmic dissipation,

@B

@t
þ: < (B < u) ¼ �: < (�: < B); ð1Þ

where � is the coefficient of ohmic resistivity, related to the
electric conductivity � by

� ¼ c2

4��
: ð2Þ

Assuming axial symmetry and a purely poloidal magnetic field,
we can ‘‘uncurl’’ equation (1) and express it in scalar form as

@�

@t
þ u = :� ¼ �S(�); ð3Þ
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where� is the flux function, defined in spherical coordinates by

B ¼ : <
�(r; �)

2�r sin �
ê’

� �
; ð4Þ

and S is the Stokes operator

S � @2

@r 2
þ 1

r 2
@2

@�2
� cot �

r 2
@

@�
: ð5Þ

Since Br is antisymmetric with respect to the midplane, equa-
tion (4) implies that the flux function � is even with respect to
� ¼ �/2. In addition, because the field is finite on the polar axis
(except at the origin), the flux function �must vanish for � ¼ 0
and � ¼ �.2

Following Paper I we assume that the velocity is given by free
fall on a point mass M? at the origin,

u(r) ¼ � 2GM?

r

� �1=2

êr; ð6Þ

and we ignore the reaction of the magnetic field on the flow (the
validity of this assumption is to be checked a posteriori). Because
the dissipation is likely to occur in a region of space across which
the flow time is short in comparison with the evolutionary time
of the collapse of the molecular cloud core, we may look for a
quasi–steady state in which the advection of magnetic flux by
the flow is balanced by ohmic dissipation,

� 2GM?

r

� �1=2@�

@r
¼ �S(�): ð7Þ

At large r, the flux function must asymptotically approach that
of a split-monopole,

lim
r!1�(r; �) ¼ �?(1� j cos �j); ð8Þ

where

�? ¼ 2�k�1
? G1=2M? ð9Þ

is the flux trapped by the central protostar, and the parameter k?
is the mass-to-flux ratio of the central split-monopole in non-
dimensional units (see Paper I). Note that k? is a measure of the
magnetic flux trapped in the star under ideal MHD condition,
and does not correspond to the actual mass-to-flux ratio mea-
sured in young stars (�103–104 in the same units). In Paper I we
obtained 1P k?P 4 by connecting the analytic inner collapse so-
lution to the ideal MHD numerical models of Allen et al. (2003b,
2003a). In what follows, we use k? � 2 as a fiducial value.

2.1. Nondimensional Variables

To be specific and for simplicity, we assume that � is spatially
constant, and we define the nondimensional variables

r ¼ rOhmx and �(r; �) ¼ �?�(x; �); ð10Þ

where � ¼ cos � and

rOhm � �2

2GM?
ð11Þ

is the ‘‘Ohm radius.’’ We may then justify the assumption of a
quasi–steady state if the fractional variations of the parameters
of the problem,M? and �?, are negligible over a diffusion time

tOhm � r 2Ohm
�

¼ �3

4G2M 2
?

: ð12Þ

Because advection is balanced against diffusion, equation (12) is
also the time it takes to cross rOhm at the local free-fall velocity

u(rOhm) ¼
2GM?

rOhm

� �1=2

¼ 2GM?

�
; ð13Þ

which explains why rOhm is defined as in equation (11). If we
adopt the values � � 2 ; 1020 cm2 s�1 andM? � 1 M� (see x 3),
we get tOhm � 3 yr, which is very short compared to the timescale

tacc �
M?

Ṁ
� 105 yr; ð14Þ

over which we may expect M? or �? to have significant varia-
tions. Thus, the quasi-steady approximation is likely to be a good
one.

With these definitions, equation (7) becomes

x2
@2�

@x2
þ x3=2

@�

@x
¼ � (1� �2)

@2�

@�2
: ð15Þ

Setting �(x; �) ¼ F(x)G(�), we reduce equation (15) by separa-
tion of variables to the couple of ordinary differential equations

(1� �2)G00 þ �G ¼ 0; ð16Þ

where � is a separation constant and

x2F 00 þ x3=2F 0 � �F ¼ 0: ð17Þ

Differentiating equation (16) with respect to � and setting
g(�) ¼ G0(�), we see that g(�) satisfies Legendre’s equation,

(1� �2)g00 � 2�g0 þ �g ¼ 0: ð18Þ

Solutions of Legendre’s equations that are regular at � ¼ �1
require � ¼ l(l þ 1), with l ¼ 0; 1; 2; : : : , and are given by
Legendre’s polynomials Pl(�) of order l, i.e., g(�) / Pl(�).
Using the definition of g and equation (16), we then obtain
G(�) / (1� �2)P 0

l (�). Therefore, any solution of equation (16)
that is regular on the polar axis can be written as a linear com-
bination of polynomials of degree n ¼ l þ 1,

Gn(�) ¼ Cn(1� �2)
dPn�1

d�
¼ nCn½�Pn�1(�)� Pn(�)�; ð19Þ

where Cn are arbitrary constants. Defining

Cn �
2n� 1

2n(n� 1)

� �1=2
; ð20Þ

the polynomials Gn(�) form an orthonormal set with weight
(1� �2),

Z þ1

�1

Gn(�)Gm(�)
d�

1� �2
¼ �nm; ð21Þ2 The physical flux threading a circle of radius r on the midplane is given by

the value �(r; � ¼ �/2).
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as can be easily shown by a simple integration by parts and
using the normalization condition of Legendre’s polynomials.
Since the flux function is an even function of � over the interval
�1 � � � 1, the index n takes only even values, n ¼ 2; 4; : : : .
Figure 1 shows the functions Gn(�) for n ¼ 2 10.

The boundary condition (eq. [8]) must be expanded in terms
of Gn polynomials,

lim
x!1�(x; �) ¼ 1� j�j ¼

X1
n¼2;4; : : :

fnGn(�); ð22Þ

where fn are the spectral coefficients. Multiplying both sides of
this equation by Gm(�)/(1� �2) and integrating from � ¼ �1
to 1, we easily obtain, using the orthogonality property (eq [21])
and integrating by parts,

fn ¼ 2Cn

Z 1

0

Pn�1(�) d� ¼ (�1)n=2�1 2(n� 1)!!

n(n� 1)(n� 2)!!
Cn;

ð23Þ

where the latter equality follows from a formula in Byerly (1959,
p. 144).

We now turn to equation (17), with � ¼ n(n� 1). For each n
this equation has to be solved under the boundary conditions

Fn ¼ 0 at x ¼ 0; lim
x!1Fn(x) ¼ fn; ð24Þ

where the constants fn are given by equation (23). In terms of
the new variables z and Hn, defined by

z ¼ 2
ffiffiffi
x

p
and Fn ¼ z2ne�zHn; ð25Þ

equation (17) becomes Kummer’s equation (Abramowitz &
Stegun 1965, hereafter AS65, eq. [13.1.1]) or ‘‘confluent hyper-
geometric equation’’ (see e.g., Landau & Lifshitz 1959, their
x 36 and Appendix D),

zH 00
n þ (bn � z)H 0

n � anHn ¼ 0; ð26Þ

with an ¼ 2n� 1 and bn ¼ 4n� 1. The general solution of
Kummer’s equation is (AS65, eq. [13.1.11])

Hn(z) ¼ AnM (an; bn; z)þ BnU (an; bn; z); ð27Þ

where An and Bn are arbitrary constants andM and U are called
‘‘Kummer’s functions’’ or ‘‘confluent hypergeometric functions’’
of the first and second kind, respectively (regular at the origin
and at infinity, respectively).3For z ¼ 0,M (an; bn; 0) ¼ 1,whereas
U (an; bn; z) diverges like z

1�bn ¼ z�4n. The latter behavior im-
plies Fn � x�n for small x, in contrast with the boundary condi-
tion Fn(0) ¼ 0. Therefore, Bn ¼ 0 and

Fn(x) ¼ An(2
ffiffiffi
x

p
)2ne�2

ffiffi
x

p
M (2n� 1; 4n� 1; 2

ffiffiffi
x

p
): ð28Þ

The constants An are fixed by imposing the boundary condition
at infinity (eq. [24]). Since M (an; bn; z) has the asymptotic be-
havior (AS65, eq. [13.1.4])

lim
z!1M (an; bn; z) ¼

(bn � 1)!

(an � 1)!
ezzan�bn ; ð29Þ

we immediately obtain

An ¼
(2n� 2)!

(4n� 2)!
fn: ð30Þ

Figure 2 shows the functions Fn(x) for n ¼ 2 10.
Combining the angular and radial solutions and summing over

n, we finally obtain

�(x; �) ¼ e�2
ffiffi
x

p X1
n¼2;4; : : :

Kn x
nM (2n� 1; 4n� 1; 2

ffiffiffi
x

p
)

; ½�Pn�1(�)� Pn(�)�; ð31Þ

Fig. 1.—Angular functions Gn(�) for n ¼ 2, 4, 6, 8, and 10.

3 Kummer’s equation describes the radial part of the Coulombwave function.
If an � 0, then the solutions of Kummer’s equation that are well behaved at
infinity are associated Laguerre polynomials.

Fig. 2.—Radial functions Fn(x) for n ¼ 2, 4, 6, 8, and 10.
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where

Kn ¼ (�1)n=2�1 22n(n� 1)!!(2n� 1)!

(n� 2)!!(4n� 2)!(n� 1)2n
: ð32Þ

The function M (an; bn; z) can be evaluated numerically with
standard routines, e.g., the FORTRAN program CHGM.FOR
of Zhang & Jin (1996, p. 385). For x31 is better to use the full
asymptotic expansion equation (29), given by AS65 (eq. [13.5.1]).
For xT1 the series in equation (31) is dominated by the n ¼ 2
term, and we obtain

lim
x!0

�(x; �) ¼ 1

30
x2 sin2�; ð33Þ

corresponding, as expected, to a uniform magnetic field with
vertical field lines. Figure 3 shows the flux function �(x; 0) in
the midplane (� ¼ �/2) given by equation (31) and its asymp-
totic behavior given by equation (33). At the Ohm radius the
flux is reduced by a factor of �100 with respect to the asymp-
totic value.

Figures 4a, 4b, and 4c show the magnetic field lines in the
meridional plane of the collapse region at different scales, com-
puted according to equation (31). The horizontal and vertical axis
in each panel are the cylindrical self-similar coordinates, $ ¼
x sin � and z ¼ x cos �, respectively. Figure 4a shows the nearly
uniform magnetic field inside the Ohm radius, (R; z)/rOhm < 1.
In this region the series solution equation (31) yields a good
representation with the inclusion of only the first six terms. Fig-
ure 4b shows the magnetic field lines in the region (R; z)/rOhm <
10. In this region the series solution equation (31) gives a good
representation including the first four terms. Figure 4c shows the
magnetic field lines in the region (R; z)/rOhm < 100, showing the
asymptotic convergence to the field of a split-monopole at large
radii. In this region the series solution equation (31) gives a good
representation including the first six terms.

3. NUMERICAL ESTIMATES

Equation (33) implies that the strength of the magnetic field
at the center approaches a constant value given in dimensional
form by

Bc ¼
�?

30�r 2Ohm
; ð34Þ

where �? and rOhm are given by equations (9) and (11), respec-
tively. Substituting these values, we obtain

Bc ¼
4G5=2M3

?

15k?�4
; ð35Þ

showing that Bc scales with the electric conductivity and stellar
mass as �4M 3

? , a result that may have interesting consequences
for high-mass stars.

To estimate the numerical values of the physical quantities of
our model, we assume a given value for the uniform magnetic
field Bc inside the dissipation region, and we derive the remain-
ing quantities in terms of Bc. An estimate of the intensity of the
constant magnetic field in the central region can be inferred from
measurements of remanentmagnetization inmeteorites. Observed
values range from �0.1 G in achondrites to �1 G in carbona-
ceous chondrites, reaching values up to �10 G in chondrules. It
is unclear whether this range of values reflects an actual variation
in the strength of the magnetizing source. Chondrules have ran-
domly oriented magnetizations that strongly suggest that they
record magnetic fields that predate the accretion of the meteor-
ites, but the measured values are the most uncertain. Achondrites,
on the other hand, have the least complicated magnetic miner-
alogies, but local processes such as impacts may have affected
their magnetization history (for reviews, see Stacey 1976; Levy
& Sonnet 1978; Cisowski &Hood 1991, and references therein).
Hereafter, we assume Bc � 1 G.

From equations (9) and (34) we obtain the Ohm radius

rOhm ¼ G1=2M?

15k?Bc

� �1=2

� 12k�1=2
?

M?

M�

� �1=2
Bc

1 G

� ��1=2

AU;

ð36Þ

which is weakly dependent on the values of the parameters.
We note that magnetic fields of strength �1 G, when bent

sufficiently outward (e.g., by X-winds; Shu et al. 2000), can
drive disk winds (e.g., Königl & Pudritz 2000). However, disk
winds driven from footpoints of 2–6 AU will have difficulty
acquiring the 200–300 km s�1 terminal velocities seen in high-
speed jet outflows. Nevertheless, we cannot rule out, on the basis
of these considerations, the possibility that slow disk winds
coexist with fast X-winds in young stellar objects.

The corresponding value for the effective resistivity � from the
expression for the Ohm radius (eq. [11]) is

� ¼ 4G5=2M 3
?

15k?Bc

� �1=4

� 2:2 ; 1020k�1=4
?

;
M?

M�

� �3=4
Bc

1 G

� ��1=4

cm2 s�1; ð37Þ

which is again weakly dependent on the numerical values of the
parameters. With our fiducial values k? � 2, M? � 1 M�, and

Fig. 3.—Flux function � in the midplane (� ¼ �/2) as function of the dis-
tance from the star, in nondimensional units (solid line). The dashed line shows
the uniform field solution given by eq. (33), valid for xT1.
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Bc � 1 G, we obtain rOhm � 8:5 AU and � � 2 ; 1020 cm2 s�1.
This is larger by a few orders of magnitude than estimated val-
ues from kinetic theory of the microscopic ohmic resistivity in
dense gas and circumstellar disks (see x 6), suggesting that the
dissipation of magnetic flux probably occurs by some anoma-
lous diffusion process.

The free-fall velocity at the Ohm radius is u(rOhm) � 14 km
s�1, and the gas density, for an accretion rate Ṁ � 10�5 M�
yr�1, is of order 109 cm�3. This is lower than the often quoted
value of the density at decoupling of 1011–1012 cm�3 (e.g., Nishi
et al. 1991), because our adopted effective resistivity is larger than
the conventional electric resistivity.

4. JOULE HEATING RATE

The magnetic energy annihilated per unit time and unit vol-
ume (Joule heating rate) is

�

4�
j: < Bj2 ¼ �

16�3

S(�)
r sin �

� �2
¼ GM	

8�3�r3 sin2�

@�

@r

� �2

; ð38Þ

where we have used equation (7) to eliminate S(�). For xT1
we can approximate �(x) with the asymptotic expression equa-
tion (33), obtaining

1

x3 sin2�

@�

@x

� �2

� sin2�

225x
: ð39Þ

Inserting this expression in equation (38) and integrating over
a sphere of radius rOhm centered on the origin, we obtain an ap-
proximate estimate of the total energy dissipation rate

Ė � 8G4M 5
?

675k2?�
5
� 300k�2

?

M?

M�

� �5 �

1020 cm2 s�1

� ��5

L�: ð40Þ

The dependence of Ė on the inverse fifth power of � can be
easily understood, since the energy dissipation rate is proportional
to the resistivity times the square of the electric current den-
sity (/��12) times the volume (/�6) in which the current flows
(eq. [38]). The increase of the electric current in the limit of small
resistivity (/��6) suggests that the anomalous source of field

Fig. 4.—(a) Nearly uniform magnetic field inside the Ohm radius, ($; z)/rOhm < 1. The horizontal and vertical axis in each panel are the cylindrical self-similar
coordinates,$ ¼ x sin � and z ¼ x cos �, respectively. (b) Same as (a), but in the region ($; z)/rOhm < 10. (c) Same as (a), but in the region ($; z)/rOhm < 100, showing
the asymptotic convergence to the field of a split-monopole at large radii. (d ) Contours of the ratio jFLj/jFgj (Lorentz and gravitational forces) for the density profile
corresponding to the collapse of the H0 ¼ 0:5 toroid (see Paper I ) in the region ($; z)/rOhm < 1. The kinematic approximation is formally valid in the region below the
solid curve. The values of the parameters are M? ¼ 0:5 M�, Ṁ ¼ 2 ; 10�5 M� yr�1, and k? ¼ 1:7.
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dissipation could be associated with current-driven instabilities
occurring when the drift speed of the charged species becomes
larger than the ion’s thermal speed, as anticipated by Norman &
Heyvaerts (1985).

With our fiducial valueswe obtain Ė � 3 L�, but given the sen-
sitive dependence of Ė on the uncertain parameter �, this number
may not be very significant. What is more interesting is that the
adopted resistivity, which is high by conventional microscopic
standards (see x 6), cannot be much lower without violating ob-
servational constraints concerning the total luminosity from re-
gions of low-mass star formation (see the reviews of Evans 1999
or Lada & Lada 2003). For example, decreasing the value of � by
a factor of 10 increases the central magnetic field to Bc � 10 kG
and decreases the Ohm radius to rOhm � 0:1 AU. Although mag-
netic fields of kilogauss strength are measured on the surface of
young stars, the energy dissipation rate for this reduced value of �
increases to Ė � 3 ; 105 L�, which is unrealistic for solar-mass
stars. Imposing that the energy dissipation rate must be lower than
the total accretion luminosityGM?Ṁ /R?, we obtain a lower limit on
the resistivity,

�k
8G3M4

?R?

675k?Ṁ

� �1=5

�1020
M?

M�

� �4=5
R?

R�

� �1=5

;
Ṁ

10�5 M� yr�1

� ��1=5

cm2 s�1: ð41Þ

Note also that the energy dissipation rate Ė scales with the
stellar mass as M 5

? , which is steeper than the main-sequence
luminosity-mass relation, unless the resistivity increases sig-
nificantly with increasing M?. Such a behavior runs counter to
the usual notion that high-mass stars possess more ionizing
potential than low-mass stars. Nevertheless, high-mass stars are
formed with mass accretion rates that are more than 100 times
larger than for low-mass stars (see, e.g., Osorio et al. 1999). In
these conditions of very high circumstellar density, the ioniza-
tion front will be confined to the stellar surface, and the pene-
trating ionizing agent for the pseudodisks and disks will not be
ultraviolet photons but cosmic rays and/or X-rays.

5. VALIDITY OF THE KINEMATIC APPROXIMATION

To check the validity of the kinematic approximation (i.e., the
assumption that the infall velocity is dominated by the gravity of
the central star), we evaluate the ratio of the Lorentz force per
unit volume in the radial direction

FL ¼ 1

4�
½(: < B) < B�r ¼

S(�)
16�3r 2 sin2�

@�

@r
; ð42Þ

and the gravitational force per unit volume

Fg ¼
GM?�

r 2
; ð43Þ

where the density is

� ¼ Ṁ

4�r 2ju(r)j Q(�); ð44Þ

and Q(�) yields the flattening of density contours because of
pinching forces associated with the radial magnetic field (see
Paper I ). The ratio of the two forces is

jFLj
jFgj

¼ k�2
?

tacc

tOhm

� �
@�

@x

� �2
x

Q(�) sin2�
; ð45Þ

where we have used equation (7) to eliminate S(�) and we used
equations (12) and (14). The right-hand side is proportional to the
ratio of two characteristic times, the accretion time, tacc � 105 yr,
and the crossing time of the ohmic dissipation region, tOhm � 3 yr.
The validity of the kinematic approximation is nevertheless en-
sured by the fact that the function of x and � on the right-hand side
of this expression is very small. Figure 4d shows contours of the
ratio jFLj/jFgj computed with the functionQ(�) corresponding to
the caseH0 ¼1 of Paper I. Note that the force ratio is low precisely
in the equatorial regions where we might expect the formation of
a centrifugally supported disk to take place if we had included the
effects of angular momentum in the problem.

We also stress that the ratio of the Lorentz and gravitational
forces given by equation (45) depends on resistivity as ��3. As our
solution clearly shows, the nonzero resistivity of the gas results in
a release of the field from the central protostar, as the gravitational
pull of the central star is no longer fully available to pin the mag-
netic field of the central regions. However, the released magnetic
field can be too strong for gravity to continue to win over the
Lorentz force. If � is sufficiently large, gravity dominates, and
quasi-steady accretion onto the central source is possible. If � is
too small, magnetic forces overwhelm gravity, and the accretion
regionmight try to explode outward. If the coefficient of resistivity
can reach anomalous values, the explosion outward (when � is
small) may be coupled with reimplosion inward when � later be-
comes (anomalously) large. It is interesting to speculate that these
alternating reconnection behaviors (‘‘flares’’) might correspond to
FU Orionis outbursts. This mechanism may be an alternate ex-
planation to the disk thermal instability, possibly aided by pro-
toplanet or protostellar companions, that has been proposed for
the FU Orionis phenomenon (e.g., Kawazoe & Mineshige 1993;
Bell et. al 1995; Clarke & Syer 1996).

6. COMPARISON WITH OTHER WORKS

According to calculations by Stepinski (1992), the electrical
resistivity in the presolar nebula in the range of radii 3–30 AU is
in the range �1017–1016 cm2 s�1 if the grain size is �1 cm, or
�1019–1016 cm2 s�1 if the grain size is 0.5 �m. Clearly, the
physical conditions in a disk are different from those of our infall
model.Wardle&Ng (1999) have evaluated the components of the
conductivity tensor for molecular gas for a variety of grain mod-
els, as a function of the gas density. At our fiducial value of
n(H2) � 109 cm�3, they predict a ohmic resistivity � � 1016 cm2

s�1 for a standard grain-size distribution, much lower than our
value � � 1020 cm2 s�1. Therefore, the work of Stepinski (1992)
and Wardle & Ng (1999) suggests that the effective resistivity �
of the infalling gas had better be larger than the microscopic elec-
tric resistivity, or severe conflicts with observational data arises.
Given the precedent in solar physics, this result does not come
totally unexpected. Unlike the solar case, however, the required
increase in ‘‘anomalous’’ resistivity may not be huge, if the dust
grains in the infalling envelopes of protostars, in contrast with
those in protostellar disks, have not undergone too much growth.

Desch & Mouschovias (2001) consider the dissipation of the
magnetic field in a collapsing molecular cloud core, during the
prepivotal stage of evolution (t < 0). Because no central star is
present in the calculations of Desch & Mouschovias (2001), the
velocity field and the density profile clearly differ from the free-
fall behavior assumed in this work. The equation for the evolu-
tion of the magnetic field has the same form as in this work, but
Desch &Mouschovias (2001) also include in the resistivity � the
contribution of ambipolar diffusion,

� ¼ �Ohm þ �AD: ð46Þ
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The latter is given by

�AD ¼ j:�j2

16�3	�i�nr 2 sin
2�

¼ jBj2

4�	�i�n
; ð47Þ

where �i and �n are the mass density of ions and neutrals, re-
spectively, and 	 is the ion-neutral drag coefficient. The numerical
calculations of Desch&Mouschovias (2001) seem to suggest that
the magnetic field approaches a steady state configuration toward
the end of the run, characterized by a nearly uniform magnetic
field of strength �0.1 G over a central region of size �20 AU.
Outside this region the field decreases approximately as r�1, as
would be the case for field freezing in a quasi-static isothermal
envelope (Li & Shu 1996), whereas in our case of postpivotal
state evolution (t > 0), the field decreases like r�2, as is the case
for a split-monopole. In the region of nearly uniform field (for
density larger than �1012 cm�3), the ambipolar diffusion resis-
tivity �AD reaches�1020 cm2 s�1 and is larger by 1 order of mag-
nitude than the ohmic resistivity (Desch & Mouschovias 2001,
their Fig. 1b). Thus, Desch &Mouschovias (2001) conclude that
ambipolar diffusion is entirely responsible for the dissipation (or
better redistribution) of the magnetic flux carried by the infalling
gas. We note, however, that the region of uniform field in their
model contains a negligible mass (�0.01M�). Once the core en-
ters the postpivotal phase of dynamical collapse, having dissi-
pated the field in such a tiny fraction of the core’s mass is of little
help with respect to solving the magnetic flux problem of star
formation.

Nakano et al. (2002), criticized the results of Desch &
Mouschovias (2001), noticing that they neglected the (domi-
nant) contribution of grains to the ambipolar diffusion resistivity.
Including the grain contribution, Nakano et al. (2002) found a
much smaller value of the ambipolar diffusion resistivity than
Desch & Mouschovias (2001) and concluded that for densities
above�1012 cm�3, the field is dissipated by ohmic resistivity. To
make progress, future theoretical calculations need to study the
complex relationships among field dissipation, disk formation,
and grain growth, as well as to include self-consistently the back-
reaction of the magnetic field and its momentum and energy in-
puts into the gas as the field is dissipated.

An interesting question is the relative importance of ambipo-
lar diffusion and ohmic dissipation in protostellar accretion flows.
The ratio of the ambipolar diffusion time to the ohmic dissipation
time is given by

tAD

tOhm
¼ �

v2A
in
¼ �

4�	�i�n
B2

; ð48Þ

where vA ¼ B/(4��n)
1=2 is the Alfvén speed in the neutrals and


in ¼ (	�i)
�1 is the ion-neutral collision timescale. Note that the

ratio of timescales depends on the inverse square of the mag-
netic field. Thus, as the field is weakened by whatever process,
electric resistivity will ultimately dominate the end stages of the
process. Indeed, the ohmic term is the only one of the three con-
ventionally invoked mechanisms for dissipating magnetic fields
that is linear in B in the induction equation (the so-called Hall
term is quadratic, and the ambipolar diffusion is cubic; see, e.g.,
Cowling 1957, p. 110). This means that Hall and ambipolar
diffusion can never completely annihilate B; only ohmic dis-
sipation can do that.

Because the induction equation (1) with only ohmic dissipation
included is linear in B, the superposition principle allows us to
modify the approach taken in this paper and adapt it to other sce-
narios. If the processes of ambipolar diffusion and ohmic dissi-

pation occur in series as the gas flows inward, then the compressed
core field will be less than the ideal value by the effect of ambi-
polar diffusion in the outer regions. Adopting the inner limit of the
outer region as the outer limit of our inner calculation, everything
then is as before. One would just have somewhat different co-
efficients for the angular functions in equation (23) and, more
importantly, an overall reduction of the effective flux at ‘‘infinity’’
and thus an increase in k?. For example, an increase of the mass-
to-flux ratio by ambipolar diffusion by 2 orders of magnitude, as
found by Tassis & Mouschovias (2005a, 2005b), implies k? �
200. From equations (37) and (36) one obtains � � 6 ; 1019 cm s�1

and rOhm � 1 AU. The most important reduction is that the
reconnection luminosity decreases substantially to mean levels
Ė � 0:1 L�, a small fraction of the bolometric luminosity, unless
the reconnection events occur not steadily but in infrequent, pow-
erful flares. Finally, since this paper argues that ohmic dissi-
pation operates in the innermost region, the annihilation of the
elastic ‘‘core’’ that appears as the bottommost cell in the calcula-
tions of Tassis&Mouschovias (2005a, 2005b)may erode the base
from which are launched outwardly propagating shockwaves for
their ‘‘spasmodic accretion oscillations.’’ The point is that the in-
wardly advectedmagnetic field past the ‘‘last zone’’ is not simply
accumulated, as assumed in their calculations, but systematically
destroyed.

7. SUMMARY AND CONCLUSIONS

Assuming quasi–steady state and a spatially uniform resis-
tivity coefficient �, we have solved the problem of magnetic field
dissipation during the accretion phase of star formation.We have
adopted the velocity field determined in a previous study of the
gravitational collapse of a magnetized cloud (Galli et al. 2006),
and we have ignored the back-reaction of the changed magnetic
topology on the flow (using the field-freezing calculations to pro-
vide what we have called a ‘‘kinematic approximation’’). With
these assumptions, we have solved the problem analytically and
checked a posteriori the validity of our approximations. Accord-
ing to our solution, the magnetic field morphology changes from
radial at large distances to asymptotically uniform approaching
the origin, so that the magnetic flux accreted by the central star
is zero at any time.
To determine the value of the resistivity coefficient �, we have

considered the restrictions imposed bymeasurements of magnetic
fields in meteorites. These constraints require an effective resistiv-
ity � � 1020 cm2 s�1, at least 1 order of magnitude larger than the
microscopic electric resistivity of the infalling gas. Having shown
that ohmic resistivity can dissipate enough magnetic field so as to
solve the magnetic flux problem satisfying the available observa-
tional constraints, one now needs to solve the full dynamic prob-
lem of magnetic field dissipation and formation of a centrifugally
supported protoplanetary disk in a self-consistent way.
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Note added in proof.—Discussions with C. McKee since the acceptance of this paper have clarified an important conceptual
issue, the annihilation of magnetic field in the (correct) calculations here is not accompanied by the annihilation of magnetic flux.
For the latter to happen, the inward flow would need to press the advected flux toward the z-axis and annihilate field lines in excess
of the uniform value along that axis. However, there is no (toroidal component of the) current on the z-axis to dissipate ohmically.
The current exists near the equatorial plane, across which the field lines reverse directions. Annihilation of that current reconnects
fileds so that they penetrate vertically through the midplane (as shown in Fig. 4). The resulting pileup of the component Bz has
nowhere to go except outward, because it is attached to frozen-in interstellar fields at infinity, as argued essentially by Z.-Y. Li &
C. F. McKee (ApJ, 464, 373 [1996]).
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