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ABSTRACT

Gravitational lensing by foreground halos with masses as small as 1010 M� can induce observable second-order
shape distortions in background galaxy images in addition to the well-known elliptical shape distortion produced by
first-order shear. Furthermore, the orientation of the second-order distortions is correlated with the orientation of the
shear-induced elliptical (quadrupolar) shape. Because of its angular dependence, we refer to the most prominent
second-order distortion as a sextupole distortion. The correlation between first-order and second-order shapes pro-
vides a sensitive signal by which to identify galaxies that may have been lensed. Galaxy images appear to be slightly
curved by these lensing events. In this paper we develop a general theoretical lensing framework based on a lensing
distortion map. Tools to infer map coefficients from the galaxy images are described and applied to the Hubble Deep
Field–North. Instrumental PSFs, camera charge diffusion, and image composition methods are modeled in the co-
efficient determination process. Estimates of Poisson counting noise for each galaxy are used to cut galaxies with
signals too small to reliably establish curvature. These noise estimates are confirmed using a Fisher matrix analysis.
Background shape distortions may also be represented by maps. Curved galaxies are found to be spatially clumped,
as might arise from sextupole lensing by overdensities in a foreground dark matter halo distribution. We calculate the
cross section for sextupole lensing byMoore and NFW halos and estimate the total cross section of the field based on
these halo cross sections.

Subject headings: dark matter — galaxies: clusters: general — gravitational lensing

Online material: color figures

1. INTRODUCTION

Weak gravitational lensing methods (for review, see Bartelmann
& Schneider 2001; Mellier 1999; Hoekstra et al. 2002a; and
recently Schneider 2006) allow one to investigate the evolu-
tion of matter clustering and the growth of large-scale structure
(Wittman et al. 2000; Mellier et al. 2002) and thus probe the
properties of both dark energy and dark matter. It is a unique way
to investigate both the past and future of the universe. Structure
growth is understood as the growth of the matter density fluctua-
tions predicted by inflationary cosmology and dark energy evo-
lution (for review, see Peebles 1993), and hence the structure of
density fluctuations provides information about inflationary sce-
narios (Huterer & Turner 2001; Huterer 2002; Linder & Jenkins
2003). On the other hand, the matter distribution measurements
give bounds on the dark energy equation of state, allowing one to
predict the future of the universe (Linde 2004; Kallosh & Linde
2003; Kallosh et al. 2003).

1.1. The Sextupole Lensing Method

In this paper we present a new method of lensing that we call
‘‘sextupole lensing.’’ Sextupole lensing derives its name from
the fact that when the distance between the lensing mass and the
lensed background galaxy light path is small (say, �10 kpc), a
distinctive second-order moment having three maxima and three
minima, called a sextupole moment, can be induced in the back-
ground galaxy image. This moment is superimposed on a quad-
rupole moment (also called ellipticity, having two maxima and
two minima) produced by the linear lensing deflection known as
shear. Surprisingly, sextupole lensing can probe mass scales as
small as 109 M�, because the second-order deflection inducing
the sextupole moment varies in strength as 1/R3 and hence can be
large when the impact parameter R is small. Thus, sextupole
lensing can probe structure on small scales.

A crucial feature of the induced sextupole moment is that its
orientation is correlated with the orientation of the induced quad-
rupole moment; one of the minima of the sextupole moment will
be aligned with one of the minima of the quadrupole moment,
giving the image a slightly curved appearance. The familiar curv-
ing seen in strong-lensing arclets (Bartelmann& Schneider 2001;
Mellier 1999) can be understood as the correlated superposition of
quadrupole and sextupole moments, with the length of the arclet
usually being determined by the local strength of a yet higher or-
der octupole moment. Curved features might also be apparent in
galaxy-galaxy lensing (Brainerd et al. 1996; Hoekstra et al. 2002b;
Natarajan & Refregier 2000; Hoekstra 2004).

The typical cluster identifiable through weak lensing (Kaiser
et al. 2000) has a mass of 1014M� and a radius of about 500 kpc.
Since the strength of the quadrupole deflection, responsible for
the ellipticity, is proportional to the mass and falls off like 1/R2,
one could get the same induced quadrupole moment in a light
stream positioned 5 kpc from an object of 1010 M�. In the latter
example, since the sextupole moment varies as 1/R3, the sextu-
pole moment becomes 100 times stronger, becoming as large as
the intrinsic sextupole moments of the background galaxies. If
ensembles of dark matter contain an abundance of lower mass
clumps, the light streams passing through them might occasion-
ally pass close to a 109–1013M� object, producing an observable
sextupole moment in the image (Irwin & Shmakova 2004).

Since this ‘‘close-encounter’’ lensing creates an alignment of
the minima of quadrupole and sextupole moments in the lensed
background galaxies, a foreground population of objectswith high-
density interiors would be detectable through the background
galaxies as a spatial correlation in this particular orientation of
sextupole moments with respect to quadrupolemoments (a spatial
correlation of an angular correlation). To see this correlation sig-
nal, onewould first identify background galaxieswhose sextupole
and quadrupole moments are aligned as if they could have arisen
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from lensing, and then one would look to see whether such galax-
ies are located on the sky randomly, or whether, on the other hand,
they were clumped. This is the program that we develop in this
paper and then apply to the Hubble Deep Field–North (HDF-N).1

In addition, if the background light stream penetrates a mass
clump at a location where the mass density gradient is nonzero,
two other second-order moments (with a rotational dependence
of the dipole moment) can be induced. The orientation of those
moments is correlated with both the quadrupole and sextupole
moments.

1.2. Sextupole Lensing From a Point Mass

We begin with the simple case of a concentrated point mass.
The 1/R gravitational deflection (which we sometimes refer to as
an impulse or kick, because the details of the deflection along the
trajectory of the centroid can be integrated out) of a light stream
can be expanded in a power series. With a dark matter clump at
the origin, and the beam centroid at position x0, the deflection
�x 0 of a ray at the coordinate position X ¼ x0 þ x is given as

�x0 ¼ � 4MG

X
¼ � 4MG

x0þ x
¼ � 4MG

x0
1� x

x0
þ x

x0

� �2

þ: : :

" #
;

ð1Þ

where x indicates the offset from the centroid within the light
stream. Each term in the power series is down from the previous
term by the fraction x/x0. In order for the effects of higher order
terms to be seen, the impact parameter x0 must be only a small
multiple of the light-stream width.

This power series expansion can be generalized to yield the
deflection in both coordinates. The deflection, when including the
direction, in cylindrical coordinates is proportional to �ei�/R ¼
�1/(e�i�R) ¼ 1/(X � iY ). Setting X ¼ x0 þ x and Y ¼ y, we
obtain

�x 0 þ i�y 0 ¼ � 4MG

(X � iY )
¼ � 4MG

x0 þ (x� iy)

¼� 4MG

x0
1� x� iy

x0
þ x� iy

x0

� �2

þ: : :

" #
: ð2Þ

Expressions for general mass distributions are provided in x 2.
Concentrating first on the linear term, one sees that the hori-
zontal kick is defocusing, while the vertical kick is focusing.
The image appears larger in the focused direction and smaller in
the defocused direction, and hence the linear term changes a

circle into an ellipse. It is a general feature that the image dis-
tortions have the opposite sign of the deflections: for example, a
deflection to the left results in the observed image moving to the
right.
Introducing polar coordinates (r; �) for the coordinates (x; y )

yields

�x0 þ i�y0 ¼ � 4MG

x0
1� r

x0
e�i� þ r

x0

� �2

e�i2� þ : : :

" #
:

ð3Þ

The leading constant deflection term in equation (3) is called the
dipole term: all rays in the light stream receive the same deflec-
tion. In beam physics the dipole term is created by a magnet
having two poles, and the radial distortion has one maximum
and oneminimum. The first-order (linear) term is called the quad-
rupole term, since it is the deflection created by amagnet with four
poles, and because the distortions of a radially symmetric beam,
when viewed downstream, would be elliptical (i.e., quadrupolar)
in form. The notation ‘‘quadrupole’’ also reflects a 2�modulation
of the radial shape, having two maxima and two minima.2 The
second-order term is called a ‘‘sextupole,’’ because it is the de-
flection given by a magnet with six poles and results in an image
distortion with a 3� behavior having three maxima and three min-
ima. The quadrupole and sextupole shapes are sketched in the left
panel of Figure 1.
For a point mass at the origin and a light stream on the x-axis,

as above, a ray farther out the x-axis (for which � ¼ 0) will have
a negative first-order deflection and a positive second-order de-
flection. There, the quadrupole distortion has a minimum and the
sextupole distortion has a maximum. At � ¼ � the quadrupole
has its other minimum, but here the sextupole has a minimum.
The middle and right panels of Figure 1 show the superposition
of quadrupole and sextupole distortions for two distinct ori-
entations of the sextupole. The second panel corresponds to the
curved shape that would arise from a lensing event with minima
aligned. In the rightmost panel, we see the shape that results
when quadrupole and sextupolemaxima are aligned. Such a shape
would not be created from a single lensing event with a radially
symmetric mass distribution.
The plan we follow in this paper is to measure the quadrupole

and sextupole shape of all background galaxies and classify each
galaxy according to whether it is ‘‘curved,’’ ‘‘midrange,’’ or
‘‘aligned,’’ as defined by the criteria described in Figure 1. We
then examine the distribution of curved galaxies on the sky to

Fig. 1.—Arbitrarily oriented quadrupole and sextupole shape distortions (left). The minimum angle between a quadrupole minimum and a sextupole minimum is
denoted by � ¼ �1 if j�1j < 30�; otherwise, � ¼ �2. We are then guaranteed that �30� � � � 30�. Curved galaxies are defined as those for which j�j � 10�, midrange
galaxies by 10� < j�j < 20�, and aligned galaxies by j�j � 20�. [See the electronic edition of the Journal for a color version of this figure.]

1 See http://www.stsci.edu/ftp/science/hdf/hdf.html.

2 At position re i� the deflection direction of the first-order term is e�i�, which
is at an angle 2� from the radial direction. Therefore, at constant radius r the radial
distortion will be proportional to cos 2�.
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determine whether such galaxies are randomly distributed or
unusually clumped.

Our central conceptual tool, the lensing distortion map, is in-
troduced in x 2. The coefficients appearing in the map are each
described and compared with common lensing terminology. Ex-
pressions for the coefficients from lensing by azimuthally sym-
metric distributions are derived and applied to lensing from NFW
(Navarro-Frenk-White; Navarro et al. 1995, 1996, 1997) and
Moore (Moore 1994; Moore et al. 1998, 1999) distributions.

Section 3 describes three increasingly sophisticated methods
for inferring the coefficients of the map for each background gal-
axy. The first method, the moment method, is based on image
moments. The second method, the radial-fit method, uses the best
fit of a mapped (initially symmetric) galaxy shape parameterized
in a simple form. The third method, the model method, expands
on the second method to include effects of the point-spread func-
tion, charge diffusion in the camera, and important features of the
image composition process.

Section 4 describes the selection and general properties of
galaxies in the Hubble Deep Fields. Section 5 presents the results
of each of the three methods for determination of the quadrupole
coefficient. An analytical estimate for the noise in the quadrupole
coefficient, based on Poisson noise of the galaxy image, is pre-
sented, and noise cuts are implemented. Section 6 presents the
results of each of the three methods for determination of the sex-
tupole coefficient. We complete the measurement section by
presenting the distributions found for the principal parameter of
interest to us, the angle between quadrupole minimum and sex-
tupole minimum, by which we distinguish the three shape cat-
egories labeled ‘‘curved,’’ ‘‘midrange,’’ and ‘‘aligned.’’

The primary goal of the above development is presented in
x 7. There we describe and employ a nearest neighbors analysis
to quantify clumping. Then we determine the probability of ob-
taining the observed clumping randomly, keeping galaxy loca-
tions fixed in the sky while permuting their properties. Both the
curved and aligned galaxy subsets are determined to be more
clumped than randomly chosen subsets at the 2 � level.

Section 8 addresses possible systematic sources of clumping,
such as correlated curvature originating among the background
galaxies themselves or correlated curvature from an uncompen-
sated residual of the point-spread function.

In x 9 we examine the consistency of our clumping result with
suspected features of the �CDM concordance model. In partic-
ular, we make a first-order estimate as to whether lensing by
overdensities among the dark matter foreground galaxies could
account for this result. Section 10 summarizes the paper.

2. LENSING DISTORTION MAPS

2.1. Setting up the Map

In the standard lensing situation, rays from a distant back-
ground galaxy are deflected by a mass concentration. The appar-
ent image, as seen from the position of the telescope, is defined
by an intensity function that depends only on the angle of each
ray as it enters the telescope. Going backward, toward the ap-
parent image, the rays are deflected by mass distributions but are
known to depart somewhere from the source galaxy. The ray will
have a definite position and angle at the source galaxy. This
backward mapping, which we refer to as the ‘‘lensing distortion
map,’’ connects coordinate variables (ray position and direction)
located at the telescope to coordinate variables (ray position and
direction) at the source galaxy. We begin by setting up coordi-
nate systems for these variables with one axis coincident with a
light ray from the approximate centroid of the galaxy to the

telescope. This ray defines what we call the longitudinal axis,
and distance along this axis is designated by the letter s.3 A po-
sition perpendicular to the centroid ray is designated by (x̃S ; ỹS)
at the source and (x̃T ; ỹT ) at the telescope. We take these varia-
bles to be comoving distances.4

Using the longitudinal distance s, rather than the time t, as the
independent variable, the conjugate momenta are (x̃0S ; ỹ

0
S) (where,

e.g., x̃0S ¼ dx̃S /ds is the slope of the ray). Likewise, (x̃
0
T ; ỹ

0
T ) de-

notes the momentum vector of the ray at the telescope.
The map of ray locations constructed between telescope and

source will be symplectic, since the light geodesics are described
by aHamiltonian, and consequently the determinant of the linear
four-dimensional transformation matrix expanded about any ray
will equal unity. However, the spatial trajectories of all rays con-
verge to the same point, the position of the telescope, which we
take to be x̃T ¼ ỹT ¼ 0. Hence, the two angles x̃0T and ỹ0T at the
telescope uniquely describe the ray trajectory through space and
its coordinates at the galaxy. Thus, the ‘‘backward’’ map can be
written as a set of four functions x̃S(x̃

0
T ; ỹ

0
T ), ỹS(x̃

0
T ; ỹ

0
T ), x̃

0
S(x̃

0
T ; ỹ

0
T ),

and ỹ0S(x̃
0
T ; ỹ

0
T ).

In the absence of any lensing other than the direction changes
suffered by the centroid ray, the angle of a ray from (x̃S ; ỹS) would
enter the telescope at the angles (x0S ; y

0
S) ¼ (x̃S /DTS; ỹS /DTS),

where DTS is the comoving distance from the telescope to the
source.5Making this identification, the backward map can be rep-
resented by the functions x0S(x

0
T ; y

0
T ) and y0S(x

0
T ; y

0
T ), where we

have also identified x0T � x̃0T and y0T � ỹ0T . If desired, these an-
gular coordinates at the telescope entrance can be transformed to
an ‘‘ideal’’ position on the focal plane bymultiplying by the num-
ber of pixels per radian at the galaxy position. The lensing dis-
tortion map is then given by functions xS(xT ; yT ) and yS(xT ; yT ),
where all coordinates are now positions on the ideal focal plane.

The resulting lensing distortion map functions so defined con-
tain the information on what happened in the transit of light rays
from the telescope to the source galaxy. To account for distor-
tions present in the transformation from incoming angle to focal
plane would require the introduction of an additional map repre-
senting them. The map from source to ‘‘real’’ focal plane would
then be a concatenation of these two maps.

In this two-dimensional map we have ignored the slopes x̃0S
and ỹ0S at the source plane, and hence the two-dimensional deter-
minant is not guaranteed to be unity. Under some circumstances,
two distinct rays of the same source galaxy, entering the tele-
scope at slightly different angles, can depart from the same loca-
tion within a single galaxy, of course having different slopes
there. By excluding such situations, there is no loss in dropping
the functions x̃0S and ỹ

0
S . This condition is equivalent to demand-

ing that nowhere over the full extent of the image does the
Jacobian pass through zero, namely,

J (xT ; yT ) ¼

@xS
@xT

@xS
@yT

@yS
@xT

@yS
@yT

��������

��������
6¼ 0: ð4Þ

When second-order terms are present in the map, the Jacobian is
a quadratic function of position.

3 We do not rule out the possibility that there could be multiple images from a
single galaxy and that there may be more than one such ray. In such a case one
independently sets up coordinate systems for each image.

4 We include tildes here because laterwedefine related coordinateswithout tildes.
5 We warn the reader that x0S and y

0
S are not the slopes of an actual ray. They

are linear functions of the position. Theywould equal the actual slopes, x̃0S and ỹ
0
S ,

only in the absence of lensing.
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2.2. The Map in Complex Coordinates

The two functions x0S(x
0
T ; y

0
T ) and y0S(x

0
T ; y

0
T ) can be combined

into one complex function by definingw0
S ¼ x0S þ iy0S . This com-

plex function can be written in terms of the variables w 0
T ¼

x0T þ iy0T and w̄0
T ¼ x0T � iy0T by substituting x0T ¼ 1

2
w 0
T þ w̄0

T

� �
and y0T ¼ (1/2i) w0

T � w̄0
T

� �
. The map equations can then be

written as the single function w0
S(w

0
T ; w̄

0
T ).

Since the transverse width of the light stream will usually be
small compared to characteristic dimensions of the variation of
the lensing mass distributions, we can expand this function in a
power series about the stream centroid,6

w0
S(w

0
T ; w̄

0
T ) ¼ w0

T þ
X1
n;m¼0

anmw
0n
T w̄

0m
T : ð5Þ

By introducing the conversion factor to the focal plane �, the
number of radians per pixel, the map becomes

wS(wT ; w̄T ) ¼ wT þ
X1
n;m¼0

anm�
nþm�1wn

T w̄
m
T : ð6Þ

The significance of the complex variables w and w̄ (or w 0 and
w̄ 0 ) rests primarily with the fact that products and powers of
them are rotation eigenfunctions. It follows that the terms in the
expansion for wS have a simple interpretation.

The coefficients anm are usually complex, as can be seen by ro-
tating the coordinate system. If one rotates the coordinate system
counterclockwise (in the positive � direction) by the angle �,
then wS and wT change by e�i�, and thus anm must vary as
ei(n�1)�e�im�.

The leading term is chosen to be wT, so that in the case of no
lensing whatsoever, all anm will be zero. This leading term is
called the identity map. In addition, one usually sets a00 ¼ 0,
because it would simply shift the origin of the S-variables by a
constant, representing the presence of a uniform deflection.

The a10 term is invariant under rotations. For lensing by mass
on a single plane, we show that the term a10 is real, so 1þ a10
produces a simple scaling. The a10 term is often called conver-
gence and denoted by ��. However, for lensing maps with
lensing at two planes, a10 will generally be complex. In that case,
the combination 1þ a10 produces a rotation as well as a scaling.
For a single lensing plane it is shown that all anm with n > 0 are
zero unless the light-stream centroid actually passes through
regions where the lensing mass density or its derivatives are non-
zero. The a0m terms can be nonzero even when the light stream
passes through empty space.

A general linear two-dimensional transformation, as repre-
sented by a 2 ; 2 matrix, has four coefficients. In the complex
linear map two real coefficients are contained in a10, and the
other two are in a01. According to the argument above, a01 varies
as ei2� under rotations and is the coefficient of w̄T ¼ rTe

�i�T . As
described in the discussion of point mass lensing in x 1.2, such a
term produces a quadrupolar distortion. When arising from lens-
ing, a01 is normally called shear and denoted by the variable��.

The a02 term is the coefficient of the second-order term w̄2
T .

In polar notation, w̄2
T ¼ r2Te

�i2�T , which was shown in x 1.2 to
produce a sextupolar distortion, having three maxima and three
minima.

The a11 and a20 terms are also second-order coefficients. The a11
term is the coefficient of wTw̄T ¼ r2T , which does not depend on
angle. Thus, for a circle at constant rT this term produces a trans-

lation whose magnitude increases as r2T . The a20 term can be
shown to produce a cardioid shape.7 As we show below, for lens-
ing by mass on a single plane, a11 ¼ 2ā20. Both terms are zero un-
less the light-stream centroid passes through the mass distribution.
The third-order term a03 yields an octupolar distortion. There

are three other third-order terms: a12, a21, and a30. Third-order
terms are not discussed further in this paper. They are normally
smaller than the sextupole terms, and a spurious octupole can be
created by pixelation effects and by the point-spread function.
For the map in terms of the variables w0

T , the second-order
coefficient has the units radian�1. Conversion to arcsec�1 requires
the second-order coefficients to be multiplied by the number of
radians per arcsecond, 4:9 ; 10�6. Conversion to the focal plane
map specified in terms of pixels requires the second-order coef-
ficients to be further multiplied by the number of arcseconds per
pixel, which equals 0.04 for the drizzled HDF images. We have
chosen to use the focal plane representation of the map, because
the images are presented and processed in pixel units. In addition,
since the majority of our images are only a few pixels in radius,
one can compare the sextupole strength at the rms radius with the
quadrupole strength by multiplying the sextupole coefficient by
the rms radius in pixels.

2.3. The Map from a Single Lensing Plane

We now turn to maps arising from mass distributions that can
adequately be represented by mass projected onto a single plane
(which we refer to as the lensing plane). To determine the Green’s
function for this case, consider the effect of a point mass. A light
stream passing at distance rwill be deflected radially by the angle
�r 0 ¼ �4MG/r. The potential for such a kick, the sought Green’s
function, is 2�� ¼ 4MG ln rð Þ. However, this is just the Green’s
function for the two-dimensional Laplace equation, 92� ¼
4�G�, where � is the surface mass density function.8

In accord with the variables chosen for the map, we expand
the solution to Laplace’s equation in the variables w ¼ xþ iy
and w̄ ¼ x� iy. (Variables without subscripts Tor S are taken to
lie in the lensing plane.) To enable power series expansions, it is
useful to introduce derivative operators @ � @/@w � 1

2
@/@x�½

i @/@yð Þ� and @̄ � @ /@w̄ � 1
2
@/@xþ i @/@yð Þ½ �, which have the de-

sired property that @w ¼ @̄w̄ ¼ 1 and @w̄ ¼ @̄w ¼ 0.
Using these variables, the power series expansion for the po-

tential is �(w; w̄) ¼
P1

n;m¼0 1/n!m!ð Þ�nmw
nw̄m, where �nm ¼

@ n@̄ m� evaluated at w ¼ w0. The reality condition on� implies
relationships among these coefficients. For example, the �nn are

real and �nm ¼ �mn. If both n > 0 and m > 0, the term will be
proportional to the density or a derivative of the density, since
�11 ¼ 1

4
92� ¼ �G�. The two components of the kick, given in

the form �x 0 þ i�y 0, are contained in the single equation

�w0 ¼ �2@̄(2�) ¼ �4
X1

n;m¼0

1

n!m!
�nmþ1w

nw̄m: ð7Þ

Here we took a derivative of the power series expression for �
and then set m ! mþ 1 in the sum.
The geometry of Figure 2 implies

w0
S ¼ w0

T þ DLS

DTS

�w0(w; w̄); ð8Þ

7 Subsequent to the original posting of this paper, other authors suggested the
name second flexion for the sextupole term and the name first flexion for the
terms a11 and a20 (Goldberg & Bacon 2005; Bacon et al. 2006).

8 Here � is the potential for the deflection of a nonrelativistic particle. The
factor of 2 is explicitly retained, indicating that light rays receive twice this kick.6 This condition is violated in the case of arcs.
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where

w ¼ DTL

1þ zL
w0
T :

The factors here can be understood as follows. First, multiply
through by the comoving distance to the source plane,DTS . Then
the left-hand side is the comoving location of the ray on the
source plane. This is given as a function of the initial angle of
the ray leaving the telescope, w0

T . The first term on the right-
hand side is the comoving position on the source plane of the
unperturbed ray departing at angle w0

T . The second term is the
modification in that ray’s position on the source plane as a result
of a kick that occurs at a distance DLS preceding the source
plane. The kick is given by equation (7), where w is understood
to be the distance from the centroid in that plane at the moment
in time when the light stream passed, namely, the comoving lo-
cation, DTLw

0
T divided by 1þ zL. This reasoning may be easily

extended to yield the map for lensing on two planes.
From equation (8) we can derive the map coefficients for a

general potential,

a10 ¼� 4
DLS

DTS

DTL

1þ zL
�11 ¼ �4�G

DLS

DTS

DTL

1þ zL
�(r0);

a01 ¼� 4
DLS

DTS

DTL

1þ zL
�02;

a02 ¼� 4
DLS

DTS

�
DTL

1þ zL

�2
1

2
�03;

a11 ¼� 4
DLS

DTS

�
DTL

1þ zL

�2

�12

¼� 2�Gei�0
DLS

DTS

�
DTL

1þ zL

�2
@�

@r
(r0);

a20 ¼� 4
DLS

DTS

�
DTL

1þ zL

�2
1

2
�21

¼� �Ge�i�0
DLS

DTS

�
DTL

1þ zL

�2
@�

@r
(r0): ð9Þ

The coordinates (r0; �0) are the location of the light-stream cen-
troid in the frame of reference on which the lensing mass dis-
tribution is described. The term r0 is the distance of separation
at the epoch when the light stream passed the plane.

The map coefficients for a point source can be found by
evaluating the derivatives of 2�� ¼ 4MG ln (r) ¼ 2MG ln (ww̄),

a01� ¼
DLS

DTS

DTL

1þ zL

4MG

w̄2
0

;

a02� ¼ � DLS

DTS

DTL

1þ zL

� �2
4MG

w̄3
0

;

a10� ¼ a11� ¼ a20� ¼ 0: ð10Þ

The map coefficients can be found for any symmetric mass
distribution by using Gauss’s law, @�/@r ¼ 2M (r)G/r ¼
4�G/rð Þ

R r

0
�(r 0)r 0 dr 0, and the relationship @̄�(r) ¼

w/2rð Þ @�(r)/@r½ �. Using these relationships, one finds

a01 ¼ 4Gei2�0
DLS

DTS

DTL

1þ zL

M (r0)

r20
� ��(r0)

� �
;

a02 ¼�4Gei3�0
DLS

DTS

DTL

1þ zL

� �2
M (r0)

r30
� ��(r0)

r0
þ ��0(r0)

4

� �
:

ð11Þ

We note that themagnitude of the� term in the expression for a01,
including coefficients, is the same as the expression for a10 in equa-
tion (9). In addition, the magnitude of the first two terms in the
equation for a02 is preciselyDTL/ (1þ zL)r0½ � times the equation for
a01. Since a02 gets multiplied by an extra w̄0

0, the ratio of magni-
tudes is just the light-stream size at epoch zL divided by the distance
to the center, reflecting the simple relationship in equation (1).

For the remainder of this paper we use the notation a ¼ a01 for
the quadrupole coefficient and b ¼ a02 for the sextupole coeffi-
cient. Since they are the coefficients of distinct shapes, we set d1 ¼
a11 and d2 ¼ a20. In the case of lensing from a single plane, the
lensing-induced coefficients would have the relationship d1 ¼ 2d̄2.
Whenwe impose this condition,weuse thenotationd ¼ d̄2 ¼ d1/2.

We purposely avoid the use of the words ‘‘convergence’’ or
the symbol�� for a10 and ‘‘shear’’ or the symbol�� for a01, be-
cause convergence and shear are usually meant to indicate a
physical property of the galaxy field. While it is our intention to
extract such physical information usingmaps, it will become evi-
dent (see, e.g., x 3.4) that there are many maps to consider whose
quadrupole coefficients do not represent shear. However, quad-
rupole terms are always quadrupole terms.

Figure 3 shows a log-log plot of the scaled mass profile and the
coefficient strengths in the case of an NFW and Moore halo pro-
file. We discuss these results further in x 9. For now, we note that
the coefficients depend strongly on details of the halo profile. For
example, if the density profile was a constant plus a polynomial in
r2 near the origin, the quadrupole coefficient would go to zero as
�r2 at the origin, and the sextupole coefficient would go to zero as
�r3. Density profiles with singularities behave quite differently.

The top panels of Figure 4 provide a sense of the shapes
arising from the different individual terms in the map. The bot-
tom panels show the appearance of typical combinations.

3. EXTRACTION OF MAP COEFFICIENTS
FROM IMAGES

We use three distinct methods to estimate lensing map co-
efficients: (1) a moment method, (2) a radial-fit method, and

Fig. 2.—Symbolic diagram showing the lensing geometry for a single ray assum-
ing a single lensing plane. The diagram follows the centroid, which is identified with
the horizontal axis. All distances (DTL , between telescope and lensing plane; DLS ,
between lensing plane and source; wL , from the centroid to the ray at the lensing
plane; andwS, from the centroid to the ray at the source plane) are to be understood as
comoving distances. To calculate the angle�w0

L, the position of the raywhen passing
the plane [namely, w ¼ wL /(1þ zL)] must be used in the deflection formula. The
geometry for a map in the case of multiple lensing planes may be set up in this same
way. This diagram provides the relationships wL ¼ DTLw

0
T and wS ¼ DTSw

0
T þ

DLS�w0
L, whereDTS ¼ DTL þ DLS . A flat universe is assumed throughout. [See the

electronic edition of the Journal for a color version of this figure.]

SMALL-SCALE STRUCTURE USING SEXTUPOLE LENSING 21No. 1, 2006



finally (3) a model method that takes into account the point-
spread function (PSF), the diffusion of charge between camera
pixels, the dithering of pointings, and the drizzle of photon counts
onto the final pixel grid.

The moment method has the advantage of simplicity, but
because the images are necessarily truncated,9 the accuracy of
this method is compromised as a result of edge effects. Pixels not
included in the image are usually assumed to have zero counts.
Furthermore, this method does not insist that the moments have
a radial profile proportional to the derivative of the radial profile
of the galaxy, as would necessarily be the case for lensing. The
radial-fit method insists that the induced moments arise from the

distortion of the radial shape and overcomes edge effects simply
by using only nonzero pixels for the fit. When we take into ac-
count the PSF and other known processes that distort galaxy
images, namely, the charge diffusion and image composition, we
refer to the method as the model method. The model method be-
gins with a parameterized radial profile of the source galaxy and
proceeds to model the entire image formation process including
the PSF, charge diffusion, and image composition. This latter
method is limited only by the imperfect knowledge of the fea-
tures it seeks to include (such as the PSF and charge diffusion),
plus, of course, the noise inherent in background galaxy shapes
and photon counting noise.
We wish to emphasize that the radial-fit and model methods

do not contain an implicit assumption of azimuthal symmetry
for the background galaxies. One can imagine applying either of
these methods to an unlensed galaxy and finding nonzero map

Fig. 3.—A log-log plot of the enclosed mass and lensing coefficients within a dark matter halo having an NFW profile (left) or a Moore profile (right). The
horizontal scale is in units of the scale radius, rS. The curve marked ‘‘mass ratio’’ is the enclosed mass divided by the scale mass,MS. The curves marked as ‘‘a ratio’’
are M (r)/r 2 � ��½ �/(MS /r

2
S ), the curves marked as ‘‘a10 ratio’’ are ��/(MS /r

2
S ), and the curves marked as ‘‘b ratio’’ are M (r)/r 3 � ��/r þ ��0/4½ �/(MS /r

3
S ). Note the

vertical scale change between panels.

Fig. 4.—Shape deformations coming from different terms of a map. The dashed circles correspond to an original isophote. The top panels demonstrate the
deformation due to the presence of single terms: either ax ¼ 0:3, bx ¼ �0:06, d1x ¼ 0:08, or d2x ¼ 0:1. The bottom panels demonstrate the shape deformation due to
combinations of the terms with coefficients (1) (d1x ¼ 0:03; d2x ¼ 0:015), (2) (ax ¼ 0:3; bx ¼ �0:045), and (3) (ax ¼ 0:3; bx ¼ �0:045; d1x ¼ 0:03; d2x ¼ 0:015). The
coefficients of case 2 could be from a point lensingmass. The coefficients of case 3 would come from a distributed lensingmass. [See the electronic edition of the Journal
for a color version of this figure.]

9 SExtractor was used to select galaxy images. The sky level is subtracted out.
Pixels are retained whose counts after this subtraction are more than either 4 or
6 times the � of the sky level.
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coefficients aS and bS. Then, as shown in x 3.4, if that same gal-
axy is later lensed, one obtains map coefficients a 	 aS þ aL and
b 	 bS þ bL, where aL and bL are the coefficients of the quadru-
pole and sextupole terms in the lensing map. In general, one
would not know whether a and b arose from lensing or from the
original shape. However, we are proposing to use the alignment
of the quadrupole and sextupole minima to select a subset of
background galaxies as having a ‘‘lensed’’ feature. By the study
of the clumping of these selected galaxies, one might hope to
establish that the sample so selected indeed can be distinguished
from randomly selected subsets.

3.1. Moment Method

Image moments are defined by the integrals

Mnm ¼
Z

wnw̄mi(x; y ) dx dy; ð12Þ

where i(x; y ) is the light intensity function normalized to a unit
integral. According to the notation introduced in x 2, we dis-
tinguish the original source galaxy intensity by the subscript S
and the intensity as observed at the telescope by the subscript T.
Because of the symplectic nature of the lensing map, these
intensities are related to one another by iS(xS ; yS) dxS dyS ¼
iT (xT ; yT ) dxT dyT . Using this relationship, one can relate the
moments of the source to the moments of the observed image
through

M S
nm ¼

Z
wn
S w̄

m
S iS(xS ; yS) dxS dyS

¼
Z

(wT þ�w)n(w̄T þ�w)miT (xT ; yT ) dxT dyT ; ð13Þ

where �w ¼ aw̄T þ bw̄2
T þ 2dwT w̄T þ d̄w2

T . We have set d ¼
a11/2 ¼ ā20, assuming a single lensing plane. See the last par-
agraphs of x 3.4 below for a discussion of the determination of
d-terms.

Inserting this expression for �w into the expression for MS
20,

one can find the following equation for the quadrupole map
coefficient:

MS
20 ¼

Z
wT þ aw̄T þ : : :ð Þ2iT (xT ; yT ) dxT dyT

	 MT
20 þ 2aMT

11 þ a2MT
02: ð14Þ

Since the moments on the right-hand side of this equation can
be measured from the telescope image (overlooking for the mo-
ment the serious problems arising from truncation errors), one
obtains a quadratic equation for a depending on the value of
M S

20, which, lacking any information of its value, is usually set
equal to zero. Since ww̄ ¼ r2, it follows that M T

11 is the mean
square radius of the telescope image. Solving for a,

a 	 ��M20

2MT
11

2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ�M20M̄20=MT2

11

q ; ð15Þ

where �Mnm � MT
nm �MS

nm.
Likewise, an equation for the sextupole moment can be found

by inserting the expression for �w into the expression for M S
30,

yielding

MS
30 	 MT

30 þ 3bMT
22 þ 3aMT

21 þ : : : ;

whence

b 	 ��M30

3MT
22

� aMT
21

MT
22

: ð16Þ

To get an expression for the d-term, we insert�w into an expres-
sion for MS

21, resulting in

MS
21 ¼ MT

21 þ 2aM̄T
21 þ āMT

30 þ 5dMT
22 þ : : : ;

yielding

d 	 � �MT
21 þ 2aM̄T

21 þ āMT
30

� � 1

5MT
22

: ð17Þ

If the image were not truncated, it would be possible to extend
this method to expressions for the moments in the presence of
a PSF. The resulting corrections to the moment equations pro-
vide insight into the magnitude of PSF corrections. Intensity
functions that have been convolved with the PSF and moments
derived from these functions will be designated by a hat. Let p
be the point-spread function. Then

M̂T
nm ¼

Z
wn
T w̄

m
T îT (xT ; yT ) dxT dyT

¼
Z Z

wn
T w̄

m
T p(rT � r0T )iT (r

0
T ) dxT dyT dx

0
T dy

0
T

¼
Z Z

�wT þ w0
T

� �n
�w̄T þ w̄0

T

� �m
; p(�rT )iT (r

0
T ) d�xT d�yT dx

0
T dy

0
T : ð18Þ

Here �xT � xT � x0T , etc. When the binomial expressions are
expanded, the double integral reduces to the sum of a product
of single integrals. One finds, for example,

M̂T
20 ¼ MP

20 þMT
20; M̂T

30 ¼ MT
30 þMP

30;

M̂T
21 ¼ MT

21 þMP
21; M̂T

11 ¼ MP
11 þMT

11;

M̂T
22 	 MT

22 þ 2MP
11M

T
11 þMP

22: ð19Þ

In all cases, if the moments of the point-spread function are
known, the moments of the original image can be found from
the smeared image.

Finally, using the approximations â � �M̂T
20/2M̂

T
11 and aP �

�MP
20/2M

P
11 and similar approximations for b̂ and bP, and using

the relationships of equation (19), one can find an approximation
for the map coefficients ‘‘before PSF,’’10

a ¼ 1

kT1
â� kP1a

P
� �

; b ¼ 1

kT2
b̂� kP2b

P
� �

; ð20Þ

where

kX1 � MX
11

MT
11 þMP

11

; kX2 � MX
22

MT
22 þ 2MT

11M
P
11 þMP

22

:

10 We remind the reader that these are rather poor approximations and often
inaccurate for truncated or large galaxy images, and a poor approximation for the
PSF because the PSF moments can have rather substantial contributions from
large radii.
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3.2. Radial-Fit Method

We assume a radial profile for the background galaxy of the
form11

F(r2S ) ¼ (Aþ Br2S þ Cr4S)þe
�Dr 2

S : ð21Þ

This will be adequate, since this function must depend only on
r2S , and we have a parameter (A) for the strength at the center of
the galaxy, a parameter (B) that allows for an arbitrary quadratic
behavior at the origin, a cutoff parameter (D) that reflects the
image size, and a parameter (C ) that can modify the behavior as
one approaches the cutoff. The plus subscript indicates that
if the polynomial has a value less than zero, it is to be set equal
to zero. This is necessary to avoid negative intensities, which
would be unphysical.12 Given a centroid, one can numerically
determine the radial profile of a galaxy (e.g., by dividing each
pixel into many smaller pixels), and this may be compared with
the fit results. In cases we have examined, the two curves are
indistinguishable.

For convenience, we introduce two additional parameters:
each occurrence of r2S is replaced by (rS /r0)

2, and the polynomial
is multiplied by a constant c0,

F(r2S ) ¼ c0(Aþ Bsþ Cs2)þe
�Ds; ð22Þ

where

s ¼ rS

r0

� �2

:

Here r0 is taken to be near the rms size of the source image. By
changing the size of r0, one can change the size of the image
without affecting its shape. The factor c0 is introduced so that
the shape parameters, which are now dimensionless, have val-
ues A 	 1, and B and C can be compared to unity.

The effect of lensing is contained in the parameters of the map
of equation (5). One replaces each occurrence of r2S by the ex-
pression wSw̄S .

The parameters of the radial profile and the map are deter-
mined by minimizing the L2 norm,

iF � iTj jj j2!¼
Z

(iF � iT )
2! dxT dyT ; ð23Þ

where

iF ¼ F r2S
� � @wS

@wT

����
����:

In iF, r
2
S ¼ wSw̄S is understood to be a function of xT and yT

through wT and w̄T . The term with vertical bars is the Jacobian
of the transformation between S and T variables (the same as in
eq. [4]). To avoid a strong coupling between the shape variables
and the map variable a, the Jacobian is divided by the quantity
1� jaj2, essentially incorporating this factor in the scaling var-
iable c0. Aweight function ! can be introduced if desired. How-
ever, because this technique ignores truncated pixels rather than
taking them to be zero, edge effects are inherently smaller as
compared to the moment method. At each calculation of iF, the

Jacobian is monitored to see that it does not change sign be-
tween that point and the origin along a radial line.
With parameters a, b, and d included in the map, together with

the centroid position, w0, and the shape parameters A, B, C, and
D, there are 12 variables to determine. The fit is done in several
steps using a multidimensional Newton’s method. At each step
any subset of the 12 variables is allowed to vary. The curvature
matrix for these parameters is computed, then diagonalized, and
eigenvectors with very small eigenvalues are not allowed to con-
tribute to the function change at that step. The convergence to a
minimum is controlled by a parameter step size.
Themap parameters are not strictly orthogonal, but because of

their distinct angular behavior, they appear to be stable and well
determined. See x 6.5 for a rigorous discussion of the accuracy of
this parametric fit using Fisher matrices.

3.3. Model Method

The model method begins by constructing an iF as in x 3.2
(here on 0B02 pixels) and convolving it with a subsampled PSF
(also on 0B02 pixels), as provided by the Tiny Tim13 program.
This convolved image is dropped (25 times) onto a 5 ; 5 dith-
ered original pixel grid (0B1 pixels). A diffusion kernel,

K ¼
0:025 0:05 0:025

0:05 0:70 0:05

0:025 0:05 0:025

2
64

3
75; ð24Þ

is applied to each resulting image. The footprint of each origi-
nal pixel is shrunk to half its size in each dimension and then
‘‘drizzled’’ to the final Hubble Deep Field grid (0B04 pixels) ac-
cording to the intersection of the diminished original pixel area
with the pixels in the final grid. We do not attempt to reproduce
the actual offsets of the dithers of the original camera. The ac-
tual process has nine dithers, whose offsets vary across the field.
We are content to capture the main features of the dither, diffu-
sion, and drizzle process. Ultimately, one would prefer to avoid
the drizzle operation and fit the original dithered images di-
rectly. The model method is well suited for that.
An additional complication with the model method comes

from the Jacobian condition given the fact that a and b for the fit
to the source are typically larger by a factor of about 2 as com-
pared to the radial-fit method. In the case in which we are fit-
ting only the a and b map parameters, the Jacobian is given by
1� jaþ 2bw̄T j2, which as for the radial-fit method is divided by
1� jaj2. For fixed radius r the condition on positivity for all an-
gles � becomes jaj þ 2jbjr � 1.We have introduced an additional
cut, of the form jaj þ 2jbjrmax � 1, for which it was necessary to
remove only three additional images.

3.4. Map Form and Interpretation

In both the radial-fit and model methods one fits the radial
shape parameters and the parameters of the lensing distortion
map, in the form

wS ¼ wT þ aw̄T þ bw̄2
T þ d1wTw̄T þ d2w

2
T þ : : : : ð25Þ

In this section we discuss the implication of the choice of unity
for the coefficient of wT and what information is actually con-
tained in the remaining coefficients, given that the background
galaxy shape can affect the outcome. The results of this section
are important in constructing simulations.

13 See http://www.stsci.edu/software/tinytim.

11 Kuijken (1999) introduced the radial-fitmethod, taking a sumof Gaussians
as the Ansatz for the radial profile.

12 The fit method we use requires an analytic expression for the derivative of
the fit function. Fortunately, (Qþ)

0 ¼ Q�(Q)½ �0¼ Q0�(Q), since the value of the
polynomial, Q, is zero where the step function �(Q) has a nonzero derivative.
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To begin the discussion, let us assume that the background
galaxy is azimuthally symmetric and that we have a lensing map
of the form wS ¼ kwT þ aLw̄T , with k ¼ jkjei�k . This map can
be written as the composition of two maps, in the form

wS ¼ kwS 0 ; wS 0 ¼ wT þ aL

k
w̄T ; ð26Þ

since plugging the second map into the first map will reproduce
the initial lensing map. However, the first map is a simple scale
change plus a (invisible) rotation of the initial azimuthally sym-
metric initial shape, taking rS into jkjrS 0 and �S into �S þ �k. The
scale change would also not be detectable, and hence this map
would be completely invisible to us. The second map is of the
form proposed, and we see that on comparing with equation (25),
the parameter identified as a is actually aL /k. This is sometimes
referred to as ‘‘reduced shear’’ and provides the interpretation
for the a-parameter of the map.

Now let us assume that the initial galaxy was not round, but
that we somehow had access to it.We can find all the information
we need for this galaxy by assuming that there is an azimuthally
symmetric ‘‘root’’ galaxy that has been mapped into this shape
observed. In other words, we assume a map of the form wR ¼
wS þ aSw̄S and determine aS by using the radial-fit or model
method applied to the background (source) galaxy. In this way
we characterize the background galaxy by the parameter of con-
cern to us.

We then factor the lensing map as above, concatenate the scal-
ing map with the source map (plug one into the other), and then
take out the scaling as we did before. In this way the scaling is
moved to the front, and the linear sourcemap remains unchanged.
Again, the scaling, acting on the round root galaxy, is invisible.
The remaining maps can be concatenated to give

wR ¼ (1þ aSā
0
L)wT þ (aS þ ā0L)w̄T ; ð27Þ

where we have defined a0L � aL/k. We see that another scaling
has appeared, which is now factored out to obtain

w0
R ¼ wT þ (1þ aSā

0
L)

�1(aS þ ā0L)w̄T : ð28Þ

We can read off the desired expression for a: the result is a factor
near unity times aS þ k�1aL. Even for relatively strong lensing
with jaLj ¼ 0:4 and jaS j ¼ 0:4, the factor remains within 16%
of unity.

When the sextupole-order terms are included, all goes through
in an identical fashion, except for the fact that when the scaling
gets moved through the source map, the second-order coefficients
of the source map get multiplied by k. With all factors included,
the results are

a ¼ 1þ aSā
0
L

� ��1
a0L þ aS
� �

;

b ¼ 1þ aSā
0
L

� ��1
b0L þ b0S þ a0Ld

0
1S þ aSd

0
2L þ a02L d

0
2S

� �
;

d1 ¼ 1þ aSā
0
L

� ��1
d 0
1L þ d 0

1S 1þ a0L
�� ��2	 


þ 2ā0Lb
0
S þ 2a0Ld

0
2S

h i
;

d2 ¼ 1þ aSā
0
L

� ��1
d 0
2L þ d 0

2S þ aSb̄
0
L þ ā02L b

0
S þ ā0Ld

0
1S

� �
: ð29Þ

As above, a0L, b
0
L, d

0
1L, and d 0

2L are the original lensing map co-
efficients divided by k. The quantities b0S , d

0
1S , and d 0

2S are the
original source map coefficients multiplied by k. To first or-
der, we find that a 	 aL þ aS and b 	 bL þ bS . Since jkj is al-

most surely smaller than unity,14 its impact is to enhance all
the lensing coefficients and diminish the second-order source
coefficients.

Estimates for the size of the background coefficients will come
out of our analysis of the entire background galaxy field. To have
a meaningful signal for sextupole lensing, large enough to align
the minima of the background moments, the lensing coefficients
must have magnitudes as large as the background coefficients of
the lensed galaxy.

Since the radial shape involves only r2S ¼ wSw̄S, one finds that
it depends only on

r2S ¼ 1þ aj j2
	 


r2 þ 2Re aw̄2
� �

þ 2Re bþ ād2ð Þw̄3
� �

þ 2Re d1 þ d̄2 þ ad̄1 þ āb
� �

ww̄2
� �

þ : : : : ð30Þ

Here the w̄2 term has a distinctive e�i2� behavior, the w̄3 term
has a distinctive e�i3�, and the ww̄2 term has a distinctive e�i�

behavior, implying that a, b, and (d1 þ d̄2 þ ad̄1) are well de-
termined. We are assuming that jad2jTjbj, which is valid in
preliminary studies assuming that d1 and d2 are related by the
lensing condition d1 ¼ 2d̄2. The d1 and d2 dependence occurs in
a different linear combination as linear coefficients of re�i� in
the Jacobian, creating a linear tilt that acts somewhat like a di-
pole kick. In this way, the apparent degeneracy between d1 and
d2 is removed for significant strengths.

4. GALAXY PROPERTIES

The software SExtractor (Bertin &Arnouts 1996) was used to
select galaxies from the Hubble Deep Field–North and to spec-
ify which pixels to include in the image. Galaxies were selected
that appeared for both a 4 �sky and a 6 �sky threshold option (4 or
6 times the � of the sky noise) with the convolution option taken
to be the identity. Only galaxies that had been assigned a z-value
with z > 0:8 were kept as background galaxies.15 There were
569 galaxies so identified in the north field.

Galaxy images were transferred to theMathematica program-
ming environment for inspection, where galaxies with more than
onemaximumwere removed. Of the 569 identified galaxies with
z > 0:8, 427 survived this single-maximum cut. The total (re-
corded) photon count16 and peak height of the surviving galaxies
are shown in Figure 5, and the total area and rms radius are
shown in Figure 6.

5. QUADRUPOLE COEFFICIENT MEASUREMENTS

5.1. Quadrupole Coefficients from Moment
and Radial-Fit Methods

In Figure 7 (left) we compare the distributions of the magni-
tudes of the quadrupole coefficients using the moment method
and the radial-fit method. The ranges of magnitudes are surpris-
ingly similar. This can only occur if the fit to the radial profile
results in an MT

20 moment that is significantly smaller than the
integratedmoment, because ifMT

20 were arising dominantly from
the distortion of an originally radial galaxy profile, one could
derive a simple analytic expression for the magnitude of this

14 Since k ¼ 1þ a10 and a10 is negative, jkj < 1 until ja10j > 2. For this to be
true, the centroid trajectorymust be within the Einstein radius at a point where the
local mass density is twice the average density within the Einstein radius.

15 We used z-catalogs from http://www.ess.sunysb.edu/astro/hdf.html.
16 The counts are actually ‘‘recorded’’ photons.
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moment, even when truncated. To see this, consider the fol-
lowing expression for one component of MT

20:

Re MT
20

� �
¼
Z

r2 cos 2�iS r2S
� � @wS

@wT

����
���� dA

	
Z

r2 cos 2�

; iS r2
� �

þ 2r2 ax cos 2�þ ay sin 2�
� � diS

dr 2
þ : : :

� �
r dr d�

	 2�ax

Z
r4

diS

dr 2
dr 2

	 �2ax

Z
r2 iS r2

� �
� iS r2B

� �� �
dA ¼ �2axM

T
11: ð31Þ

In the first line here we have set x2 � y2 ¼ r2 cos 2�. In the
second and third lines we have expanded the function iS(r

2
S ) about

r2 � r2T , assuming that ax and ay are small. We also set dA ¼
r dr d�. In the fourth line we integrate over �. Only the integral
over cos22� survives. Next we integrate by parts with respect to
the variable r2. The boundary term at the origin vanishes by virtue
of the r4. The boundary term at the outer boundary, which for the
purposes of this estimate is assumed to be a disk of radius r ¼ rB,
is r 4BiS(r

2
B), which we have chosen to write as 2iS(r

2
B)
R
r2 dr2.

The resulting final integral is over the footprint of the disk, but
we interpret this generally as the footprint of the truncated im-
age. The underline in M T

11 indicates that the integrand is to be
defined as the photon count in excess of the truncation floor. We

call this an ‘‘above-floor’’ moment. The equation can now be
solved for ax with a result that is satisfyingly simple and directly
comparable with the result found using the moment method, as
in equation (14): the denominator MT

11 is simply replaced by
MT

11. Similar results can be found for the other moments, which
we summarize here for future reference:

a 	 � MT
20

2MT
11

; b 	 � MT
30

3MT
22

; d 	 � MT
21

9MT
22 � 4MT

22

: ð32Þ

The irregularity in the expression for d arises from the linear
dependence on d in the Jacobian.
Since the above-floor denominators could be significantly

smaller than the expressions used in the straight moment method,
these estimates for map coefficients could be significantly larger.
However, based on our results using the radial-fit method, which
does indeed insist on such a relationship, one can only draw the
conclusion that an equally large part of the moment MT

20 is not
coming from the distortion of the radial profile and that these ef-
fects pretty much cancel one another. This is an interesting result
and indicates that the radial-fit method is indeed an important tool
in making such a distinction. We would assert that a substantial
amount of noise is projected out with the radial method. This could
be important for high-resolution weak-lensing surveys such as the
Supernova/Acceleration Probe (SNAP).
The orientation of moments is more important to us than their

magnitude, because we are using the orientation to distinguish
curved from aligned galaxies. Figure 7 (right) compares the map
coefficient orientation of the radial-fit method with the moment

Fig. 5.—Left: Distribution of total photon counts for all galaxies in the HDF-N with z � 0:8, identified by SExtractor with intensity exceeding 6 �sky, and having a
single major maximum. Right: Photon count of the peak pixel for the same galaxies. [See the electronic edition of the Journal for a color version of this figure.]

Fig. 6.—Distribution of galaxy areas (left) and distribution of galaxy rms radii (right) for the galaxy set described in Fig. 5 above. Units for both plots are pixels.
[See the electronic edition of the Journal for a color version of this figure.]
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method. We would like to establish the orientation of the re-
sulting elliptical shape within 10�.17 Since the quadrupole map
coefficient advances by 2� as the ellipse rotates by�, the relevant
limit for the determination of � is 20

�
. One can see in Figure 7

that although there is considerable agreement between the angle
differences between these two methods, the quadrupole map
coefficient differences are often larger than 20

�
.

5.2. Analytical Quadrupole Noise Estimates

The first formula of equation (32) can be used to derive a
Poisson noise estimate for the quadrupole coefficient, afit , derived
from the fit method. An estimate for the contribution of Poisson
noise toM20 is required. For each component, this can be obtained
from the integral

Re MT
20

� �
¼

R
r2 cos 2�	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n(r; �)þ � 2

sky

q
dAR

n(r; �) dA

	 1

N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
r 4 cos22� n(r; �)þ �2

sky

h i
dA

s

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MT

22

2N
þ NskyR4

2N 2

s
; ð33Þ

where 	 is a stochastic variable, n(r; �) is the number of counts
for each pixel,N is the total number of counts for the image, �2

sky

is the variance of the sky noise, Nsky ¼ �2
skyA, and R4 ¼R

r4 dA/A. Here ½n(r; �)þ �2
sky�

1=2
appears as an estimate for the

counting noise in the pixel at (r; �). In the second line the weak �
behavior of n(r; �) is ignored. Similar formulae hold for the
other map coefficients. We summarize the results as

axNj j 	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MT

22

2N
þ NskyR4

2N2

s
1

2MT
11

;

bxNj j 	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MT

33

2N
þ NskyR6

2N2

s
1

3MT
22

: ð34Þ

The subscript x indicates that this is an estimate for one com-
ponent, which could be in any direction, of course. It is a min-

imum estimate, in the sense that only the Poisson counting
noise is being included. For example, contributions to the noise
from edge effects are not included.

The actual jaj should be large enough so that if the perpen-
dicular component to awere changed by an amount jaxN j, the an-
gle would change by less than the required resolution on angles.
The magnitude of the relative orientation of the quadrupole and
sextupole shapes (� in Fig. 1) runs from 0� to 30�. Since we choose
to designate curved galaxies as those for which j�j < 10�, aligned
galaxies as those for which j�j > 20

�
, andmidrange galaxies as the

remaining ones, and considering positive as well as negative signs
for �, the regions describing curved and aligned galaxies are actu-
ally 20� wide. Hence, wemay take 10� (¼ 0:17 rad) as an estimate
for the required resolution on �. Since � is the difference between
the orientation of the quadrupole and sextupole shapes, the resolu-
tion on � could be achieved by requiring the sum of the resolution
squared of each shape individually to be less than (0.17)2. As the
shapes rotate by �, the quadrupole map coefficient angle changes
by 2�, and the sextupole map coefficient angle changes by 3�.
Thus, this resolution condition on afit and bfit could be written

1

2
tan�1 axN

aBt

����
����

� �2

þ 1

3
tan�1 bxN

bBt

����
����

� �2

< (0:17)2: ð35Þ

We could choose to satisfy this condition by requiring that
the quadrupole contribution be less than 6N3 and the sextupole

Fig. 7.—Distribution of the quadrupole map coefficient for all galaxies in the set described in Fig. 5, for both the moment method (background ) and the radial-fit
method ( foreground; left), and comparison of the angular orientation of the quadrupole map coefficient for the moment method and the radial-fit method (right). [See
the electronic edition of the Journal for a color version of this figure.]

Fig. 8.—Plot of the quadrupole Poisson noise estimate (horizontal axis) vs.
the magnitude of the quadrupole coefficient. The galaxies falling below the
straight line with slope 4.5 will be cut as having signal-to-noise ratios too
small. [See the electronic edition of the Journal for a color version of this
figure.]

17 Based on Poisson noise estimates, we have divided up the 30� range of the
smallest angle between a quadrupoleminimumand a sextupoleminimum into three
equal increments of 10� and referred to themas curved,midrange, and alignedgalaxies.
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contribution be less than 7N8. The quadrupole cut would then be
equivalent to requiring that jaj > 4:5jaxN j, and the sextupole
cut would be equivalent to jbj > 2:3jbxN j. The results of the
quadrupole cut are shown in Figure 8, where the vertical axis is
the quadrupole strength and the horizontal axis is the estimated
Poisson noise from the leading term in equation (34) for that
galaxy. The straight line is the cut condition, and galaxies below
this line would be rejected as having a signal-to-noise ratio that
is too small.

In Figure 9 we show the comparison between the moment and
radial-fit methods after this signal-to-noise cut for magnitude
distributions and angle distributions. The orientations using the
two methods are now in better agreement.

5.3. Quadrupole Coefficients from the Model Method

In Figure 10 (left) we show the magnitude of the quadrupole
coefficient using the model method. Of the 427 selected galaxies
having one apparentmaximum, 47 resulted in anL2 norm squared
(kiF � iTk2) greater than 0.05. These galaxies were cut from the
sample, for the reason that their shape does not conform suffi-
ciently well to the model we are using to estimate map-coefficient
strengths.

The magnitudes of the quadrupole coefficients are almost a
factor of 2 larger using the model method than the radial-fit
method. This occurs even when aPSF ¼ 0, because there is still a
dilution of the a parameter. When the rms size of the source
galaxies is about equal to the rms size of the PSF, this dilution is
about a factor of 2. See equations (19) and (20) in x 3.1.

The rms size of the galaxy image after including the PSF
is about 2.7 HDF pixels (see Fig. 6). The half-width at half-
maximum of the PSF is about 2.0 HDF pixels, but the rms is
larger than that, because the radial profile of the PSF flattens out.
In fact, the rms of the PSF is poorly defined, depending on ex-
actly how one cuts off the footprint. For small cutoffs one can
easily reach an rms of 2.5 pixels. That implies the average galaxy
image before including the PSF is also about 2.5 pixels, and the
factor 1/kT 	 2 in equation (20).
Figure 10 (right) compares the orientations of the quadrupole

map coefficient of the radial-fit method with the model method.
The differences are nowmuch smaller. The diffusion, being sym-
metric, will not change the orientation, but the PSF of theHubble
Space Telescope (HST ) is known to have a substantial quadru-
polar component that varies dramatically across the field, making
it difficult to do weak lensing with the HST.
An example of a 5 times subsampled PSF, as obtained from

Tiny Tim, is shown in Figure 11 (left).We have specified the F606
filter at the location of each of the 427 galaxies in our sample.
There is typically a diffraction ring at a radius of 2 HDF pixels,
which contains about 30% of the counts. The radius of the central
peak is too small to give significant moments, so the moments of
concern arise from the ring.
Figure 11 (right) shows this PSF after it has been dithered,

diffused, and dropped onto the final HST 0B04 grid. We have
taken these PSFs, which have been dithered, diffused, and driz-
zled, and fit them using the radial-fit method. Figure 12 shows
the resulting distribution of the magnitude of the quadrupole

Fig. 9.—Comparison, after signal-to-noise cut, of the magnitude of the quadrupole map coefficient for both the moment method (background ) and the radial-fit
method ( foreground; left) and of the angular orientation of the quadrupole map coefficient for the moment and the radial-fit methods (right). Compare with Fig. 7.
[See the electronic edition of the Journal for a color version of this figure.]

Fig. 10.—Distribution of the magnitude of the quadrupole map coefficients using the model method ( foreground ) compared with the radial-fit method (background;
left) and of the angular orientation of the quadrupole map coefficient for the model and the radial-fit methods (right). [See the electronic edition of the Journal for a color
version of this figure.]
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coefficients (right), as well as their spatial distribution and ori-
entation (left).

6. SEXTUPOLE COEFFICIENT MEASUREMENT

6.1. Sextupole Coefficients from Moment
and Radial-Fit Methods

We now follow the sequence of x 5 for the sextupole coeffi-
cient measurements. Figure 13 (left) compares the sextupole co-
efficient magnitudes for the moment method and the radial-fit
method. Again, the radial-fit method would have been larger if
the entire MT

30 arose from a distortion of the radial profile, since
the MT

22 will typically be much larger than MT
22. As before, we

conclude that the radial-fit method is projecting out a substantial
portion of the background-galaxy sextupole moment noise. Fig-
ure 13 (right) shows a comparison of the sextupole angle mea-

surement for the moment and the radial-fit method. Since for this
moment a rotation of the image by � results in a change of the
coefficient angle by 3�, an angular difference in the coefficient of
30

�
is a measure of significance.

6.2. Sextupole Noise Estimates

Following the discussion of x 5.2, we require the sextupole
angle to change by less than 3 ; 7N8 ¼ 23N4 when the Poisson
noise estimate is added perpendicular to the vector representing
the sextupole signal. This implies that bj j > 2:3 bxNj j. In Fig-
ure 14 we plot the sextupole strength on the vertical axis versus
the sextupole Poisson noise estimate on the horizontal axis. The
straight line has a slope of 2.3, showing the cut criteria for suf-
ficient sextupole signal-to-noise ratios. In Figure 15 we show the
distribution comparison between the moment and fit methods
after this signal-to-noise cut and the angle comparison after

Fig. 11.—Left: Picture of a HST WFPC2 (Wide Field Planetary Camera 2) PSF as produced by the Tiny Tim program. The pixel size is 5 times smaller than the
HST camera pixels, in other words, 2 times smaller than the drizzled HDF pixels. Right: Same PSF diffused and drizzled. [See the electronic edition of the Journal
for a color version of this figure.]

Fig. 12.—Spatial ellipticity distribution (left) and the distribution (right) of the magnitude of the quadrupole coefficient for the 5 times subsampled and drizzled
Tiny Tim PSFs for the WFPC2 on the HST. [See the electronic edition of the Journal for a color version of this figure.]
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this cut. Clearly, scatter is reduced as compared to Figure 13,
indicating that much of the scatter in the angular measurement
could be attributed to noise.

Finally, Figure 16 addresses the combination of resolutions
that can be expected for a and b, showing the condition for-
mulated above in equation (35). It is this cut that we impose
when we consider the relative orientation of the quadrupole and
sextupole map coefficients. There are 217 galaxies that survive
this cut.

The following list summarizes the results on the several gal-
axy cuts. For the sequence 1–5, each cut is for the combination
of the previous conditions. The cuts give

(1) 569 in the z-catalog with z > 0:8 and found by SExtractor
for thresholds 4 �sky and 6 �sky,

(2) 427 having only one prominent maximum,
(3) 370 larger than 5 pixels in both x and y,
(4) 323with the radial fit having its L2 squared norm less than

0.05,
(5a) 276 with quadrupole signal-to-noise ratios greater than

4.5,
(5b) 216 with sextupole signal-to-noise ratios greater than

2.3, and
(5c) 217 satisfying the joint-variable signal-to-noise cut con-

dition of equation (35).

Only a very few galaxies had jaj þ 2jbjrmax > 1, so this cut was
not enforced. Further signal-to-noise cuts, arising for the d terms,
must be combined with the above cuts to establish their orienta-
tion with respect to the imputed direction to the scattering center.
Since these cause the surviving statistical sample to become un-
comfortably small, we postpone a discussion of the relevance of
the d terms, if any, to a subsequent paper with larger statistical
samples.

6.3. Sextupole Coefficients from Model Method

The distribution of the sextupole coefficient magnitudes for
the model method is shown in Figure 17 (left), and the com-
parison of the orientation of the sextupole coefficient for themodel
and radial-fit methods is shown in Figure 17 (right). The relevant
difference in sextupole angle, as noted above, is 30�. Many gal-
axies have changed by that amount, indicating the importance of
the PSF correction.

Figure 18 (left) shows the distribution of sextupole coeffi-
cients that were found by computing moments of the PSF after it
had been dithered, diffused, and drizzled. The right panel shows

the orientation of the sextupole moment, with the lines of each
symbol pointing toward the three sextupole shape maxima. Re-
markably, the sextupole moment orientation is uniform across
each chip. This may be helpful in following time variation of the
sextupole coefficient, if any is present.

6.4. Relative Orientation of the Quadrupole
and Sextupole Map Coefficients

The orientation of the sextupole map coefficient with respect
to the quadrupole coefficient is of primary interest to us. A plot of
themagnitude of the smallest angle between sextupole and quad-
rupole minima, using the model method, is shown in Figure 19
for the galaxies surviving both the L2 norm < 0:05 cut and the
signal-to-noise cut of equation (35). This angle magnitude, which
we refer to as �, runs from 0� to 30�. For � ¼ 30� the shapes will
have aligned maxima, and we refer to such galaxies as ‘‘aligned.’’
They are pear-shaped galaxies, as compared to the curved galax-
ies, which resemble bananas. See Figure 1.
Figure 20 compares � found with the radial-fit and model

methods. About one-third of all galaxies show a change in � of
greater than 10

�
. This is a concern, because itmeans that the point-

spread function does indeed play an important role in distin-
guishing curved from noncurved galaxies. This would not be as
great a concern if the PSF were well known, but unfortunately the
PSF is known to vary with time. We return to a discussion of the
role of the PSF in x 8.2.

Fig. 13.—Left: Distribution of the magnitude of the sextupole map coefficient, for the radial-fit method ( foreground ) and the moment method (background ). Units
are (HDF pixel)�1. Multiply by 25 to get units arcsec�1. Right: Comparison of the orientation of the sextupole map coefficients for the radial-fit method (vertical axis)
and the moment method (horizontal axis). [See the electronic edition of the Journal for a color version of this figure.]

Fig. 14.—Plot of the sextupole Poisson noise estimate (horizontal axis) vs.
themagnitude of the sextupole coefficient. The galaxies falling below the straight
line with slope 2.3 will be cut as having signal-to-noise ratios too small. [See the
electronic edition of the Journal for a color version of this figure.]
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6.5. Fisher-Matrix-based Noise Estimates

A standard, and perhaps more reliable, way to estimate the
uncertainties in measuring the parameters of our model is to
construct the Fisher information matrix. For a general review,
see Tegmark et al. (1997, 1998) and references therein. See also
the appendix of Kim et al. (2004) and Kallosh et al. (2003). The
Fisher matrix method provides an approximation to the likeli-
hood surface for the model parameters pi given a set of obser-
vations xk .

The Fisher matrix is defined by the expectation value

Fij � � @2 ln L(x; p̄)

@pi @pj

 �
¼ @ ln L(x; p̄)

@pi

@ ln L(x; p̄)

@pj

 �
; ð36Þ

where L(x; p)¼
QK

k¼1 f (xk ; p) is the combined probability distri-
bution and f (xk ; p) is the probability distribution of the individual
measurement xk , which in general depends on the model param-
eters p ¼ ( p1; : : : ; pN ). Here p̄ denotes the true (unknown) pa-
rameter value of p. In cases when the probability distribution
function L can be approximated by a Gaussian, the Fisher matrix
elements can be easily calculated.

In our case the data set consists of the measurement of the
number of photons and the variance for each pixel of the image.
The combined probability distribution could be presented as a
product of Gaussian functions for each pixel of the stamp,

fk; l(n; p) ¼
1ffiffiffiffiffiffi

2�
p

�k;l

exp �
n� iF (rS ; p)k; l
� �2

2�2
k; l

( )
; ð37Þ

where iF rS ; pð Þk;l is the number of photons for the (k; l ) pixel
according to our model, as specified by equations (21)–(23),
and p ¼ A;B;C;D; x0; y0; a; b; d1; d2ð Þ is the set of the 14 pa-
rameters of our model (12 in the case when we set d1 ¼
2d̄2 ¼ d). We take the � of the noise for the (k; l ) pixel to be

�k;l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iF (rS ; p)k;l þ �2

sky

q
; ð38Þ

where �2
sky is the variance of the sky noise.18 The combined

probability distribution is L(n; p) ¼
Q stamp

k¼1;l¼1 fk;l(n; p).

The Fisher matrix in this case is

Fij ¼
Xstamp

k¼1; l¼1

@ ln fk;l(n; p)

@pi

@ ln fk; l(n; p)

@pj

* +

¼
Xstamp
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@iF (rS ; p)k;l
@pi

@iF (rS ; p)k;l
@pj

1

�2
k;l

1þ 1

�2
k;l

 !
: ð39Þ

The Fisher matrix gives the estimate for the confidence regions
for each point of the parameter space. Here we are interested
only in the confidence regions for parameters (ax, ay, bx, by) that
define the confidence region for the angle � between the quad-
rupole and sextupole directions. We marginalize over all other
parameters.

The plot of Figure 21 shows that the estimates for variances
�� using equation (39) and ��fit using equation (34) are indeed
similar.

Fig. 15.—Comparison, after signal-to-noise cut, of the magnitude of the sextupole map coefficients for the moment method (background ) and the radial-fit
method ( foreground; left) and of their angular orientation (right). The units are (HDF pixel )�1. Multiply by 25 to get units arcsec�1. [See the electronic edition of the
Journal for a color version of this figure.]

Fig. 16.—Plot of the ratio Na ¼ 1
2

tan�1jaxN /aBtjð Þ vs. the ratio Nb ¼
1
3
tan�1

��bxN /bBt��� �
. The circle shows the cut condition of eq. (35). The galaxies

falling outside the circle will be cut as having quadratically combined signal-
to-noise ratios too small. [See the electronic edition of the Journal for a color
version of this figure.]

18 This formula is not exact due to the presence of the correlated noise
between pixels due to image processing.

SMALL-SCALE STRUCTURE USING SEXTUPOLE LENSING 31No. 1, 2006



We now proceed to a study of the spatial distributions of the
curved and aligned galaxies.

7. CLUMPING PROBABILITIES

To quantify clumping for a particular galaxy subset with NS (S
for subset) members, we draw a circle of fixed radius R about
each member of the subset and count the members of that subset
that lie within the circle. We then compare the distribution of the
number of galaxies having a number of neighborsN ¼ 0, 1, 2, 3,
etc., within the circle, with a large number of such distributions
derived from randomly chosen subsets having the same number
(NS) of galaxies in two distinct ways:

1. For an informative but qualitative comparison, we compare
the distribution of the particular subset with the average distri-
bution of the random subsets.

2. For a quantitative comparison, for the particular subset
being studied and for each of 500 randomly selected subsets hav-
ing the same number of galaxies as the original subset, we deter-
mine the number n of galaxies havingN � N 0 or more neighbors

(usually 3 � N 0 � 7). We then create a bar graph, showing for
each value of n the fraction of the 500 random subsets that had
n galaxies with N 0 or more neighbors. This distribution is thus a
property of random subsets with NS members, with specified
neighbor distance R, for the number of neighbors�N 0. Since the
initial subset will have a certain number, n0, of galaxies having
N 0 or more neighbors, we can ask the question, what fraction of
randomly chosen galaxy subsets have n0 or more galaxies with
N 0 or more neighbors? We thereby determine a probability that
this configuration could occur by chance.

In a variation of this, the randomly chosen subsets may be con-
strained in some way. For example, we may wish to look only at
randomly chosen subsets whose members are selected to have
the same z-distribution as the galaxies in the original set.
In this section we show examples of (1) bar graphs showing

the galaxy fraction (P) versus number of neighbors, for both the
observed subset and for the average of 500 random subsets,
whether the observed subset be aligned, midrange, or curved;
(2) bar graphs showing the number of galaxies having N 0 or

Fig. 17.—Left: Distribution of the magnitude of the sextupole map coefficient, for the model method ( foreground ) as compared with the radial-fit method
(background). The units are (HDF pixel)�1. Multiply by 25 to get units arcsec�1. Right: Comparison of the angular orientation of the sextupole map coefficient for the
model method and the radial-fit method. [See the electronic edition of the Journal for a color version of this figure.]

Fig. 18.—Spatial distribution of sextupole orientations (left) and the sextupole coefficient distribution (right) for the 5 times subsampled and drizzled Tiny Tim
PSFs for the WFPC2 on the HST. The units are (HDF pixel)�1. Multiply by 25 to get units arcsec�1. [See the electronic edition of the Journal for a color version of
this figure.]
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more neighbors for 500 random subsets of the background gal-
axies (after cuts); and (3) field plots showing the spatial location
in the field of the curved galaxies and the aligned galaxies. On
these field plots wemay also show the direction of the curvature
of curved galaxies and/or the circular areas defining the neigh-
borhoods of curved or aligned galaxies.

7.1. Curved Galaxies

We have tentatively defined curved galaxies as having j�j <
�max ¼ 10�, but in this section we allow the precise definition to
vary. The bound should not be smaller than the spread in � from
Poisson noise.19 However, a smaller bound has the advantage of
increasing the probability that the galaxy shape resulted from a
lensing event. On the other hand, taking themaximum � to be too
small will decrease the number of curved galaxies and make it
impossible to establish a correlation pattern.

In other words, the best definition of the curved set is not given
a priori and must be sought. The optimum range, determined by
iterating the considerations of this section, extends over 8N25 <
�max < 9N25. The results quoted here are for �max ¼ 9�.

For curved galaxies we begin with two bar graphs of type 1. In
Figure 22 (left), using the radial-fit method, we show the dis-
tribution of neighbor counts within a circle of radius R ¼ 280. In
Figure 22 (right) we show the same distribution using the model
method. Each of these distributions has an excess at larger num-
bers of neighbors as compared to distributions derived from av-
eraging the same distributions for 500 randomly chosen galaxy
subsets of the same size. In Figure 23 we show (for the model
method) how this distribution changes as the radius of the circle
is varied.20

Figure 24 (left) displays an analysis of type 2 for the radial-fit
method. (The number n0 corresponding to the curved set is in-
dicated by an arrow.) For the optimum radius of 310 pixels, 21 of
500 random subsets have as many neighbor circles (with a
neighbor count N � 4) as the curved subset. In other words, the
probability of achieving the curved set by chance is about 4%.
Figure 24 (right) displays the same analysis for themodel method.
The optimum radius is now 270 pixels, and the probability to
achieve the curved set by chance is again 4%.

Figure 25 shows field plots of curved galaxies in the HDF-N
for galaxies having three or more neighbors in neighborhood
circles of radius R ¼ 280 pixels. The left panel shows clumping
of curved galaxies as determined using the radial-fit method.
This can be compared with the right panel, the same plot with
curved galaxies determined using the model method. In these
plots, large stars indicate curved galaxies, and small stars indi-
cate the remaining background galaxies. As seen in Figure 19,
the change in � is large enough that many galaxies move across
the boundary defining curved galaxies. Still, the overall pattern
remains remarkably similar for the two methods.

Next, for the model method, we carry through the same anal-
ysis with a less stringent noise cut. See Figure 26. Remarkably,
the probability to randomly match the clumping decreases to
3% as we increase the radius of the noise cut condition of equa-
tion (35) from 0.17 to 0.25.21 If we were truly adding noise, one
would have expected the distribution to become more random,

Fig. 19.—Distribution of the magnitude of �, the smallest angle between a
quadrupole minimum and a sextupole minimum, using the model method, for
galaxies in the HDF-N surviving the cut condition of eq. (35) ( foreground )
and all galaxies surviving the L2 cut (background ). [See the electronic edition
of the Journal for a color version of this figure.]

Fig. 20.—Left: Comparison of the angle � as measured by the radial-fit method and the model method. The points within the diagonal band (or in the corners)
have a change in � < 10�. Right: Distribution for �mod � �Bt. [See the electronic edition of the Journal for a color version of this figure.]

19 The region with j�j < 10� has an angular width of 20�.

20 At z ¼ 0:6 for current cosmological parameters (baryons 4%, dark matter
23%, and dark energy 73%), the distance scale would be 6.67 kpc arcsec�1. Since
the HDF images have a drizzled pixel size of 0B04, 280 pixels corresponds to
75 kpc at z ¼ 0:6.

21 For a sense of the content of this cut change, see Fig. 16.
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not less. The new field plot is shown in Figure 26. There is now
a third major clump.

Finally, we note that randomly chosen subsets often have rather
improbable z-distributions. If we choose the random galaxy sub-
sets so that their z-distributions resemble the z-distribution of the
curved subset, the probability of random clumping decreases to
3%. This probability could have increased.

7.2. Aligned Galaxies

Since lensing by dark matter clusters will statistically move
the observed shapes of background galaxies to a more curved
condition (see xx 9.1 and 9.3), the regions of the field where
halos are present would be expected to have a higher number of
curved galaxies, and regions of the field with a deficiency of halos
would be expected to have a larger density of aligned galaxies. For
this reason, one might expect aligned galaxies to also be clumped.
As with x 7.1, we have carried out the following clumping con-
siderations for several definitions of aligned galaxies, settling on
22� � j�j � 30�.

In Figure 27 (left) we show an example of type 1. The distri-
bution shows the number of aligned galaxies in a circle of ra-
dius R ¼ 350 using the radial-fit method. In Figure 27 (right) we
show the same distribution using the model method. Although
the clumping is strongest at this radius, the situation does not
change markedly as the radius of the circle varies from 320 to
370 pixels, for both the model method and the radial-fit method.

Figure 28 displays an analysis of type 2 for the radial-fit and
model methods. Typically, for the optimum radius, between 350
and 370 pixels, there will be less than 20 out of 500 sets having as
many galaxy circles with counts equal to or greater than the orig-

inal curved set. In other words, the probability of achieving the
aligned set by chance is equal to or smaller than 4%.
Finally, Figure 29 shows field plots for the aligned galaxies

and their neighborhood circles of radius R ¼ 350 pixels. The left
panel is for the radial-fit method, to be compared with the right
panel using the model method. In these plots, large stars indi-
cate aligned galaxies and small stars indicate the remaining back-
ground galaxies. Shaded areas show the combined interiors of
the aligned neighborhood circles.
Although the aligned set is not completely independent of the

curved set (it represents half of the complement of the curved gal-
axies), the fact that aligned galaxies are also clumped is not a trivial
consequence of the fact that curved galaxies are clumped. Indeed,
galaxies midway between curved and aligned are not clumped.

7.3. Midrange Galaxies

Midrange galaxies behave quite differently from the curved
and aligned galaxies. Figure 30 displays an analysis of type 2 for
the radial-fit method (left) and the model method (right). The
number n0 corresponding to the midrange set is indicated by an
arrow in this bar graph. There is no indication of clumping.
Our conclusions to this point are that the curved and aligned

galaxies appear to be unusually clumped. The significance of the
4% probability must be questioned, because we have adjusted the
angular range defining the curved and aligned galaxies, as well as
the radius of curvature defining neighbors. On the other hand, the
clumping is present for both the radial-fit and model methods.
Furthermore, when the noise cut was relaxed, the probability of
clumping by chance decreased to 3% without adjustment of the
angular range. In addition, the probability decreases to 3% when
the random sets are constrained to have the z-distribution of the
original set. However, it is clear that a larger field with a com-
parable or larger number of background galaxies per arcminute
must be analyzed to reach a convincing statistical conclusion.

8. SYSTEMATIC ERROR SOURCES

In this section we turn our attention to possible systematic
nonlensing sources of the observed clumping.

8.1. Background Galaxy Clumping

Could the observed clumping of curved galaxies originate in
the background galaxies themselves? Since the galaxies at any
given slice in z are known to be spatially correlated, clumping
would naturally result if the galaxies in particular galaxy groups
possessed the features we are measuring. This could arise in two
distinct ways: (1) There might be some age-dependent process
at work. For example, perhaps old galaxies are more curved.
(2) Perhaps some galaxy groups tend to bemore curved than others,
because of some common history or composition.

Fig. 22.—For the curved galaxy subset, for a circle radius of R ¼ 280 pixels for both the radial-fit (left) and model (right) methods, histograms showing how the
number of neighbors N within the circle is distributed. Those distributions are compared with the average of such distributions for 500 randomly chosen subsets
having the same number of galaxies. [See the electronic edition of the Journal for a color version of this figure.]

Fig. 21.—Comparison between �� (in degrees) for the curvature parameter
� from the noise estimation of eq. (34) and the Fisher matrix estimations ��fit
(eq. [39]). Values for �� and ��fit were calculated for each galaxy fit.

IRWIN & SHMAKOVA34



Fig. 25.—Field plot showing the spatial location of curved galaxies in the HDF-N using the radial-fit (left) and model (right) methods to determine the lensing
distortion map coefficients. Large stars indicate curved galaxies, and small stars indicate the remaining background galaxies that survived the joint-variable signal-
to-noise cut. Circles are shown for three or more neighbors. [See the electronic edition of the Journal for a color version of this figure.]

Fig. 23.—For the curved galaxy subset for themodel method, three histograms for circle radiiR ¼ 270, 290, and 340 pixels, showing how the number of neighborsN
within that circle is distributed. These distributions are compared with the average of such distributions for 500 randomly chosen subsets having the same number of
galaxies. There is a suggestion of an excess in the curved subset for N � 4. [See the electronic edition of the Journal for a color version of this figure.]

Fig. 24.—For the model method, two histograms, for circles of radius R ¼ 310 and 270 pixels, showing how 500 randomly chosen galaxy subsets are distributed as a
function of their number n of galaxies having four or more neighbors. The left panel is for the radial-fit method, and the right panel is for the model method. The arrow
indicates the number of galaxies in the curved galaxy subset having four or more neighbors. Only a few percent of random subsets have as many or more galaxies with
four or more neighbors. [See the electronic edition of the Journal for a color version of this figure.]



In response to item 1, one can look at the z-distribution
of curved or aligned galaxies to see whether there is any evi-
dence of a bias in the population. Figure 31 (left) compares the
z-distribution of curved galaxies with all galaxies, and the right
panel compares the z-distribution of aligned galaxies with all
galaxies. There is no particular evidence that older galaxies are
more or less curved or aligned, according to our criteria for curved
and aligned.

To address item 2, we first note that z-values are measured in
intervals of� z ¼ 0:02. At z ¼ 1:0, 2.0, and 3.0, a separation of
� z ¼ 0:02 corresponds to a comoving separation of 50, 30, and
20 Mpc, respectively. Therefore, galaxies in different z-bins are
well separated in three-dimensional space, and an event in one

group should not be able to influence another group. Hence, item
2 also appears unlikely, for three reasons:

1. None of the z-bin groups seems to be especially curved.
Plotting Figure 31 for � z ¼ 0:02 bins shows no striking evi-
dence that any group is particularly curved.
2. The same z-bin galaxy groups are spread across large re-

gions of the HST field. Their intergalaxy separation is typically
larger than the scale of the correlation we are noticing.
3. For each actual curved group we have observed, all mem-

bers have distinct z-values. One can check the groups to verify
that in each group there is no z-value occurring more than one
time. The z-values for the upper left curved clump are z ¼ 1:12,

Fig. 26.—For the model method with a less stringent noise cut than Fig. 25, a neighbors histogram (top left), a type 2 analysis (bottom left), and a field plot showing the
spatial location of curved galaxies in the HDF-N. Circles are shown for four or more neighbors. [See the electronic edition of the Journal for a color version of this figure.]

Fig. 27.—Histograms showing the distribution of the number of aligned neighbors of aligned galaxies within a circle of radius R ¼ 350 pixels, compared with the
average of such a distribution for 500 randomly chosen subsets of galaxies in the HDF-N having the same number of members. The left panel is for the radial-fit
method, and the right panel is for the model method. [See the electronic edition of the Journal for a color version of this figure.]
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Fig. 28.—Histograms showing the fraction (P) of galaxy subsets among 500 randomly chosen galaxy subsets having n galaxies with six or more neighbors in a circle
of R ¼ 340 pixels. The arrow indicates the number of aligned galaxies having six or more neighbors in the aligned subset. The left panel is for the radial-fit method, and
the right panel is for the model method. [See the electronic edition of the Journal for a color version of this figure.]

Fig. 29.—Field plots for aligned galaxies in the HDF-N field comparing the radial-fit and model methods. Neighborhood circles have a radius of 340 pixels and
are required to contain four or more neighbors. The left panel used the model method, and right panel used the radial-fit method. Shaded areas show the interiors of
the aligned neighborhood circles. [See the electronic edition of the Journal for a color version of this figure.]

Fig. 30.—For the radial-fit (left) and model methods (right), two histograms for circles of radius R ¼ 320 pixels, showing how 300 randomly chosen galaxy
subsets are distributed as a function of their number n of galaxies having four or more neighbors. The arrow indicates the number of midrange galaxies with four or
more neighbors. [See the electronic edition of the Journal for a color version of this figure.]



1.16, 1.56, 1.72, 2.12, and 3.00. The z-values for the lower right
curved clump are z ¼ 0:08, 1.64, 1.72, 2.16, 2.24, and 3.10.
Therefore, their curvature could not arise from a single causative
event.

In summary, we find it to be highly unlikely that the excess
clumping we are seeing for both curved and aligned galaxies
could result from correlated shapes present in the background
galaxies themselves.

8.2. PSF Residuals

We know that the PSF correction plays a role in the deter-
mination of which galaxies are curved, and we have made an
effort to remove the PSF effects, but are there significant resid-
uals? Unfortunately, the PSF can vary with time, as the temper-
ature of the HST changes. However, there are reasons to doubt
that the observed clumping is coming from the PSF.

Figures 12 and 18 show the orientation and magnitude of the
quadrupole and sextupole coefficients for the Tiny Tim PSF, re-
spectively. We note that the orientation of the sextupole coef-
ficient is almost constant in each chip, and the magnitude varies
only slightly. This is in strong contrast to the quadrupole mo-
ment, which gets stronger at the edges of the chips and whose
orientation follows large circles, centered roughly on the chip.
Combining these two would result in a pattern that would repeat
six times around each circle (curved ! midrange ! aligned !
midrange! curved! . . .). For three orientations of the quad-
rupole a minimum is aligned with a minimum of the sextupole,
and each such orientation occurs twice, on opposite sides of
the circle. The radius of this circle is �800 pixels, and hence
the circumference is �4800 pixels. Each repeat has a length
of �800 pixels, and hence the curved region width would be
�270 pixels. In other words, these regions would have half the
radius of the clumped regions we have found and one-quarter
the area. No such pattern is apparent, and the regions predicted
to be curved do not correspond to the locations of our clumped
regions.

8.3. Image Composition

Since we suspect that we are processing images in a way not
originally anticipated by the creators of the image composition
process, we were concerned that our observations could be due
to a feature of that process.We raised this concern with the Space
Telescope Science Institute, who assured us that ‘‘to [our] knowl-
edge, there are no instrument artifacts or any portion of the image

processing and stackingwhich wouldmimic the curvature you are
noting in the background galaxies.’’22

The final image is the co-addition and drizzling of images that
were taken with nine distinctly dithered pointings, enabling the
resolution of the composite image to be higher than any single
image. The dither offsets have to be known accurately at each
point on the focal plane, or else the co-addition will indeed yield
image moments not present in the original images. But this is a
question of magnitude. As we have repeatedly pointed out, the
magnitude of any distortion must be of the order of the observed
moments themselves. In the case of the quadrupole, suppose we
have a false separation of two symmetrical images each offset by
� but in opposite directions. Then, a false quadrupole map coef-
ficient of magnitude 1

2
(�/r0)

2 will be generated. For this to have
amagnitude of a typical a 	 0:2 would require�/r0 � 0:6. Since
our typical r0 � 3, this would require� � 1:8 HDF pixels. In our
opinion, this is an improbably large offset. We would estimate
false offsets to be at most 1/4 this size (0.2 original camera pixels).
With the effect going as the square, that would be a factor of 16 too
small. Similarly, the false sextupole generated by three images
each offset in a triangular configuration by � would have a sex-
tupole coefficient of magnitude 1

6
(�3/r 40 ). For this to have a mag-

nitude of 0.02 even for r0 ¼ 3 would require� � 2 HDF pixels,
again at least 4 times larger than expected false offsets.
If there were errors in the dither amplitudes, one would ex-

pect these errors to be coherent across the field; that is, all of the
galaxies in a local region would have the same errors in the co-
addition process. This would result in a spatial clumping of cur-
vature, but all the galaxies in any given local region would appear
to be curved in the same direction. This is not what we see.
We also note that the regions where curved galaxies clump do

not appear to have any particular identifiable pattern, i.e., they do
not appear to coincide with chip boundaries.

8.4. Pixel-derived Effects

Early on, we had a concern that spurious sextupole moments
could be generated by the simple process of pixelating an image.
To probe this, we took known typically sized bi-Gaussian dis-
tributions and, varying the centroid, dropped them onto a pixel
grid. To our surprise, the falsely induced sextupole map coeffi-
cients had strengths less than 10�5. Square pixel grids do give

Fig. 31.—Left:Bar graph comparing the z-distribution of curved galaxies in the foreground bars and all galaxies in the background bars.Right:Bar graph comparing the z-
distribution of aligned galaxies in the foreground bars and all galaxies in the background bars. [See the electronic edition of the Journal for a color version of this figure.]

22 We sent the STScI (Space Telescope Science Institute) a draft of our paper
(astro-ph /0308007) that used only moment methods. This reply was received
from the Help Desk on 2003 September 9, call CNSHD330235.
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rise to spurious octupole moments, and sensitivity limits are set
in that case.

Of course, pixel defects will give rise to spurious changes in
galaxy shapes. Taking a hole out of one side of an image would
induce a spurious curvature. Defects in the quantity and arrange-
ment required would seem like a serious camera defect.

8.5. Galaxy Selection Effects

Galaxy selection software would appear to be blind to position
in space and incapable of leading to the spatial clumping of curved
or aligned galaxies.

9. CLUMPING IN STANDARD �CDM?

Are our observations of the clumping of curved and aligned
galaxies consistent with what one might expect from the con-
cordance �CDM model? We are not able to give a definitive
answer to this question, for several reasons: (1) The HDF-N is a
small field, and the statistical determination is poor. (2) There is a
strong dependence of the result on the actual dark matter profiles
for halos with virial mass in the range 1010–1013 M�. (3) Small
mass halos (down to 109M�) can have an important contribution
if they are strongly stripped or their mass is concentrated for any
other reason. (4) A proper simulation using current �CDM in-
gredients (now in progress) must take into account the noise
cuts for faint and small galaxies, the lensing mass spatial distri-
bution, and the distribution of initial background galaxy po-
sitions and shapes, and must faithfully replicate the clumping
algorithm. Nevertheless, we make some estimates and outline
an approach to this question.

Our inquiry is based on the hypothesis that although the fore-
ground galaxies are expected to be random, after positions are
chosen, they will have a density pattern that can give rise to a
spatial variation of curving. Indeed, in x 9.1 we exhibit the over-
and underdensities of the visible foreground galaxies and find
variations of apparently sufficient amplitude on spatial scales rel-
evant to our observations.

Section 9.2 below assumes that we are dealing with a general-
izedMoore profile and determines the cross section of these pro-

files, i.e., the radius of the region (around the halo center) within
which the light stream from a background galaxy would appear
curved. We see a significant dependence of the cross section on
the concentration and profile parameters. Section 9.3 uses the
Sheth-Tormen halo distribution in conjunction with the sextu-
pole lensing cross section determination to compute a total cross
section of all halos.

A secondary purpose of this section is to indicate how sex-
tupole lensing might be expanded to provide an interesting cos-
mological signal. For example, the spatial variation of aligned
galaxies distinguishes regions of little or no lensing from regions
having lensing. Using that fact, one can construct the change,
between regions, of the distribution of galaxies in the three-
dimensional parameter space described by the magnitude of
the map parameters jaj, jbj, and the angle of their relative ori-
entation. Although considerable ‘‘smearing’’ will occur given
the range of lever arm coefficients, still the strong relationship
between the strength of the quadrupole for a given sextupole,
indicative of the mass of the lensing halo, may persist and
permit one to draw conclusions as to the nature of the lensing
masses.

9.1. Visible Foreground Galaxy Distribution

In Figure 32 (left) we plot the positions of the 420 foreground
galaxies on a grid of 192 boxes. The box size is chosen to be
somewhat smaller than the clumping areas (four boxes constitute
the clumping circle of R ¼ 300 pixels). The occupancy count for
the boxes varies from 1 to 7, with a mean of 2.17 galaxies per
box. Darker boxes indicate larger numbers of foreground galax-
ies. There are five boxes with an overdensity of 3 or more times
the average density. Thus, one indeed sees a sizeable variation in
foreground galaxy densities. We generated a few random dis-
tributions, and they were not too different from the observed
distribution, although the observed distribution appears to have
larger void areas. Foreground galaxies are thosewith zphot < 1:25.
This separation between foreground and background is based on
the geometric lever arms that enter into the lensing distortion map
parameter equations. See Figure 34.

Fig. 32.—Left: Foreground galaxies shown as stars on a grid of 192 square boxes. The boxes are shaded according to galaxy density, with black for the most
dense areas. Right: Same grid with the background galaxies shown as stars. Foreground and background galaxies are galaxies with zphot < 1:25 and zphot > 1:25,
respectively. [See the electronic edition of the Journal for a color version of this figure.]
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In Figure 32 (right) we show the background galaxies on the
same grid as in the left panel. According to our conjecture, to ob-
tain a clump of curved galaxies one would need to have (1) an
overdensity offoreground halos and (2) at least nine ormore back-
ground galaxies probing the overdense region. In Figure 32 (left)
one can identify five regions with large foreground overdensities
(excluding border regions). Upon checking out these regions in
Figure 32 (right), one sees that two of those five do not have the
requisite number of background galaxies probing the region. The
three curved clumps of Figure 26 intersect the remaining three re-
gions. Thus, at first glance, there would appear to be sufficient var-
iation in foreground halo densities, and the maxima and minima
are consistent with the clumping observation, although we would
not want to exaggerate the importance of that conclusion.

We turn now to the particulars of lensing by dark matter halos.
We would determine the conditions under which a dark matter
halo produces an observable curvature.

9.2. Sextupole Lensing Cross Sections of Dark Matter Halos

In x 3.4 we proved that the coefficients describing the shape
of the background galaxies add vectorially with the lensing-
induced coefficients. This means that in order to align the orien-
tation of the quadrupole and sextupole moments, the magnitude
of lensing-induced coefficientsmust be competitivewith themag-
nitude of background values. Hence, the magnitudes of a and b
must be comparable with or larger than the minimum observed
background values. This simple fact creates limits on the range of
acceptable lensing mass and impact parameters.

Figure 33 (left) is a log-log plot of mass M versus impact
parameter r0 for point-mass halos. Assuming a typical lensing
plane located on a plane at z ¼ 0:6, with DLT ¼ DLS as the co-
moving distance to the background galaxy, one can plot loci of
constant jaj and jbj. These are straight lines with slopes of 2 and
3, respectively. Quadrupole coefficients less than 0.1 or sextu-
pole coefficients less than 0.01 would be smaller than the back-

ground values observed, and hence such lensing would be un-
able to realign the intrinsic background shapes. Thus, the region
to the right of these boundaries is indicated as ‘‘in the noise.’’
In addition, impact parameters smaller than about 1 kpc are

excluded because the radii of the background-galaxy light-path
footprints are at least 2.5 pixels, which is about 0.7 kpc on the
z ¼ 0:6 plane.
According to the concordance model, the outer radius of dark

matter halos, referred to as the virial radius, rV, depends on the
total (virial) mass as rV / M 1/3

V . The constant of proportionality
is established by taking rV ¼ 300 kpc for MV ¼ 1:6 ; 1012 M�.
The locus of these ‘‘complete’’ dark matter halos is also desig-
nated in Figure 33 (left). Clearly, the a and b induced for a light
stream passing at the virial radius are too small to be observable.
However, these halo radii are large (a 300 kpc ¼ 1120 pixel

radius object would fill a WFPC chip), and hence light streams
certainly traverse (many) halo interiors. Using a standard NFW
profile one can integrate out the variable perpendicular to the
lensing plane to determine the surface mass density on the lens-
ing plane, and from this use the formulae of equation (11) to
calculate the induced a and b within the interior of the mass
distribution. The trajectory of ‘‘enclosed’’ mass versus impact
parameter is suggested in Figure 33 (left), but the situation is
more complicated, since a and b depend not only on the enclosed
mass but also importantly on � and �0. The radii at which the
lensing-induced values of a � 0:1 and b � 0:01 become observ-
able are indicated as a function of virial mass in Figure 33 (right).
These radii depend strongly on the particulars of the halo pro-
file. Themaximum radius as a function of virial mass is shown for
three profiles with concentrations (the virial radius divided by the
scale radius) of 10 or 20 and density profile parameters 
 ¼ 0:5
(the Moore profile) or 
 ¼ 0:7, where �(r) � r�1�
(r þ 1)�2þ
.
We see that the cores of dark matter halos are indeed dense

enough to cause observable sextupole lensing for a range of halo
mass extending from about 1010 M� upward.

Fig. 33.—Region in (concentrated) lensing mass vs. impact radius for which a lensing mass at z ¼ 0:6 would produce observable curving from sextupole lensing
(left). Lines of constant a and b are indicated. Also indicated is the virial radius line along which dark matter halos are thought to lie. As the background galaxy
trajectory probes into the interior of a halo, the enclosed mass decreases, as indicated by the curved line moving to the left from the virial radius line. However, there
are terms proportional to density and its derivative that further decrease the resulting quadrupole and sextupole strengths. In the right panel, these terms are taken
into account. The lines indicate the largest radii for which sextupole lensing would be observable. The lines are labeled with the 
 parameter (
 ¼ 0:5 is the Moore
profile) and the concentration parameter c (c equals the virial radius divided by the scale radius). [See the electronic edition of the Journal for a color version of this
figure.]
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9.3. Total Sextupole Lensing Cross Section

In Figure 34 we have plotted the geometric lever arm co-
efficients (the product of the D values in eq. [9]) for the quad-
rupole and sextupole map coefficients for a ‘‘median’’ z ¼ 1:64
background galaxy. The geometric coefficients are large for
the range 0:3 < z < 1:25, and hence dark matter halos in this
z-region could give rise to lensing. We refer to this region as the
foreground. The comoving volume of the Hubble Deep Field
is a needle-like truncated pyramid, having an angular width of
0.75mrad (16000). The comoving distance to z ¼ 1:25 is 3.9Gpc,
and that to z ¼ 0:3 is 1.2 Gpc. The comoving volume ‘‘behind’’
the three WFPC chips between z ¼ 0:3 and z ¼ 1:25 is about
8000 Mpc3. Using a matter density of 0.27 times the critical den-
sity (3:7 ; 1010 M� Mpc�3) would imply that this volume origi-
nally contained a matter mass of 3 ; 1014 M�.

To estimate the number of halos within this volume, one can
use the Sheth-Tormen distribution (Sheth&Tormen 1999), which

is supported byN-body simulations (Reed et al. 2005). The result
is that 40% of the total halo mass, 1:2 ; 1014 M�, lies in the mass
range between 7 ; 109 and 2:3 ; 1013 M�.

Breaking down 1:2 ; 1014 M� by decade, eight halos totaling
40% of the mass lie in the top decade above 2:3 ; 1012, 61 halos
representing 30% of the mass lie in the decade above 2:3 ; 1011,
465 halos representing 23% of the mass lie in the decade above
2:3 ; 1010, and 870 halos representing 7%of themass lie between
there and 7 ; 109. There are 420 visible galaxies in the HDF-N
foreground, suggesting that halos down to about 3:5 ; 1010 are
visible.

To define a total cross section for sextupole lensing, we have
integrated the cross section times the halo density function. Since
the cross section is given in kiloparsecs, there are different num-
bers of pixels in the cross sections for different lensing planes.
Hence, it is necessary to integrate over the volume of the fore-
ground. The relevant equation is

Z
�rSL(M )2

dn

dM
dM

Z
1þ zL

DTL�p

� �2

3(�CDTL)
2 dDTL; ð40Þ

where rSL(M ) is the maximum sextupole lensing radius for a halo
of mass M in units of Mpc, dn/dM is the halo density function
(halos per unit mass per Mpc3), (1þ zL)/DTL�p is the conversion
from Mpc to pixels, and the rest of the expression is the volume
interval for three chips, each subtending an angle �C .

The integral over dDTL can be carried out by using the expres-
sion dDTL/dz ¼ (c/H0)/½0:27(1þ z)3 þ 0:73�1/2 and integrating
over z, where c is the speed of light andH0 is the Hubble constant
at z ¼ 0. The expression 3(�C/�p)

2 is the number of pixels in the
field and can be divided out to give the fractional cross section.
For simplicity, we use a straight line fit to the Sheth-Tormen
distribution dn/d logM ¼ 1:2 ; 108/(M /h�1)0:88 Mpc�3 and a
straight line fit to the function rSL(M ) for 
 ¼ 0:5 and c ¼ 20.
The mass integral is carried out from 1010 to 1013M�. One finds
that this estimate gives a fractional sextupole cross section equal
to 4% of the field.

Fig. 34.—Plot of the lever arm coefficients as a function of the position of the
lensing plane for the quadrupole and sextupole map coefficients for the median
z ¼ 1:64 background galaxy. These coefficients are given by DLS DTL/½(1þf
zL)DTS �g andDLS DTL/ (1þ zL)DTS½ �f g2, respectively. The original mass residing
in the regions of large lever arm coefficients is indicated. [See the electronic
edition of the Journal for a color version of this figure.]

Fig. 35.—Close-up look showing all galaxies in the two regions of clumping of curved galaxies for the model method. The base of the arrow is at a curved
galaxy, and the arrow points toward its center of curvature. The tick numbers indicate the pixel coordinates in the field. [See the electronic edition of the Journal for
a color version of this figure.]
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This total fractional cross section can be roughly interpreted
as indicating that 1 in 25 background galaxies will experience a
strong sextupole lensing event. Of course, we have made many
approximations and ignored many details, so we do not want to
draw any conclusions from this result other than to say that within
a factor of 2 this is in the range that could reasonably explain the
clumping effects we are seeing. Only a detailed simulation could
provide a more accurate answer, and even that will be subject to
the unknowns mentioned in the introduction to this section.

If visible halos were responsible for the enhanced clumping of
curved galaxies we have observed, one would expect to see (e.g.,
for the model method) that, for at least one of the two curved
clumps, at least two of the curved galaxies are oriented so that
their curvature vectors point toward a foreground galaxy respon-
sible for the lensing. Figure 35 shows a close-up of the two clumps
identified in Figure 25. In the upper left field shown in the left panel
there is one clear example of lensing and a potential second case. In
the lower left of the field there is no obvious case.We take this to be
inconclusive, especially since invisible halos can play a role.

10. SUMMARY

We have argued that close-encounter lensing events can pro-
duce a second-order deformation having three maxima and min-
ima, which we refer to as a sextupole deformation. Furthermore,
lensing kinematics requires that this sextupole deformation be
oriented with respect to the well-known elliptical (or quadru-
pole) deformation (having twomaxima and twominima), so that
one of the two quadrupole minima is aligned with one of the
three sextupole minima. Galaxies having their sextupole defor-
mation so aligned with their quadrupole deformation are called
‘‘curved.’’

We have proposed that if some fraction of curved galaxies are
indeed the result of a lensing event, and since the suspected lens-
ing events are the result of a close encounter with a foreground
dark matter halo, and since foreground halos are observed to be
clustered on the sky, it may be true that the curved galaxies are
also clustered. Thus, one should look for clustering of curved
galaxies, because if clustering is observed and other less esoteric
reasons for the clustering can be ruled out, one would have an
indicator of the presence of close-encounter sextupole lensing.

To build a basic structure for nonlinear lensing, the concept of
a ‘‘lensing distortion map’’ was introduced. The lensing distor-
tion map contains the full content of the lensing event(s) and the
geometry. In addition to the usual two parameters of linear lens-
ing (convergence and shear), there are three complex second-
order terms in the general map. The parameters of the map are
given for lensing by an azimuthally symmetric dark matter halo.

Next we described a method to determine lensing map coef-
ficients from the analysis of galaxy shapes. In addition to the
moment methods, we have described a radial-fit method and a
model method. The core of these methods is to find the best
azimuthally symmetric (radial) fit to the galaxy and then to act on
that radial profile with a map, adjusting parameters to find the
best fit to the galaxy. In the case of themodel method, application
of the PSF, camera charge diffusion, and image processing pro-
cedures (drizzle) are also included in the fit process. Using these
techniques, fit parameters are found for the background galaxies
in the Hubble Deep Field–North.

If a galaxy has not been lensed, one can proceed in the same
way and obtain a ‘‘source’’ map. The maps obtained for a lensed
galaxy are a concatenation of a source map with a lensing map.
The map coefficients obtained in the concatenation are shown to
be approximately given by the linear combination of source map
and lensing map coefficients.

We divided all galaxies into three groups according to the ori-
entation of the sextupole with respect to the quadrupole distor-
tions: curved, midrange, and aligned. Then each of these three
groups was studied to determine whether they are clumped on
the sky in some abnormal way or their arrangement could just as
easily be a random arrangement of galaxy shapes. We have de-
termined that the curved and aligned galaxies do not appear to be
random, with the probability to be random equal to or less than
4%.
We discuss systematic effects that could give rise to an appar-

ent clumping. Themost obvious systematic effects are a property
of the PSF or a property of the source galaxies themselves. We
argue that these appear to be unlikely sources of clumping. For
example, in the clumped groups, no two background galaxies
have the same value of z, and the spatial scale on which the
quadrupole and sextupole moments of the Tiny Tim PSF are
varying is considerably larger than the clumping scale observed.
Finally, we discussed one scenario that could give rise to a

real clumping of sextupole lensing: a nonuniform arrangement
of foreground dark matter halos. We look at foreground galaxies
and find that they are not uniform, of course. Then we define the
concept of a sextupole lensing cross section and calculate it as a
function of total mass for a Moore profile for concentration
parameters of 10 and 20. The cross section depends on the loca-
tion of the lensing plane and source plane. Ignoring this depen-
dence, one can calculate an estimate for the cross section for the
foreground field populated according to a Sheth-Tormen halo
distribution function. Although the results are incapable of prov-
ing or disproving the hypothetical scenario, the range is within a
factor of 2 of what one might have imagined was necessary. In
addition, the hypothetical scenario suggests more general situa-
tions that could give rise to a sextupole lensing signal.
The Hubble Deep Field–North has an area of about 5 arcmin2,

of which only 3.3 arcmin2 is available once a border region
equal to the typical radius of neighbor circles is subtracted. In
comparison, the Ultra Deep Field (UDF) has a usable area of
8.6 arcmin2. In addition, the UDF total exposure time at the prin-
cipal filter is 3 times greater, and the HSTACS (Advanced Cam-
era for Surveys) used for the UDF has twice the resolution of the
WFPC. Hence, we believe the UDF will provide a strong test of
our methods.
Another space-based project in the planning stages (the

Supernova/Acceleration Probe, SNAP; Aldering et al. 2002;
Rhodes et al. 2004; Massey et al. 2004; Refregier et al. 2004)
has a weak lensing program of �1000 deg2 (106 times the Hub-
ble Deep Field) with comparable resolution, better characteriza-
tion of the PSF, and enough depth to provide �100 background
galaxy images per square arcminute.23

We would like to acknowledge the encouragement and sup-
port of Tony Tyson and David Wittman of Bell Labs. Visits by
both of us to Bell Labs prepared us for this undertaking, espe-
cially by introducing us to existing software and weak-lensing
techniques. We would also like to thank Pisin Chen and Ron
Ruth at SLAC (Stanford Linear Accelerator Center) for trusting
in our judgment and encouraging us to proceed. This work was
supported by DOE grant DE-AC03-76SF00515.
After presenting our ideas to Tony Tyson in 2002 January,

he suggested that we look at a posting by D. M. Goldberg and
P. Natarajan titled ‘‘The Galaxy Octupole Moment as a Probe of
Weak-Lensing Shear Fields’’ (Goldberg & Natarajan 2002). The

23 See also http://snap.lbl.gov.
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mathematical formulae presented there were actually what we
have been calling the sextupole. Our nomenclature derives from
beam physics, where the sextupole field is created by a magnet
with six poles, three of positive polarity and three of negative po-
larity. In addition, the lensing-induced shape has three maxima
and three minima. To our knowledge, there was no mention by
Goldberg and Natarajan of the induced sextupole (their octupole)

shape or of using its correlation with the quadrupole shape to
distinguish galaxies.

We thank Ken Shen for his assistance in providing a program
to identify double-maximum galaxies and Konstantin Shmakov
for help with software.

The first version of this present work was posted in 2003
August (Irwin & Shmakova 2003).
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