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ABSTRACT

We study the evolution of the mass function of dark matter halos in the concordanceLCDM model at high
redshift. We employ overlapping (multiple realization) numerical simulations to cover a wide range of halo
masses, 107–1015 h�1 M,, with redshift coverage beginning at . The Press-Schechter mass function isz p 20
significantly discrepant from the simulation results at high redshifts. Of the more recently proposed mass functions,
our results are in best agreement with those of Warren and coworkers. The statistics of the simulations—along
with good control over systematics—allow for fits accurate to the level of 20% at all redshifts. We provide a
concise discussion of various issues in defining and computing the halo mass function and how these are addressed
in our simulations.

Subject headings: dark matter — large-scale structure of universe

1. INTRODUCTION

Dark matter halos occupy a central place in the paradigm of
gravitationally driven structure formation arising from the non-
linear evolution of primordial Gaussian density fluctuations.
Gas condensation, the resulting star formation, and the eventual
galaxy formation occur within halos. Consequently, the halo
profile and mass function are central ingredients in phenom-
enological models of nonlinear clustering of galaxies. The dis-
tribution of halo masses (the halo mass function) and its time
evolution are also sensitive probes of cosmology.

The halo mass function at the high-mass end (cluster mass
scales) is exponentially sensitive to the amplitude of the initial
density perturbations, the mean matter density parameterQm,
and the dark-energy-controlled late-time evolution of the den-
sity field. The last feature, particularly at low redshifts, ,z ! 2
allows cluster observations to constrain the dark energy content
QL and the equation of state parameterw (Holder et al. 2001).

The halo mass function is also of considerable interest at
high redshift, relating to questions such as predictions of quasar
abundance and formation sites (Haiman & Loeb 2001), the
formation history of collapsed baryonic halos, and the reion-
ization history of the universe (Furlanetto et al. 2006). Much
of the work on possible reionization scenarios is based on the
simple Press-Schechter (PS) mass function (Press & Schechter
1974; Bond et al. 1991), the use of which can lead to incorrect
predictions for the reionization history.

Simulations play an important role in characterizing the halo
mass function, particularly if only a few sets of cosmological
parameters are to be investigated. In order to study a variety
of cosmologies and scenarios for physical processes, e.g., reion-
ization, it is nevertheless very convenient, if not necessary, to
have accurate analytic fitting relations. Simulations can validate
these fits over a wide (albeit, discretely sampled) range of
parameters.

Various numerical studies of the mass function have been
carried out over different mass and redshift ranges. The closest

1 Los Alamos National Laboratory, ISR-1, MS D466, Los Alamos, NM
87545; heitmann@lanl.gov.

2 Department of Astronomy, University of Illinois, 1002 West Green Street,
Urbana, IL 61801; zlukic@astro.uiuc.edu.

3 Los Alamos National Laboratory, T-8, MS B285, Los Alamos, NM 87545.
4 Department of Astronomy, University of Illinois, 1002 West Green Street,

Urbana, IL 61801; and National Center for Supercomputing Applications, 1205
West Clark Street, Urbana, IL 61801; pmricker@uiuc.edu.

to the present work are Reed et al. (2003) and Springel et al.
(2005); in comparison to their results, our halo mass range goes
deeper by 3 orders of magnitude, with good statistics and con-
trol of systematics out to , substantially higher than inz p 20
these papers. (We review results from other work below.) Es-
sentially, the earlier results are in very good agreement with
the Sheth-Tormen (ST) mass function (Sheth & Tormen 1999)
at redshifts . As we show below, various fitting formulaez ≤ 10
given in the literature—most tuned to simulation results at or
near —can differ substantially in their predictions at highz p 0
redshifts, by as much as an order of magnitude. Therefore, it
is important to carry out simulations of sufficient dynamic
range and accuracy to test these predictions.

In order to extract the mass function from simulations, dif-
ferent questions have to be addressed, such as, how is the mass
function to be defined? When do the first halos form in a
simulation? When must the simulation be started in order to
capture these halos? What force and mass resolution are re-
quired to capture halos of a certain mass at a specific redshift?
We have derived and tested certain criteria to ensure that our
simulations capture the halos of interest; details will be given
elsewhere (Z. Lukic´ et al. 2006, in preparation).

2. THE MASS FUNCTION

Over the last three decades different fitting functions for
the mass function have been suggested. The first analytic
model for the mass function was developed by Press &
Schechter (1974). Their theory considers a spherically ov-
erdense region in an otherwise smooth background density
field. The overdensity evolves as a Friedmann universe with
positive curvature. Initially, the overdensity expands, but at
a slower rate than the background universe (thus enhancing
the density contrast), until it reaches the “turnaround” density,
after which it collapses. Although formally this collapse ends
with a singularity, it is assumed that in reality the overdense
region will virialize. For an Einstein–de Sitter universe, the
density of such an overdense region at the virialization red-
shift is . At this point, the density contrast fromr ≈ 180r (z)c

the linear theory of perturbation growth is . Ford ≈ 1.686c

, dc has a very weak dependence on cosmology thatQ ! 1m

we do not take into account (see Lacey & Cole 1993; Jenkins
et al. 2001). Following the above reasoning and with the
assumption that the initial density perturbations are given by
a Gaussian random field, the PS mass function is given by
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Fig. 1.—Relative residuals of the PS, Jenkins, and Warren mass function
fits with respect to ST for five different redshifts [ ]. Note that the(f � f )/fST ST

ranges of the axes are different in the different panels. We do not show the
Jenkins fit below masses of 1011 h�1 M, at since it is not valid in thisz p 0
mass range at .z p 0

, wherej is the variance1/2 2 2f (j) p (2/p) (d /j) exp (�d /2j )PS c c

of the linear density field, ,�1f (j, z) { (M/r )(dn/d ln j )b

whererb is the background density.
Using empirical arguments, Sheth & Tormen (1999) pro-

posed an improved fit. Sheth et al. (2001) interpreted this fit
theoretically by extending the PS approach to an ellipsoidal
collapse model. In this model, the collapse of a region depends
not only on its initial overdensity but also on the surrounding
shear field. The dependence is chosen to recover the Zel’dovich
approximation (Zel’dovich 1970) in the linear regime. A halo
is considered virialized when the third axis collapses (see also
Lee & Shandarin 1998). Jenkins et al. (2001) combine high-
resolution simulations for different cosmologies spanning a
mass range of over 3 orders of magnitude,∼(1012–1015) h�1

M,, and including several redshifts between andz p 5 z p
. They provide a fitting formula that works exceptionally0

well (within 20%), independent of the underlying cosmology.
By performing 16 nested-volume simulations, Warren et al.
(2005) obtain significant halo statistics spanning a mass range
of 5 orders of magnitude,∼(1010–1015) h�1 M,. Their best fit
employs a functional form similar to an improved version
of ST (Sheth & Tormen 2002): �1.625f (j) p 0.7234(j �Warren

.20.2538) exp (�1.1982/j )
The discrepancy between PS and the more accurate fits is

evident in Figure 1, where the redshift evolution of the mass
function is shown. The redshift dependence in the analytic mass
functions enters only through , where isj(z) p j(0)d(z) d(z)
the growth factor normalized such that . As the func-d(0) p 1
tional dependence onj is different in the different fits, this
leads to substantial variation across the fits as a function of
redshift. For the Warren fit agrees—especially in thez p 0
low-mass range below 1013 M,—to better than 5% with the
ST fit. At the high-mass end the difference increases up to
20%. The Jenkins fit leads to similar results over the considered
mass range. Note that at higher redshifts the disagreements
become considerably worse. For example, at and a haloz p 20
mass of 109 M,, the disagreement between the Warren and ST
fits is a factor of 2.

The determination of mass functions at high redshifts is a
nontrivial task. High-redshift halos have very low masses, plac-
ing heavy demands on the mass and force resolution needed
to resolve them. These requirements can be achieved in two
ways. First, a simulation with a very large number of particles
and high force resolution can be performed. This is expensive,
and only a very limited number of such simulations can be
carried out. Second, since determining the mass function is
simply a question of statistics, many relatively modest simu-
lations with moderate particle loading can be performed; this
is the strategy we adopt here. As simulations can only be trusted
until a redshift at which the lowerk modes are still linear,
multiple overlapping box sizes must be used, with a sufficient
number of realizations to prevent sampling bias. Box sizes must
also be substantially larger than the length scale corresponding
to halo collapse.

Springel et al. (2005) have recently followed the evolution
of 21603 particles in a 500h�1 Mpc box. The high mass and
force resolution allow them to study the mass function reliably
out to a redshift of , covering a mass range of roughlyz p 10
1010–1016 h�1 M,. Examples ofsingle small-box simulations
include Jang-Condell & Hernquist (2001) (1h�1 Mpc box with
1283 particles evolved to ) and Cen et al. (2004) (4h�1z p 10
Mpc box, 5123 particles, evolved to ). Results in bothz p 6
papers are claimed to be consistent with PS but without detailed
quantification. The simulation of Reed et al. (2003) is a com-

promise between the two extremes: a box size of 50h�1 Mpc
with 4323 particles and a concomitant halo mass range of
roughly 1010–1014.5 h�1 M,. Reed et al. find good agreement
(better than 20%) with the ST fit up to . For higherz � 10
redshifts they find that the ST fit overpredicts the number of
halos, at up to 50%. At this high redshift, however,z p 15
their results become statistics-limited, the mass resolution being
insufficient to resolve the very small halos.

In this Letter we analyze a suite of 50N-body simulations
with varying box sizes between 4 and 126h�1 Mpc with mul-
tiple realizations of all boxes to study the mass function at
redshifts up to and to cover a large mass range betweenz p 20
107 and 1015 h�1 M, even at high redshifts. Significantly, at

gas in halos with a mass scale above∼107 h�1 M, canz p 20
cool via atomic line cooling (Tegmark et al. 1997).

3. SIMULATIONS AND MASS FUNCTION RESULTS

All simulations in this Letter are carried out with the particle-
mesh code MC2 (the Mesh-based Cosmology Code). MC2 has
been extensively tested against other cosmological simulation
codes (Heitmann et al. 2005). The chosen values of cosmo-
logical parameters are , ,Q p 1.0 Q p 0.253 Q ptot CDM baryon

, , and km s�1 Mpc�1, as set by the0.048 j p 0.9 H p 708 0

latest cosmic microwave background and large-scale structure
observations (MacTavish et al. 2005). The mass transfer func-
tions are generated with CMBFAST (Seljak & Zaldarriaga
1996). We summarize the different runs, including their force
and mass resolution, in Table 1.

We identify halos with the friends-of-friends algorithm
(FOF), based on finding neighbors of particles at a certain
distance (see, e.g., Einasto et al. 1984; Davis et al. 1985). The
halo mass is defined simply by the sum of particles that are
members of the halo. (For connections between different def-
initions of halo masses, see White 2001.) Despite several short-
comings of the FOF halo finder, e.g., halo-bridging (see, e.g.,



No. 2, 2006 CAPTURING HALOS AT HIGH REDSHIFTS L87

TABLE 1
Summary of the Performed Runs

Mesh
Box Size
(h�1 Mpc)

Resolution
(h�1 kpc) zin zfinal

Particle Mass
(h�1 M,)

Smallest Halo
(h�1 M,)

Number of
Realizations

10243 . . . . . . 126 120 50 0 9.96# 109 3.98 # 1011 10
10243 . . . . . . 64 62.5 80 0 1.31# 109 5.2 # 1010 5
10243 . . . . . . 32 31.25 150 5 1.63# 108 6.52 # 109 5
10243 . . . . . . 16 15.63 200 5 2.04# 107 8.16 # 108 5
10243 . . . . . . 8 7.81 250 10 2.55# 106 1.02 # 108 20
10243 . . . . . . 4 3.91 500 10 3.19# 105 1.27 # 107 5

Notes.—Mass and force resolutions of the different runs. The smallest halos we consider contain 40
particles. All simulations are run with 2563 particles.

Fig. 2.—Halo growth function for three mass bins for the 16h�1 Mpc box.
The Warren (solid curves), ST (long-dashed curves), and PS (short-dashed
curves) fits are compared to simulation data with improved Poisson error bars

following Heinrich (2003). Note the quality of the agree-1/2(n � 0.25) � 0.5
ment with the Warren fit at higher redshifts.

Gelb & Bertschinger 1994; Summers et al. 1995) or statistical
biases found by Warren et al. (2005), the FOF algorithm itself
is well defined and very fast.

There are two sources of possible biases in determining in-
dividual halo masses using FOF. First, the halo may be sampled
with an insufficient number of particles (see Warren et al. 2005).
Second, the effective slope of the halo density profile close to
the virial radiusrvir, at fixed particle number, also influences
the FOF mass. If the force resolution of theN-body code affects
the profile, this too adds a systematic bias. Here we report the
mass function for the linking length FOF mass in-b p 0.2
cluding only the correction of Warren et al. (2005). In a follow-
up paper (Z. Lukic´ et al. 2006, in preparation) we will address
systematics issues in determining halo masses in considerable
detail.

We now discuss criteria found to be very important for dem-
onstrating the convergence and robustness of our results. De-
tails will be presented in Z. Lukic´ et al. (2006, in preparation).
The first issue relates to the initial redshift of the simulation.
Two conditions are important: (1) the simulation must begin
sufficiently early that the initial Zel’dovich displacement is a
small enough fraction of the mean interparticle separationDp;
on average a particle should not move more than∼Dp/3; and
(2) the highest redshift where the mass function is to be eval-

uated must be sufficiently removed from the redshift of first
crossingzcrosswhere particles have the first chance to form halos.
The stringency of these criteria is such that the small boxes
require very high starting redshifts; e.g., the 4h�1 Mpc box
had an initial redshift . This is a much earlier startingz p 500in

redshift than those used in previous simulations; the conven-
tional requirement that all modes in the box be linear at the
initial redshift proves to be much weaker, and therefore inad-
equate, as a convergence criterion.

A simple test of how well the simulations track the mass
function formulae is to follow the number of halos in a specified
mass bin at a given redshift. For this purpose we convert the
mass function fit into a function ofz, defining the halo growth
function as shown in Figure 2. The evolution of three mass
bins is shown as a function ofz along with results from the
16 h�1 Mpc boxes. The halo growth function is particularly
valuable for determining when the halos at a certain mass
should first form. This is a good test for problems in simulations
aiming to capture halos with a given minimum mass at some
redshift. An example of this is insufficient force resolution in
the base grids of adaptive mesh refinement (AMR) codes.

Once the number of particles for a simulation and a desired
mass for the smallest halo are decided, the required box size
is fixed. The force resolution needed to resolve the smallest
halos has then to be determined. Our aim here is not to precisely
measure the halo profile but simply to be certain that the total
halo mass is correct. As shown in Heitmann et al. (2005) the
halo mass is a relatively robust quantity and a simple estimate
of the force resolution is all that is needed. The force resolution
must be small compared to the comoving halo virial radiusrD

(with the overdensity relative to the critical density, )D ∼ 200
at all redshifts. The resulting inequality can be stated in the
form

1/3d n Q(z)f h
! 0.62 , (1)[ ]D Dp

wheredf is the force resolution andnh is the number of particles
per halo. In the simulations performed here we use a ratio of
one particle per 64 grid cells, which allows halos with roughly
40 particles to be captured. It has been shown in Heitmann et
al. (2005) that this ratio does not cause collisional effects and
leads to consistent results in comparison with other codes. Mass
function convergence tests with different force resolutions are
nicely consistent with the above estimate as shown in Z. Lukic´
et al. (2006, in preparation); time-step criteria and convergence
tests are also described there.

The large set of simulations we have carried out allows us
to study the mass function at redshifts between andz p 20

. The main results are shown in Figure 3, where thez p 0
simulation data for the mass function are shown along with the



L88 HEITMANN ET AL. Vol. 642

Fig. 3.—Mass function at five different redshifts with Poisson error bars.
The red line is the Warren fit, blue is PS, and black is ST.

Warren, PS, and ST fits at different redshifts. At all redshifts
the Warren fit has the best agreement with the simulations with
a worst-case scatter of approximately 20% and is a numerically
very significant improvement over ST. Such a close match is
quite gratifying given the large dynamic range of the present
investigation. The PS fit, over the mass range considered, is
quite poor at , deviating by an order of magnitude fromz ≥ 10
the numerical results in the high-mass range.

4. DISCUSSION AND CONCLUSIONS

In this Letter we have studied the evolution of the mass
function starting at a redshift of and covering a haloz p 20
mass range of 107–1015 h�1 M,. Our results incorporate new

halo-basedN-body error control criteria that are described in
more detail in Z. Lukic´ et al. (2006, in preparation). We find
that the Press-Schechter mass function deviates significantly
from our results. More recent fits are in better agreement; in
particular, the fitting function of Warren et al. (2005) agrees at
the 20% (worst case) level over the entire redshift range. We
note that on the particular halo mass scales of relevance in any
given simulation box that we considered, there is no suppres-
sion of the mass function due to missing power on the box
scale. This will be the topic of a future communication.

The precise agreement of the numerically obtained halo
growth function, as well as the evolution of the mass function
with the (evolved ) Warren fit, demonstrates the remark-z p 0
able result that the evolution of the mass function is completely
controlled by the linear growth of the variance of the linear
density field.

In order to find a mass function fit relevant to observations,
several hurdles remain to be overcome, including reaching
agreement on an appropriate definition of halo mass (White
2001) and improving the precision and accuracy ofN-body
codes beyond the current state of the art (O’Shea et al. 2005;
Heitmann et al. 2005). Depending on the level of precision
required, as White (2002) points out, “it may not be sufficient
to use a simple parameterized form” in constraining cosmo-
logical parameters with the mass function.

The error control criteria developed here have a natural ap-
plication in AMR simulations in the setting of refinement and
error control criteria. Work in this direction is in progress.
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