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ABSTRACT

We find self-similar solutions to describe the interaction of spherically symmetric ejecta expanding at relativistic
speeds with an ambient medium having a power-law density distribution. Using these solutions, the time evolution
of the Lorentz factor of the outer shock is derived as a function of the explosion energy, the mass of the ejecta, and
parameters for the ambient medium. These solutions are an ultrarelativistic version of the solutions for the circum-
stellar interaction of supernova ejecta obtained by Chevalier and extensions of the relativistic blast wave solutions
of Blandford & McKee.

Subject headinggs: gamma rays: bursts — hydrodynamics — relativity — shock waves — supernovae: general

1. INTRODUCTION

Self-similar solutions for fluid flows involving shock waves
propagating at relativistic speeds have been presented in the
literature (e.g., Blandford &McKee 1976; Hidalgo &Mendoza
2005; Nakayama & Shigeyama 2005). Most of them are ultra-
relativistic versions of the already known nonrelativistic self-
similar solutions. Blandford &McKee (1976) derived solutions
for an ultrarelativistic spherical blast wave enclosed by a strong
shock, which is initiated by the release of a large amount of en-
ergy within a small volume. If the released energy is not very
large, the resulting nonrelativistic flow is described by the well-
known solution discovered independently by Sedov (1959) and
Taylor (1950). The implosion of a spherical strong shock wave
had been solved independently by Landau and Stanyukovich
(see, e.g., Zel’dovich & Raizer 2002) and by Guderly (1942) in
nonrelativistic cases. Hidalgo & Mendoza (2005) derived self-
similar solutions for the same problem in the relativistic limit.
Nakayama & Shigeyama (2005) discovered solutions for the
emergence of an ultrarelativistic shock wave at the surface of a
star. For the case of a nonrelativistic shock wave the same prob-
lem had been posed by Gandel’man& Frank-Kamenetskii (1956)
and solved by Sakurai (1960).

Here we present a self-similar solution for the interaction
of spherical ejecta expanding at ultrarelativistic speeds with
the ambient medium. When the ejecta expand at nonrelativistic
speeds, self-similar solutions are known to exist (Chevalier 1982).
Chevalier discovered solutions for the flows resulting from the
collision of freely expanding spherical matter with the ambient
medium. In the relativistic limit, self-similar solutions describing
the shocked ambient media with power-law density distributions
had already been obtained by Blandford & McKee (1976) with
the shock Lorentz factor evolving with time t as t�m=2. The con-
stant m can be determined when the nature of the explosion is
specified. This paper discusses self-similar solutions for describ-
ing shocked ejecta as a result of a collision with the ambient
medium. This solution will be relevant to extremely high energy
supernovae originating from compact progenitors with small
masses.

The density distribution of the ejecta used here is suggested
by analytical solutions (Nakayama & Shigeyama 2005) for the
breakout of an ultrarelativistic shock wave from a hydrostatic at-
mosphere and its nonrelativistic versions (Sakurai 1960; Matzner
& McKee 1999). The outer layers of the resulting flow in a non-
relativistic solution expand at velocities greater than the speed of
light. They have a density distribution that agrees with numerical
calculations for the same problem using a special relativistic hy-
drodynamic code (Nakamura & Shigeyama 2004). Thus, we use
the results as the inner boundary conditions of the present self-
similar solutions. We describe the relation of our solution to re-
sults obtained by Blandford & McKee (1976) in some detail.

In the next section, the density distribution of freely expand-
ing ejecta as a result of shock breakout is discussed. Self-similar
flows in the shocked ejecta and ambient medium are obtained in
x 3. The behavior of these two flows at the contact surface is
discussed in x 4. Using the obtained solution, the shock prop-
agation in the ambient medium is discussed in x 5. The results
are summarized in x 6.

2. RELATIVISTIC EJECTA FROM SHOCK BREAKOUT

The velocity ve of freely expanding ejecta at a distance r from
the explosion site is written as ve ¼ r/t at a time t after the ex-
plosion. The corresponding Lorentz factor is �e ¼ 1� v2e

� ��1=2.
We set the speed of light equal to unity throughout this paper. In
the relativistic limit, self-similar solutions for the emergence of
a shock wave at the stellar surface (Nakayama & Shigeyama
2005) suggest that the density in the outer layer of ejecta has a
power-law distribution in terms of the Lorentz factor as

�e ¼
�0
e

�e
¼ a

t3�n
e

; ð1Þ

where �e is the density of ejecta measured in the comoving frame
and �0e is that in the fixed frame; that is, �0

e ¼ �e� (hereafter prime
denotes densities that are measured in the fixed frame). Here the
nondimensional parameter n can be estimated to be �1.1 if the
stellar envelope is in radiative equilibrium and the adiabatic
index is 4/3. The constant a has dimensions of mass. On the other
hand, a self-similar solution for the nonrelativistic shock breakout
in a plane-parallel geometry (Sakurai 1960; Fields et al. 2002)
results in a density distribution in the same form with n � 2:6.
Although this self-similar solution assumes nonrelativistic flow,
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the resulting density distribution agrees with that obtained by
numerical calculations solving special relativistic hydrodynamics
equations (Nakamura & Shigeyama 2004) even for large Lorentz
factors �e > 10. The transition between these solutions occurs
when the ratio of the pressure to the mass density P/� at the shock
front becomes of the order of unity. Thus, the outermost layers
should be governed by the solution in the relativistic limit.

3. FLOW IN THE SHOCKED REGION

Flows located between two shock fronts are considered by
connecting two self-similar solutions. Suppose that the shock
front in the ambient medium propagates at a speed V1 and the
shock front in the ejecta at V2. If we define � ¼ �̂ /(�̂ � 1),
where �̂ is the adiabatic index, the flow in each of the shocked
regions is described by the following equations:

�P þ �ð Þ d ln �
dt

þ dP

dt
¼ ��2 @P

@t
; ð2Þ

d ln P��1��ð Þ
dt

¼ � �

r 2
@r 2v

@r
; ð3Þ

@�0

@t
þ 1

r 2
@r 2�0v

@r
¼ 0; ð4Þ

where the pressure is denoted by P, the density �, the velocity v,
the corresponding Lorentz factor �, and the density in the fixed
frame �0 ¼ ��. In the shocked ambient medium, the ultrarel-
ativistic equation of state is assumed. Thus, �̂ ¼ 4/3 and the
energy density � per unit mass is written as � ¼ 3P/� by neglect-
ing the rest-mass energy density. These approximations lead to
the same equations as presented in Blandford &McKee (1976).
On the other hand, it is found that the rest-mass energy should
not be ignored in the shocked ejecta to have a compression
shock. Otherwise, the jump conditions would result in an ex-
pansion shock for m < 1. Then the energy density becomes
� ¼ P/½(�̂ � 1)�� þ 1 in this region and the term including the
density in the left-hand side of equation (2) is not neglected.

3.1. Jump Conditions at the Shock Front in the Ejecta

The density, pressure, and velocity have discontinuities at the
shock front. Relations to connect these quantities at both sides
of the shock front are given here. Themass flux �u� and the energy
momentum tensor T�� change across the shock propagating at
the velocity of V2 according to the following formulae:

�eu
�
e � �2u

�
2

� �
n� ¼ 0; ð5Þ

T��
e � T

��
2

� �
n� ¼ 0: ð6Þ

Subscript ‘‘e’’ refers to values in the freely expanding ejecta at
radius R2 defined as

R2(t) ¼
Z t

0

d� V2(�); ð7Þ

while subscript ‘‘2’’ refers to values in the shocked matter at the
same radius R2. The variables n�, u

�, and T�� have been defined
as

n� � �2(�V2; 1; 0; 0); u� � �(1; v; 0; 0); ð8Þ

T�� � �hu�u� þ P���; ð9Þ

with the metric ��� � diag (�1; 1; 1; 1). Here �2 denotes the
Lorentz factor of the shock and is assumed to evolve as a
function of time t as

�2
2 ¼ At�m ð10Þ

with constants A andm. The enthalpy h is denoted by other ther-
modynamic variables as h � �þ P/�. Equation (5) yields

�e�e(ve � V2) ¼ �2�2(v2 � V2): ð11Þ

Equation (6) can be rewritten as

�e�
2
e (ve � V2) ¼ �2h2�

2
2 (v2 � V2)þ P2V2; ð12Þ

�e�
2
e ve(ve � V2) ¼ �2h2�

2
2 v2(v2 � V2)þ P2: ð13Þ

Equations (11)–(13), together with the relation �e ¼ mþ 1ð Þ1=2�2

at r ¼ R2, lead to the following equation:

�x3 þ (� � 2)
ffiffiffiffiffiffiffiffiffiffiffiffi
mþ 1

p
x2 � (� � 2)x� �

ffiffiffiffiffiffiffiffiffiffiffiffi
mþ 1

p
¼ 0; ð14Þ

where x ¼ �2 /�2. This equation has only one positive solution
between 1 and mþ 1ð Þ1=2 form > �1. If this solution is denoted
as x ¼ ffiffiffi

q
p

, the Lorentz factor, density, and pressure at the front
in the shocked matter will be derived as

�2
2 ¼ q�2

2; ð15Þ

�0
2 ¼

mq

(mþ 1)(q� 1)
�e�e; ð16Þ

P2 ¼
m�e

�(q� 1)þ 2
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
q

mþ 1

r� �
: ð17Þ

These relations are used to obtain the boundary conditions for
flows in the shocked ejecta. If the constant m is smaller than
unity, as is usually the case, the compression is so weak that
the thermal energy cannot dominate the rest-mass energy in the
shocked ejecta. Therefore, we cannot use the ultrarelativistic
equation of state there, while the ultrarelativistic equation of
state is always a good approximation in the shocked ambient
medium as long as the shock Lorentz factor is much larger than
unity.

3.2. Self-similar Flow in the Shocked Ejecta

It is convenient to define self-similar variables for the pres-
sure F(	), the Lorentz factor G(	), and the density H(	) in the
shocked ejecta as

P ¼ m�e
�(q� 1)þ 2

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffi

q

mþ 1

r� �
F(	); ð18Þ

�2 ¼ q�2
2G(	); ð19Þ

�0 ¼ mq

(mþ 1)(q� 1)
�e�eH(	): ð20Þ

The similarity variable 	 is defined as

	 ¼ 1þ 2(mþ 1)�2
2

� �
1� r

t

� 	
; ð21Þ

following Blandford & McKee (1976).
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To obtain equations governing the self-similar evolution, the
transformation of coordinates from (r; t) to (�2; 	) is performed
using the following relations of derivatives:

@

@ ln t
¼ �m

@

@ ln �2
2

þ (mþ 1)(2�2
2 � 	)þ 1

� � @

@	
; ð22Þ

t
@

@r
¼ � 1þ 2(mþ 1)�2

2

� � @

@	
; ð23Þ

d

d ln t
¼ �m

@

@ ln �2
2

þ (mþ 1)
1

qG
� 	

� �
@

@	
: ð24Þ

Then we obtain, from equations (2)–(4),

2(mþ 1)(1þ qG	)
d ln F

d	
� (mþ 1)(� þ I )(1� qG	)

d lnG

d	

¼ mn� (� þ I )m� 6½ �qG;
ð25Þ

2(� � 1)(mþ 1)(1� qG	)
d ln F

d	
� �(mþ 1)(1þ qG	)

d lnG

d	

¼ (1� �)mnþ �mþ 2� � 6½ �qG;

ð26Þ

2(mþ 1)(1� qG	)
d lnH

d	
� 2(mþ 1)

d lnG

d	

¼ �(mn� m� 2)qG; ð27Þ

where I ¼ I(	 ) ¼ �/P. The boundary conditions are given at the
shock front as

G(1) ¼ F(1) ¼ H(1) ¼ 1: ð28Þ

The solution is obtained by numerically integrating equations (25)–
(27) from the shock front 	 ¼ 1 to the contact discontinuity
	 ¼ 	c ¼ 1/qG(	c).

3.3. Jump Conditions at the Shock Front
in the Ambient Medium

The density, Lorentz factor, and pressure change across the
shock wave propagating at the speed V1 ¼ 1� 1/�2

� �
1=2 ac-

cording to the following relations:

�0
1 ¼

�i�
2

2
; �2

1 ¼ �2

2
; P1 ¼

2�i�
2

3
; ð29Þ

where subscript ‘‘1’’ refers to values in the shocked fluid at the
shock front while subscript ‘‘i’’ refers to values in the unshocked
ambient medium at the shock front. The shock Lorentz factor is
denoted by �. This � evolves with time in the same way as �2,
i.e., �2 ¼ Bt�m. The density in the ambient medium is assumed
to have a power-law distribution as � ¼ br�k , where b is a con-
stant. Thus, self-similar variables for the pressure f (
), Lorentz
factor g(
), and density h(
) are defined as

P ¼ 2�i�
2

3
f (
); ð30Þ

�2 ¼ �2

2
g(
); ð31Þ

�0 ¼ 2�i�
2h(
): ð32Þ

Here the similarity variable 
 has been introduced as


 ¼ 1þ 2(mþ 1)�2
� �

1� r

t

� 	
: ð33Þ

3.4. Self-similar Flow in the Shocked Ambient Medium

The same procedure as in x 3.2 leads to equations governing a
self-similar flow in the shocked ambient medium as

d ln f

gd

¼ 4 2(m� 1)þ k½ � � (mþ k � 4)g


(mþ 1)(4� 8g
þ g2
2)
; ð34Þ

d ln g

gd

¼ (7mþ 3k � 4)� (mþ 2)g


(mþ 1)(4� 8g
þ g2
2)
; ð35Þ

d ln h

gd

¼ 2(9mþ 5k �8)�2(5mþ 4k � 6)g
þ (mþ k � 2)g2
2

(mþ 1)(4� 8g
þ g2
2)(2� g
)
;

ð36Þ

in the relativistic limit. The boundary conditions are

f (1) ¼ g(1) ¼ h(1) ¼ 1: ð37Þ

These are exactly the same equations as presented in Blandford
& McKee (1976).

4. FLOW AT THE CONTACT SURFACE

The density distribution has a discontinuity at the contact
surface defined as 	 ¼ 	c and 
 ¼ 
c, where G(	c)	c ¼ 1/q and
g(
c)
c ¼ 2, while the velocity and pressure are continuous.
The fact that the velocities of the two flows at the contact sur-
face are the same indicates that the ratio of the Lorentz factors of
the two shock fronts should become

�2

�2
2

¼ B

A
¼ 2q

G(	c)

g(
c)
; ð38Þ

according to equations (19) and (31). The continuous pressure
at the contact surface requires that the pressures at both sides of
the contact surface evolve with time in the same manner. Thus,
we obtain from equations (18) and (30)

m ¼ 6� 2k

nþ 2
: ð39Þ

This indicates that k < 4þ n/2 because m > �1. In addition,
the pressure equilibrium yields a relation of constants that have
been introduced in the preceding sections as

a

bA1þn=2
¼ 4q �(q� 1)þ 2½ �G(	c) f (
c)

3mg(
c)F(	c)

;
mþ 1

	c

� �n=2

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffi

q

mþ 1

r� ��1

: ð40Þ

This relation is used to discuss the propagation of the outer
shock in the ambient medium.

A blast wave in a uniform ambient medium with power
supply was treated by Blandford & McKee (1976). They as-
sumed that the power is supplied by a stationary source located
at r ¼ 0 and varies with time as a power law, L ¼ L0t

s. If s ¼
(2n� 8)/(nþ 2), then the flow in the shocked ambient medium
evolves in exactly the same way as described in Blandford &
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McKee (1976). They also argued that the adiabatic impulsive
solution is appropriate for the flowwithm in the range ofm > 3 or
<�1. Since m > �1 in our problem, the condition m > 3 re-
stricts the value of n to be less than�2k/3 through equation (39).
Thus, the values of n ¼ 1:1 and 2.6 indicate a continuous supply
of energy.

When (n; k) ¼ (1:1; 2), equation (39) yieldsm¼ 2/(nþ 2) �
0:65 and then, from equation (14), q � 1:06. Performing numer-
ical integration of equations (25)–(27) and (34)–(36) with these
parameters, boundary conditions (eqs. [28] and [37]), and �̂ ¼ 5/3
in the shocked ejecta, we find 	c � 0:95 and ( fc; gc;Fc;Gc) �
(0:18; 0:47; 2:1; 0:98). Here the subscript ‘‘c’’ of each vari-
able indicates that the value is taken at the contact surface. Re-
sults are shown in Figure 1a. When (n; k) ¼ (2:6; 2), the same
procedure leads to m ¼ 2/(nþ 2) � 0:43, q � 1:05, 	c � 0:97,
and ( fc; gc;Fc;Gc) � (0:32; 0:70; 2:0; 0:98). Results are shown
in Figure 1b.

5. PROPAGATION OF SHOCK IN STELLAR WIND

Nakayama & Shigeyama (2005) investigated the evolution
of an ultrarelativistic shock wave in a plane-parallel atmosphere
and derived self-similar solutions. The resulting energy spectrum
of the ejected matter with an explosion energy Eex and an ejected
mass Mej for a radiative stellar envelope can be expressed as

M (>")

Mej

/ Eex

Mej

� �5:75

"�2:10; ð41Þ

whereM (>") denotes the ejected mass that has a particle energy
per nucleon greater than " ¼ mp(�e � 1). Here the proportionality
constant is not specified by Nakayama & Shigeyama (2005) be-
cause their solutions cannot trace the flow to the free expansion
phase in which the equation of state is no longer ultrarelativistic.

Using the relation dM ¼ 4�r 2�e�edr we can convert the
energy distribution given by equation (41) into the density
distribution of the ejecta as a function of �e and t :

�e ¼ a��n
e t�3 / Eex

Mej

� �5:75

Mej�
�1:10
e t�3: ð42Þ

This formula indicates a / E
5:75
ex M

�4:75
ej in equation (1), n ¼ 1:10,

andm ¼ 0:645 from equation (39). EliminatingA in equations (38)
and (40) leads to

�2 ¼
(

3m(2q)n=2

2½�(q� 1)þ 2�
	c

mþ 1

� �n=2

; 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffi

q

mþ 1

r� �
FcG

n=2
c

fcg
n=2
c

a

b

)2=(nþ2)

t�m: ð43Þ

Substituting the expression for a into equation (43) with the
exponents m and n obtained above, we then have

� / a

b

� 	1=(nþ2)

t�m=2 / E1:85
ex M�1:53

ej t�0:322: ð44Þ

We can discuss the time evolution of the Lorentz factor of a
shock in a steady stellar wind more definitely if the propor-
tionality constant in equation (41) is specified. This is the case
for Type Ic supernovae (SNe Ic) discussed by Fields et al. (2002)
and Nakamura & Shigeyama (2004). According to the results of
special relativistic hydrodynamic calculations by Nakamura &
Shigeyama (2004; see also Fields et al. 2002), the energy dis-
tribution of SN Ic ejecta is given by

M (>")

Mej

¼ C
Eex

1051 ergs

� �3:4
Mej

1 M�

� ��3:4 "

10 MeV

� ��3:6

;

ð45Þ

where C is a nondimensional constant (�2 ; 10�4) slightly
depending on stellar models. Thus, the density distribution of
the ejecta becomes

�e ¼ 2:26 ; 10�8CMej

Eex

1051 ergs

� �3:4
Mej

1 M�

� ��3:4

��2:6
e t�3:

ð46Þ

Accordingly, the constant a is expressed in terms of the pa-
rameters of the explosion as

a ¼ 2:26 ; 10�8CMej

Eex

1051 ergs

� �3:4
Mej

1 M�

� ��3:4

: ð47Þ

Fig. 1.— (a) Profiles of the pressure P (solid line), the density � (thick dashed line), and the gas Lorentz factor � (thin dashed line) in the interaction region between
freely expanding ejecta with n ¼ 1:10 and the ambient medium with a power-law distribution (�r�2). The physical variables are normalized to their values at r ¼ R1,
where subscript ‘‘1’’ refers to the value at the outer shock front. The radius at the contact surface is denoted by Rc. (b) Profiles of the same quantities as in (a), but for
freely expanding ejecta (Eex ¼ 1053 ergs and Mej ¼ 13 M�) at time t ¼ 100 s.
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On the other hand, the constant b is expressed in terms of the
mass-loss rate Ṁ and the wind velocity vwind as b ¼ Ṁ /4�vwind.
Substituting the expression for a obtained above and values
for nondimensional functions at the contact surface into equa-
tion (43), � is expressed in terms of physical quantities charac-
terizing the explosion and ambient medium as

� ¼ 6:3 ; 101
b

1010 g cm�1

� ��0:22
Eex

1053 ergs

� �0:74

;
Mej

1 M�

� ��0:52 t

1 s

� ��0:22

: ð48Þ

6. SUMMARY

We have found self-similar solutions for the collision of
spherical ejecta freely expanding at relativistic speeds with the
ambient medium when the ejecta have a density distribution in
the form of equation (1) and the ambient medium has a power-

law density distribution in terms of the distance from the ex-
plosion site with the exponent �k. Solutions can be obtained
as long as k < 4þ n/2. It is found that the rest-mass energy is
always comparable to the thermal energy in the shocked ejecta,
while the rest-mass energy becomes negligible in the shocked
ambient medium.

Profiles of the flows in the shocked regions are presented in
two cases in which the ejecta are results of a shock breakout
from a stellar surface embedded in a steady wind. The time evo-
lution of the Lorentz factor of the outer shock front is derived as
a function of physical parameters characterizing the explosion
and the environment.
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