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ABSTRACT

The central part of a dark matter halo reacts to the presence and evolution of a bar. Not only does the halo absorb
angular momentum from the disk, it can also be compressed and have its shape modified. We study these issues in a
series of cosmologically motivated, highly resolved N-body simulations of barred galaxies run under different initial
conditions. In all models we find that the inner halo’s central density increases. We model this density increase using
the standard adiabatic approximation and the modified formula by Gnedin et al., and we find that halo mass profiles
are better reproduced by the latter. In models with a strong bar, the dark matter in the central region forms a barlike
structure (‘‘dark matter bar’’), which rotates together with the normal bar formed by the stellar component (‘‘stellar
bar’’). The minor-to-major axial ratio of a halo bar changes with radius with a typical value 0.7 in the central disk
region. Dark matter bar amplitude is mostly a function of the stellar bar strength. For models in which the bar am-
plitude increases or stays roughly constant with time, initially large (40�–60�) misalignment between the halo and
disk bars quickly decreases with time as the bar grows. The halo bar is nearly aligned with the stellar bar (�10� lag for
the halo) after �2 Gyr. The torque, which the halo bar exerts on the stellar bar, can serve as a mechanism to regulate
the angular momentum transfer from the disk to the halo.

Subject headinggs: galaxies: evolution — galaxies: halos — galaxies: kinematics and dynamics —
methods: n-body simulations

Online material: color figures

1. INTRODUCTION

The cold dark matter scenario for galaxy formation predicts
that galaxies should be embedded within massive, extended, hot,
and cuspy dark matter halos. The halos can have as much as 20
times more mass than the disk. They extend well beyond the vis-
ible galaxy. Halos are hot because they are supported against
gravity by a large velocity dispersion. Halos are cuspy because
their central density profiles go as r�� , with � � 1:0. Unfortu-
nately, for historical reasons,1 for simplicity, and because of a
lack of computer resources, most studies of stellar bars have as-
sumed unrealistic halos, from rigid ones ( papers in the 1970s,
with few exceptions) to live but small ones ( papers in the 1980s
and 1990s). The need for a realistic halo component is being rec-
ognized, and nowadays models in which this dark component
satisfies some or all of the above requirements aremore commonly
found in the literature (Debattista & Sellwood 2000; Athanassoula
2003; Valenzuela & Klypin 2003; O’Neill & Dubinski 2003;
Holley-Bockelmann et al. 2005).

A systematic study of the structural and dynamical changes
that the dark matter (DM) component experiences in the pres-
ence and during the evolution of a bar is missing. Most studies
that address the issue have focused on the angular momentum
transfer from the bar to the halo (e.g., Weinberg 1985; Combes

et al. 1990; Little & Carlberg 1991; Hernquist &Weinberg 1992;
Athanassoula 1996; Debattista & Sellwood 2000). For example,
Weinberg (1985) and Hernquist & Weinberg (1992), using rigid
bars, found that a bar loses its angular momentum in a few rota-
tion periods because of the dynamical friction that the dark mat-
ter exerts on it. This angular momentum transfer flattens out the
initially cuspy halo density profile (see also Holley-Bockelmann
et al. 2005).

There is no doubt that the disk loses angular momentum
due to this transfer mechanism, but the amount and the rate
at which this happens is still a matter of debate. Fully self-
consistent N-body simulations with live disk and dark matter
halos (e.g., Athanassoula 1996;Debattista&Sellwood 1998, 2000;
Athanassoula &Misiriotis 2002; Valenzuela &Klypin 2003) show
that bars slow down far less than those predicted by Weinberg
(1985) andHernquist &Weinberg (1992). Debattista& Sellwood
(1998, 2000) find in their massive halo models, i.e., those for
which the contributions of the disk and the halo to the mass in the
central region are comparable, that the disk loses about 40% of
its initial angularmomentum in�10Gyr. During this time interval
the bar pattern speed, �p, decreases by a factor of 4. Valenzuela
& Klypin (2003), in simulations with much better force resolu-
tion and a more realistic cosmological halo setup, find a decrease
in �p of only a factor of 2 in �7 Gyr (see their model A2).

The response of the DM halo to the transfer of the stellar ma-
terial from the middle parts of the disk closer to the center has
recently been studied by Holley-Bockelmann et al. (2005) and

1 Awell-established galactic-scale cold dark matter cosmology did not arise
until the late-1990s.
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Sellwood (2003) in relation to the cuspy problem. Cosmology
predicts cuspy inner density profiles that appear to disagree with
those derived from rotation curves of dwarf and low surface
brightness galaxies (e.g., de Blok et al. 2003; Weldrake et al.
2003; but see also Swaters et al. 2003; Rhee et al. 2004). Holley-
Bockelmann et al. (2005) find a decrease in the halo central den-
sity, while simulations by Sellwood (2003) show the contrary.
Here we discuss halo density profiles within the context of adia-
batic approximation models (e.g., Blumenthal et al. 1986; Ryden
&Gunn 1987; Gnedin et al. 2004). Do dark matter halos respond
to the increase of stellar mass in the center by contracting? If so,
can this increase in density be modeled by the standard adiabatic
approximation? In agreement with Sellwood (2003), we show
that in our models the halo central density increases, sometimes
by as much as a factor of 3.

The influence of the bar on the morphology of a halo or a
spheroid is a point that has only been touched on briefly in the lit-
erature. Yet it is an issue that deserves a more detailed analysis. It
may be important for accurate testing of cosmological predic-
tions, which are becoming a reality (e.g., Ibata et al. 2001). For
example, in our bar models we find that the initially spherical halo
flattens to values comparable to those found in cosmological halos,
for which the minor-to-major axial ratio s is s � 0:7 (e.g., Jing &
Suto 2002). This correlation between the morphology of the stel-
lar component and that of the DM halo has also been seen in cos-
mological gasdynamic simulations of galaxies (Kazantzidis et al.
2004).

Returning to bar simulations, Combes et al. (1990) found no
significant flattening of the bulge particles (s � 1) in their exper-
iment A, for whichMb/Md ¼ 0:5, whereMb andMd are the mass
of the bulge and the disk, respectively. Debattista & Sellwood
(2000) studied the halo response to the bar by measuring the sec-
ond harmonic of the angular DM particle distribution and found
that the phase difference between the disk and the halo bar grad-
ually goes to zero. This effect was also seen in the simulations by
O’Neill & Dubinski (2003): after t � 10 Gyr the orientations of
bars (halo and disk) stay within 10� of one another. The halo bar
found by O’Neill & Dubinski (2003) was not very elongated. The
axial ratio was only 0.88. Halo bars have also seen by Holley-
Bockelmann et al. (2005; see their Fig. 2) and Athanassoula
(2005a, 2005b). Based on results of simulations with strong bars,
Athanassoula (2005a, 2005b) finds that halo bars are prolate-
like, with inner axial ratios being 0.7 or 0.8.

More recently, in order to understand the role of the halo in the
formation and evolution of the bar, Athanassoula (2002, 2003) has
carried out an orbital-resonant study of the disk and halo particles
inmodels inwhich the disk parameters are kept fixedwhile varying
the degree of the halo influence. She found significant differences
in the halo orbital properties between her halo and disk-dominated
models. The inner Lindblad resonance (ILR) is present in the halo-
dominated models, while in the disk-dominated ones it is not. In
general, she found that there is much more material between the
ILR and corotation in the former models than in the latter ones.
Because these halo-dominated models have stronger bars than
their counterparts, disk-dominated ones, this result shows the pos-
itive effect that a live halo has on the bar growth.

The paper is organized as follows: In x 2 we introduce the
models to be explored in this paper. In x 3 we present the evolu-
tion of the amplitude and pattern speed of the bar. Section 4 is de-
voted to an analysis of models of adiabatic compression, which
are used in the context of the inner disk density growth. The in-
fluence of the disk and stellar bar on the initially spherically sym-
metric halo is discussed in x 5. In particular, we show that once
formed, the halo bar tends to rapidly align with the stellar bar. A

brief discussion of the redistribution and evolution of the disk
angular momentum is given in x 6. In x 7 we discuss our results
and summarize our main conclusions.

2. MODELS AND SIMULATIONS

2.1. Initial Conditions

The initial conditions are described in Valenzuela & Klypin
(2003). Here we briefly summarize parameters of our models.
The system of a halo and a disk, with no initial bulge or a bar, is
generated using the method of Hernquist (1993). In cylindrical
coordinates the density of the stellar disk is approximated by the
following expression:

�d(R; z) ¼
Md

4�z0R2
d

e�R=Rd sech2(z=z0); ð1Þ

whereMd is the mass of the disk, Rd is the scale length, and z0 is
the scale height. The latter is assumed constant through the disk.
The radial and vertical velocity dispersion are given by

�(R) ¼ Q
3:36G�(R)

�(R)
; �2

z (R) ¼ �Gz0�(R); ð2Þ

where � is the epicyclic frequency and Q is the stability or
Toomre parameter. Our models keep Q fixed along the disk. The
azimuthal velocity and its dispersion are found using the asym-
metric drift and the epicycle approximations.
The models assume a Navarro-Frenk-White (NFW) density

profile (Navarro et al. 1997) for the halo component, which is
described by

�DM(r) ¼
�0

x(1þ x)2
; x � r=rs; ð3Þ

Mvir ¼ 4��0 r
3
s ln (1þ c)� c

1þ c

� �
; c ¼ Rvir

rs
; ð4Þ

where Mvir, Rvir, and c are the virial mass, the virial radius, and
concentration of the halo, respectively. GivenMvir, the virial ra-
dius is found once a cosmology is adopted.2 Equations (4–56)
of Binney & Tremaine (1987) and the assumption of isotropy in
the velocities allow us to determine the radial velocity disper-
sion as

�2
r;DM ¼ 1

�DM

Z 1

r

�DM

GM (r)

r2
dr; ð5Þ

where M (r) is the mass contained within radius r and G is the
gravitational constant.
The dark matter halo is truncated at the virial radius, which

for our D and Kmodels is 287 kpc, while for our Awb model it is
323 kpc (see Table 1). The disk component is realized with par-
ticles of equal mass. The halo is composed of particles of differ-
ent mass placed inside out as we go from less to more massive
particles. The smallest particles have a mass equal to those of the
disk. The multiple-mass scheme is designed to reduce the total
number of particles and thus the CPU time.
Parameters of our models are presented in Table 1. They were

chosen to cover a relatively wide range of the parameter space:

2 We adopt the flat cosmological model with a nonvanishing cosmological
constant with �0 ¼ 0:3 and h ¼ 0:7.
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there are hot and cold models, Khb versus Kcb; there is a disk-
dominated Dcs and a submaximum Dcb model. There are mod-
els with different DM halo concentrations: Dcb and Kcb. The
parameter values are similar to those used byValenzuela&Klypin
(2003), whose models were chosen to mimic the properties of
the Milky Way (Klypin et al. 2002). More specifically, models
labeled with D all have the same disk mass, total mass, and halo
concentration. The halo concentration is above the median �13
for a halo of the mass and cosmology adopted here (Bullock et al.
2001). On the other hand, models K differ from one another only
by the value of the disk stability parameter Q.

As a measure of the density of the halo in the central region,
we show in Table 1 the disk-to-DM mass ratio evaluated at the
disk exponential length Rd . The values are about 1–2. In other
words, from the beginning, the dark matter is subdominant in the
central region. This is broadly consistent with the mass modeling
of the Milky Way (Klypin et al. 2002): even for cosmologically
motivated cuspy DM halos, the density of the dark matter must
be smaller than the density of the baryons in the central region of
galaxies. This is different from what is often assumed in simu-
lations of barred galaxies. For example, in the DM-dominated
models of Athanassoula &Misiriotis (2002) the halo mass dom-
inates everywhere inside 2Rd . This is not consistent with cosmo-
logical predictions.We do allow variations of the DMmass in the
central region. For example, model Dcb has a denser halo than
models K. Models Dcb and Awb, in which initially the disk is less
dominant, develop strong bars. The last row of Table 1 classified
the models according to stellar bar strength after 5 Gyr of evo-
lution. We label them as strong bar models if they develop a bar
with an amplitude A2 larger than 0.4.

Figure 1 shows the initial circular velocities profiles Vc ¼
GM (r)/r½ �1=2 for all the components. This estimate of Vc assumes
spherical symmetry. The circular velocity estimated in the plane
of the disk using the real nonspherical distribution Vc; z¼0 �
g(r)r½ �1=2, where g(r) is the gravitational acceleration in the disk
plane, is very close (within 5%) to the circular velocity Vc at radii
larger than 1 kpc. At smaller distances it is slightly (10%–20%)
below Vc .

2.2. Numerical Simulations

The simulations were run with the adaptive refinement tree
(ART) code (Kravtsov et al. 1997). The ART code starts with a
uniform grid, which covers the whole computational box. This
grid defines the lowest (zeroth) level of resolution of the sim-

ulation. Two grids with 2563 and 1283 cells in the zeroth level
and boxes of 1.43 and 1.0 Mpc across, respectively, were used
by the simulations presented here. The models are placed at the
center of the grid and far from the periodic images. Because
the size of the models are small compared with the box sizes,
the effects of the periodical images are negligible. For exam-
ple, at a distance of 100 kpc from the center of a model, in the
1.43 Mpc box, the relative contribution of periodic images is
less that 7 ; 10�7 of the main galaxy force. Even at 250 kpc,
which is close to the virial radius for the models, the tidal force
is only 6 ; 10�5 of the force from the central image. Bar for-
mation and evolution are practically unaffected by the periodic
boundary conditions.

The ARTcode achieves high spatial resolution by refining the
base uniform grid in all high-density regions with an automated
refinement algorithm.The standard cloud-in-cell algorithm is used
to compute the density and gravitational potential on the zeroth-
level mesh with periodical boundary conditions. The code then
reaches high force resolution by refining all high-density regions
using an automated refinement algorithm. The refinements are
recursive. A refined region can also be refined. Each subsequent
refinement level has half of the previous level’s cell size. This
creates a hierarchy of refinement meshes of different resolution,
size, and geometry covering regions of interest. Because each
individual cubic cell can be refined, the shape of the refinement
mesh can be arbitrary and effectively match the geometry of the
region of interest. This algorithm is well suited for simulations of
a selected region within a large computational box, as in the sim-
ulations presented below.

The criterion for refinement is the local density of particles. If
the number density of particles in amesh cell (as estimated by the
cloud-in-cell method) exceeds the level nthresh , the cell is split
(‘‘refined’’) into eight cells of the next refinement level. The re-
finement threshold depends on the refinement level. The thresh-
old for cell refinement was low on the zeroth level: nthresh(0) ¼ 2.
Thus, every zeroth-level cell containing two or more particles
was refined. The threshold was higher on deeper levels of refine-
ment: nthresh ¼ 3 and 4 for the first level and higher levels, re-
spectively. Note that the code actually does not count the number
of particles in a cell to decide whether the cell should be split or
not. It uses the density field, which is less noisy than counting par-
ticles. It then filters the density field tomake themap of refinement
even smoother. On average, the algorithmmaintains 1–4 particles
per cell. Yet some cells have few particles in them, and some can

TABLE 1

Simulation Parameters

Parameter Awb Dcs Dcb Dhs Kcb Kwb Khb

Disk mass (1010 M�) ................................................. 4.28 5.0 5.0 5.0 5.0 5.0 5.0

Total mass (1012 M�) ................................................ 2.04 1.43 1.43 1.43 1.43 1.43 1.43

Disk exponential length Rd ( kpc) .............................. 3.50 2.57 3.86 2.57 3.86 3.86 3.86

Disk exponential height z0 ( kpc) ............................... 0.14 0.20 0.20 0.20 0.20 0.20 0.20

Toomre parameter Q .................................................. 1.6 1.3 1.3 1.8 1.2 1.5 1.8

Halo concentration C ................................................. 15 17 17 17 10 10 10

Number of disk particles (105) .................................. 2.0 2.33 2.33 4.60 2.33 2.33 2.33

Total number of particles (106) ................................. 2.7 2.5 1.9 3.80 2.3 2.7 2.3

Particle mass (105 M�).............................................. 2.14 1.07 2.14 1.07 2.14 2.14 2.14

Time step (104 yr)...................................................... 1.5 2.0 1.5 1.5 1.2 1.5 2.0

Minimum cell size ( pc)............................................. 22 48 22 22 24 22 48

Disk-to-DM mass ratio inside Rd .............................. 0.82 2.03 0.98 2.03 1.95 1.95 1.95

Strong bar after 5 Gyr (A2 > 0:4)............................. yes yes yes no no no no
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even be empty. Those cells are not used for estimates of the
gravitational acceleration acting on particles. For each particle the
code checks whether all 56 cells surrounding the cell hosting
the particle are on the same level of refinement. If they are not,
then the code assigns the particle to a lower resolution and checks
again for the refinement level of all its neighbors. In two of our
models (Dcs and Khb) we limited the resolution to not more than
seven levels of refinement.

The resolution changes from place to place, and it also changes
with time. During the initial stage of evolution—the formation of
the bar—the density in the central part increases substantially.
For example, in model Kcb the density at 250 pc increases by a
factor of 10 by the end of the evolution. The code reacts to this
density increase by changing the number of high-resolution cells.
The lion’s share of this increase happens during the first 0.5 Gyr
when the system develops very strong nonaxisymmetric fluctua-
tions. For example, in the case of model Kcb the density at the
central 250 pc increases 6 times during the first t ¼ 0:5 Gyr. It
will take another 5 Gyr to double it. The code increases the num-
ber of high-resolution 24 pc cells 14 times during the first 0.5 Gyr
of evolution. The number of cells then changes only by 30%
during the remaining 5 Gyr. The increase on lower 48 pc level of

resolution is even smaller: the number of cells increased only by
20% during the whole evolution. Note that this implies that the
size of the high-resolution region changes only by 6%. In other
words, the increase of the resolution with time is very mild, and
most of it happens before the bar forms and settles.
The spatial resolution varies with the distance. Typically in the

models the central roughly elliptical region with large axis 1.5 kpc
(4 kpc) is resolved with 20–25 pc cells (40–50 pc). The whole
disk (up to radius of about 15 kpc) is resolved with 80–100 pc
cells. The force resolution in our simulations is 2 times larger than
a cell size. Inside one resolution element (roughly a sphere of two
cell radii) the code has, on average, 64 particles. This large num-
ber of particles implies that the code does not produce too high
a resolution for the number of particles present in our models.
The effect of close encounters is actually even smaller than what
it seems from naive counting particles. The natural scale of the
close encounters is Chandrasekhar’s minimum impact param-
eter bmin ¼ Gm/V 2, which is the distance for 90� deflection (here
m is the particle mass and V is the relative velocity). One does not
want to get close to it, but it still gives a scale for the small-
distance scattering. In the central 1 kpc region of our models the
rms velocity of particles is about 200 km s�1. With the mass of

Fig. 1.—Initial circular velocities profiles for modelsDcs andKcb (top) andDcb and Awb (bottom). Total, stellar, and halo components are denoted by solid, dotted, and
dashed lines, respectively. In the disk-dominated models (top) the system evolves secularly, producing a weak bar at later stages, while in the halo-dominated models
(bottom) a strong bar is present after 5 Gyr of evolution. [See the electronic edition of the Journal for a color version of this figure.]
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a particle of 2 ; 105 M�, we get bmin ¼ 2 ; 10�2 pc. This is
2000 times smaller than our resolution of 50 pc. And this still
overestimates the effect because we have many particles inside
the resolution element. At larger distance, say 5 kpc, the rms ve-
locity in the disk is smaller. Again, taking a typical rms veloc-
ity from our models, we get bmin ¼ 0:1 pc. With the cell size of
88 pc (resolution 160 pc) we are still 2000 times away from bmin.
To summarize, the effects of close collisions are definitely small
in our models.

During the integration, spatial refinement is accompanied by
temporal refinement. Namely, particles moving on each level of
refinement are advanced using the leap-frog scheme. When a par-
ticlemoves to another level, its velocity is reinterpolated. The time
step decreases by a factor of 2 with each refinement level. This
variable time stepping is very important for the accuracy of the
results. As the force resolution increases, more steps are needed
to integrate the trajectories accurately.

2.3. Code Tests

ART code has been extensively tested during the last �10
years. A list of tests and details are presented in Valenzuela &
Klypin (2003). Here we give a brief summary of those that are

important for our problems. Among other tests, Kravtsov et al.
(1997) tested the code using the spherical accretion model. A
small initial seed is placed in a homogeneous expanding back-
ground. Shells surrounding the seed start to accrete on the seed,
which results in the buildup of a very centrally concentrated ob-
ject. An analytical solution for this complicated process is known
(the Bertschinger solution). In the test, the density increases by
almost 5 orders of magnitude. At the end, no detectable devia-
tions of the numerical solution provided by ART and the ana-
lytical solution were found. This is an important test because it
shows that the code accurately treats collapsing systems. In the
simulations of barred galaxies, this collapse happens during the
initial stage of formation of bars (first�1Gyr of evolution), when
the density in the central region increases few times. Asymmet-
ric collapsewas tested (Kravtsov et al. 1997) using the Zel’dovich
approximation ( plane wave collapse).

Valenzuela & Klypin (2003) present additional tests, which
focus on a long-term stability of equilibrium systems. These tests
are relevant for later stages of evolution of barred models, when
the system changes its structure very gradually. Valenzuela &
Klypin (2003) used 200,000 particles to set equilibrium for a
high-concentration NFW halo. The test is actually very difficult

Fig. 2.—Evolution of the bar pattern speed ( first and third rows) and the bar amplitude (second and fourth rows) for six of our sevenmodels. ModelsDcs,Kwb, andKhb

evolve very slowly after the bar formation. InmodelsDhs andKcb (not shown in the plot), the bar amplitude, after reaching a peak, decreases as a function of time. Inmodels
Awb andDcb, at late stages of the evolution, the bar develops a second growth period. The dashed curves in the Khb model show results obtained with the GADGETcode.
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for the code. Orbits of particles in the NFW halo are very elon-
gated. Thus, particles move again and again from high-density
regions with high force resolution to outer regions with low reso-
lution and back. Any numerical defects at boundaries of regions
of different resolution would result in evolution of the system
or in excessive scattering of trajectories. No defects were de-
tected for gigayears of evolution. Using trajectories of individ-
ual particles, Valenzuela & Klypin (2003) estimated effects of
the two-body scattering in the simulations. The two-body scat-
tering is clearly present. It is consistent with predictions of the
Chandrasekhar approximation (after some scaling due to inhomo-
geneous distribution of density). Yet the time for the two-body
scattering is very long: for a typical run with 3 ; 106 particles
the two-body relaxation time is �4 ; 104 Gyr. So it is practi-
cally negligible.

Numerical two-body scattering is often discussed in conjunc-
tion with effects of resonances in barred galaxies (e.g., Weinberg
& Katz 2005). Excessive scattering may prevent accurate treat-
ment of resonances, which are important factors in disk galaxies.
Formation of bars in dark matter, discussed below, is an example
of resonant interaction between stellar bars and the dark matter.
D. Ceverino&A.Klypin (2006, in preparation) studied resonances
in some of our models. A large number of strong resonances were
detected, including the familiar corotation and the inner and outer
Lindblad resonances. Thus, the two-body scattering in our simula-
tions is small enough for the resonance to be present and to be a
very important factor in the evolution of the systems.

After reaching a peak in their amplitude, bars in our models
can grow, gradually decline, or remain in a steady state with little
change in the amplitude. For models with relatively low central
densities (e.g., Awb and Khb) the evolution with time is robust
against changes of the numerical parameters: the time step, the
number of the particles, and the force resolution. We rerun some
of ourmodels, doubling the number of particles while keeping the
same small time step, and the results do not change significantly.
We also run the Khb model with the GADGET code (Springel
et al. 2001). In this case we used only 105 particles in the disk and
106 total. The force resolution was limited to 100 pc (Plummer
softening). At the beginning of the simulation the time step was
�1:5 ; 105 yr, while by the end of the evolution it had reduced to
�4:4 ; 104 yr. Figure 2 shows the evolution of the pattern speed
�p and the bar amplitudeA2 for modelKhb runwith theGADGET
and the ART codes. Overall, the agreement with the ART code
is reasonably good. After 5 Gyr of evolution the bar amplitudes
and the bar lengths are within 10%. The pattern speeds deviate
not more than 20%. Note that both simulations of the Khb model
show the same qualitative behavior: the pattern speed is barely
changing over 5 Gyr of evolution, and the amplitude of the bar
is gradually decreasing with time.

3. THE BAR PATTERN SPEED

Figure 2 shows the evolution of the bar pattern speed �p and
the amplitude of the bar A2 for six models. To estimate �p we
first determine the orientation of the bar computed applying it-
eratively the method of the tensor of inertia in the plane of the
disk (see x 5 below). Parameter �p is obtained subsequently by
numerical differentiation: �p ¼ d�/dt, where � is the position
angle of the bar. In practice, we use about 10 consecutive snap-
shots for which the increasing function � is available and make a
least-squares fit. Then �p is given by the slope of the straight
line. The bar amplitudeA2 is computed as inValenzuela &Klypin
(2003). The curves are smoothed out in time by using a top-hat
kernel. Models show what seems to be a generic feature of bar

simulations: an increase in A2 is accompanied with a decline in
�p and vice versa. A steady amplitude, on the other hand, pro-
duces a roughly constant �p.

4. ADIABATIC CONTRACTION

The structure and the dynamics of the halo is altered by the
presence and evolution of the disk and vice versa. For example,
the halo’s inner shape changes from the assumed initial spherical
configuration to a triaxial one. We see that in models in which a
strong bar develops, the halo becomes prolate. The m ¼ 2 struc-
ture of the halo, the DM bar, which arises because of the bar in-
stability of the disk, couples with the stellar bar. It is an important
contributor to the stellar bar braking (see x 6 below). In this sec-
tion, we study the changes in its mass structure.
It is known (e.g., Athanassoula &Misiriotis 2002; Valenzuela

& Klypin 2003; Avila-Reese et al. 2005) that as the stellar bar
grows, the inner disk density increases. Is this density growth ac-
companied with a corresponding central halo mass increase? If
so, can it bemodeled by the standard adiabatic contraction approx-
imation? This latter model assumes spherical symmetry, homol-
ogous contraction, particles in circular orbits, and conservation

Fig. 3.—Cumulative halomass profiles for modelsDcs andDcb. Initial profiles
are shown by dotted curves. The profile at the last simulated epoch t � 6 Gyr is
presented using full curves. Results of the standard and the modified adiabatic
approximations are presented with short-dashed and long-dashed curves. In the
small panels we also show the relative mass differences between the adiabatic ap-
proximations and the mass profiles as measured in simulations. [See the elec-
tronic edition of the Journal for a color version of this figure.]
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of the angular momentum (Blumenthal et al. 1986; Ryden &
Gunn 1987; Gnedin et al. 2004). Under these assumptions, the
final halo cumulative mass profile can be computed given the ini-
tial DM and barionic mass profiles,MDM(r),Mb(r), and the final
barionic profile, Mb(rf ):

MDM(r)þMb(r)½ �r ¼ MDM(r)þMb(rf )
� �

rf : ð6Þ

Given rf and thus Mb(rf ), we solve the above equation for
r iteratively. The initial mass profiles as well as the final baryonic
profiles are taken from simulations. To reduce noise, both final
and initial profiles are smoothed out over a few close time steps.
Gnedin et al. (2004) recently tested the model in cosmological
simulations and found that it systematically overestimates the
central density. Note that since the orbits of DM particles are on
average eccentric, the assumption of circular orbits of the stan-
dard formalism breaks. Gnedin et al. (2004) show that the model
can be improved if the adiabatic invariant is changed fromM (r)r
to M ( r̄ )r, where r and r̄ are the current and orbit-averaged par-
ticle positions, respectively. This modification approximately ac-

counts for the eccentricity of particle orbits. It was found that r̄
can be described by a power law:

x̄ ¼ Axw; x � r=rvir; ð7Þ

with small variations in the A and w parameters. We test the new
model, adopting mean values given by Gnedin et al. (2004): A ¼
0:85 and w ¼ 0:8.

Figure 3 shows the initial and the final halo mass profiles
for models Dcs (top panel ) and Dcb (bottom panel ). The mass
profile in modelDcb barely changes, while in modelDcs the mass
at 0.5 kpc, for example, has increased substantially—by a factor
of 2.5. Overall, the central mass increase seem to be better re-
produced by themodification introduced byGnedin et al. (2004).
The standard formula overestimates the central density, which
agrees with the results of Gnedin et al. for cosmological halos.

Figure 4 shows the dark matter density profiles of models
Dcs and Kcb (cold and disk-dominated models) and models Khb

andDcb (hot and dark-dominated models). The adiabatic density
profiles are computed by differentiating the corresponding mass

Fig. 4.—Spherically averaged DMdensity profiles for modelsDcb,Khb,Dcs, andKcb. Curves are coded as in Fig. 3: initial profile (dotted curve), the profile at the end of
the evolution, t � 6 Gyr, (solid curve), and the adiabatic approximation of Gnedin et al. ( long-dashed curve). Noise in initial and final density profiles was reduced by
averaging five consecutive time steps. For comparison, in the top right panel we show power laws with the slope�1 and�2. [See the electronic edition of the Journal for a
color version of this figure.]
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profiles. We decided to show only the predictions by the adia-
batic contraction formalism developed by Gnedin et al. (2004)
because the standard adiabatic contraction formula does not pro-
duce better results. In order to reduce the shot noise, we average
five consecutive snapshots in both final and initial profiles. As
was already noted in the cumulative mass profiles (Fig. 3), the
increase in the inner halo density is higher in disk-dominated
and cold models (Dcs vs. Dcb or Kcb vs. Khb). The inner slope is
steeper than � ¼ �1 in all models except inmodelDcb. The rather
flat inner density slope of model Dcb (see bottom left panel ) is
related to the fact that the inner density profile of the stellar disk
is also flat in this model.

To summarize, we find that the increase in the halo central
density is compatible with the adiabatic compression. In partic-
ular, we find that the inner halo density increase is better re-
produced by the formalism developed by Gnedin et al. (2004).
In models in which this density increase is smaller (e.g., model
Dcb), the adiabatic compression tends to overestimate the DM
density in the central region.

Figure 5 gives additional information on the changes in the
dark matter. It shows the ratio of the disk to the halo densities as
a function of radius. At the end of the evolution in all models

the stellar component strongly dominates the central �1 kpc
region.

5. SHAPE OF THE DARK MATTER HALO

The ellipticity of different components (DM or stellar) as well
as the directions of the principal axes are determined by itera-
tively diagonalizing the inertia tensor. We start by finding the
tensor of inertia for all particles inside a spherical shell of given
radius R. We can take either stellar or DM particles depending
on what component we study. We then find principal semiaxes
a > b > c and angles of the tensor. In the next iteration, we find
themodified inertia tensor Iij for particles inside an elliptical shell
with the orientation given by the inertia tensor on the previous
iteration and with the semiaxes R, (b/a)R, and (c/a)R:

Iij ¼
X
k

xi;k xj;k

d 2
k

; ð8Þ

d 2
k � x21;k þ

x22;k

q2
þ

x23;k

s2
; ð9Þ

q � b=a; s � c=a: ð10Þ

Fig. 5.—Disk-to-DM ratio for modelsDcb,Khb,Dcs, andKcb. The dotted curves represent the initial models. The final models are shownwith solid curves. The increase
in the disk central density is produced at the expense of the density inmiddle region. This effect is slightlymore pronounced in the cold- and disk-dominatedmodelsDcs and
Kcb. [See the electronic edition of the Journal for a color version of this figure.]
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Here the sum is taken over all particles inside the elliptical shell.
In equations (8)–(10) xi;k (i ¼ 1; 2, and 3) are the coordinates
of the particle k with respect to the center of the disk-halo sys-
tem and dk is the elliptical distance; s is the short-to-long axis
ratio, and q is the intermediate-to-long axis ratio. The center of
the system is found iteratively as the center of mass of a sphere
containing maximum mass. The radius of the sphere is equal to
the disk scale length Rd . The elliptical bins are chosen so that they
have roughly the same number of particles and are less than 1 kpc

in width. As expected, the minor axis lies almost perpendicular
to the plane of the disk.

Figure 6 highlights the presence of the stellar and the DM bars
in modelDcb, which has a strong bar. The stellar bar shown in the
top panel has a rectangular-like shape, while the halo bar shown
in bottom panel is more round. Note that both bars have their
major axes pointing to approximately the same direction.

Figure 7 shows the flattening, f � 1� s ¼ 1� c /a, and the
ellipticity of the dark matter in the plane defined by major and
intermediate axes, �D � 1� q ¼ 1� b /a, as a function of dis-
tance R to the center for models Dcs and Dcb at the last simulated
epoch �6 Gyr (hereafter f and �D are referred to as ellipticities).
The plot shows that DM bars are typically triaxial. In models
with a strong stellar bar, as in modelDcb, the DMbar can bemore
prolate than oblate. As shown in Figure 7, axial ratios increase
with increasing radius (thus, the system is getting more round).
For example, at 15 kpc models Dcs and Dcb show comparable

Fig. 6.—Distribution of disk (top) and dark matter particles (bottom) inside a
box of 10 kpc across for model Dcb at t � 6 Gyr. The figure shows the face-on
projection of the particles. The halo bar is clearly seen in the bottom panel. To
improve the contrast, we have color-coded particles on a gray scale according
to their local three-dimensional density (a pgplot code kindly provided by
A. Kravtsov) and plotted only DM particles with the z-component of velocity
jvzj < 100 km s�1.

Fig. 7.—Flattening f � 1� c /a (solid curve) and ellipticity in the plane of the
disk �D � 1� b /a (dashed curve) of the DM distribution, where a, b, and c are
the major, intermediate, and the minor axes. We show models Dcs ( left ) and Dcb

(right ) at the last measured epoch t � 6 Gyr. The differences between the weak
bar model Dcs and the strong bar model Dcb are clearly seen. [See the electronic
edition of the Journal for a color version of this figure.]

Fig. 8.—Evolution of the DM ellipticities f (top) and �D (bottom) for four of
our seven models. Ellipticities are evaluated at r ¼ Rd , where Rd is the scale
length of the correspondingmodel. [See the electronic edition of the Journal for a
color version of this figure.]
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small ellipticities, while in the central regions the models have
very different flattening.

Evolution of the DM ellipticities with time is shown in Fig-
ure 8. By comparing Figure 2 with Figure 8 we find similar-
ities of behavior of the stellar bar amplitude with the evolution of
DM bar ellipticity. Indeed, in models Dhs and Khb the maximum
in the stellar bar amplitude A2 and the maximum of ellipticity �D
are reached at approximately the same time. Moreover, in model
Dcb the second period of the stellar bar growth is mirrored by an
increase in the ellipticity of the DM bar. The gradual decline of
A2 in models Dhs, Kcb, and to a smaller degree in model Khb is
imitated by a decline in �D.

At the onset of the evolution, the sole presence of the disk
produces a flattening of the DM halo in the central region. The
subsequent evolution of the shape of the DMhalo depends on the
model. For example, in model Dhs the ellipticities first increase
as the stellar bar growths. Then they decline maintaining a figure
of constant triaxiality. On the other hand, in model Dcb the flat-
tening f stays approximately constant after the initial period of
stellar bar growth. This latter effect, along with the growth of el-
lipticity �D, produces in models Dcb and Awb (not shown in the
figure) a near prolate central DM halo by the end of the evolu-
tion. In summary, Figures 2, 6, and 8 show a clear indication of
the disk-halo coupling (for details see x 6).

5.1. Bar Orientation

We use the position angle (P.A.) of the stellar bar and the
orientation of the DM bar measured at r ¼ Rd to build the evo-
lution of the bars’ phase difference, ��. Figure 9 shows the
evolution of �� for four of our seven models. At Rd the bar
alignment within�10� is reached soon after the initial stellar bar

growth (the DM bar trails the stellar bar). The start of the second
period of stellar bar growth in model Dcb coincides with a small
increase in ��—the DM bar gets a larger lag. This renewed
disalignment quickly dies out, and the bars again rotate in phase.
More significantly, this second period coincides with the period
of a strong influence of the stellar bar on the halo, which is re-
flected in the more extended bar alignment (see Fig. 9, top left
panel, dot-dashed curve). These two periods of stellar bar growth
and bar alignment also coincide with the two periods in which
a higher angular momentum loss rate is observed (see Figs. 11
and 12).
The phase difference �� of the bars is related to the torque

experienced by the stellar bar: the torque slows down the bar pat-
tern speed. In model Awb (see Fig. 2) the oscillations seen in �p,
and to some degree also in A2 , are very likely coming from the
strong oscillations seen in�� in this model. The onset of the late
period of bar growth coincides with a decline of about 40

�
in��:

Fig. 9.—Evolution of the phase difference between the stellar and theDMbars
for four models at radius Rd (solid curves). For the strong bar model Dcb we also
show the evolution of�� at other radii:R ¼ 0:5Rd (dashed curve), 1:5Rd (dotted
line), and 2:0Rd (dot-dashed curve). The curves show that the phase difference is
an increasing function of radius. Interestingly, the two periods in which�� drops
(solid and dot-dashed curves) seem to coincide with the two periods in which a
higher angular momentum loss rate is observed. At R ¼ Rd an alignment within
10

�
is observed in models that end upwith strong andmoderate stellar bars by the

end of evolution. [See the electronic edition of the Journal for a color version of
this figure.]

Fig. 10.—Distribution of the z-component of the angular momentum of
the stellar particles for models Kcb (top) and Dcb (bottom), shown at different
epochs: initial ( long-dashed curve), at t � 1:6 Gyr (dotted curve), and at t �
5 Gyr (solid curve). Particles with low (high) angular momentum are prefer-
entially at small ( large) radii. The distributions are qualitatively similar to those
shown by Valenzuela & Klypin (2003; see their Fig. 12): a peak at low Lz, which
corresponds to the bar, a valley at intermediate values of Lz, and an excess of
particles with very large angular momentum. Note that in the weak bar modelKcb

the distribution barely changes for the period 1.6–5.0 Gyr, while the redistribu-
tion of angular momentum continues in the strong bar model Dcb. [See the elec-
tronic edition of the Journal for a color version of this figure.]
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the m ¼ 2 halo structure is quickly reoriented toward the direc-
tion of the stellar bar. Moreover, the rapid growth of the stellar
bar in model Dcs (see Fig. 2) produces a DM bar that very soon
aligns with the stellar bar.

6. ANGULAR MOMENTUM

The bar growth is intimately related to its slowing down. The
rate of change of �p correlates with the initial conditions. For
example, the A2 maximum is reached earlier in disk-dominated
models (cf. Dcs with Dcb), or in cold disk models (Kcb vs. Khb).
During the bar braking, the angular momentum is transferred
from the disk to the halo.

Figure 10 shows the distribution of the disk Lz component
of the angular momentum for two models, the strong bar model
Dcb and the cold model Kcb, one of the models with a strong de-
cline in bar amplitude. We show the distribution of Lz at three
moments of time: initial, at �1.6 Gyr, and at �5 Gyr. Disk par-
ticles in the intermediate-Lz zone lose angular momentum and
move to the low-Lz region close to the center. At the same time, the
number of particles with very high-Lz, which are preferentially at
larger radii, increases. Note that the number of intermediate-Lz

particles in model Kcb barely changes from t � 1:6 to �5 Gyr,
while this is not the case for model Dcb. This behavior is com-
patible with the much higher angular momentum loss by model
Dcb during this period of time shown in Figure 11.

The evolution of the relative change in Lz is plotted in Fig-
ure 11, where we show four models: three cold models Dcs, Kcb,
and Dcb and one hot and disk-dominated model Khb. In the Kcb

model, the amount of angular momentum lost by the disk is very
small during the declining phase of the bar amplitude. Moreover,
the disk in models Dcs and Dcb has lost, by the end of the evo-
lution, about 10% of its angular momentum.

It is interesting to estimate what fraction of the torque expe-
rienced by the stellar disk is coming from the interaction between
the dark matter bar and the stellar bar. Unfortunately, the torque
is difficult to estimate accurately because of the complex struc-
ture of the bars: the bars change shape, mass, and length as the
evolution proceeds. Still, we can start with simple scaling rela-
tions. The torque should be proportional to the masses and radii
of the bars. It is also proportional to the strength of the bars, which
can be measured by ellipticities q ¼ 1� b/a, where a and b are
the major and minor semiaxes in the plane of the disk. The angle

Fig. 11.—Evolution of the disk angular momentum for four models. We show two models,Dcb andDcs, that end up with strong bars at the end of the simulated period
and two other models,Kcb andKhb. ModelDcb presents an inflection point or zone, in which the rate of angular loss changes its decreasing trend to an increasing one. This
time coincides with the second period of bar growth.
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�� between the bars also affects the torque. From the geometry
of the problem, we expect that the torque is zero, when the angle
is either zero or 90�.

In order to test the scaling relations, we estimate the torque
between two elliptical-shaped objects that roughly mimic our
bars. The boundary of each object is assumed to be a triaxial
ellipsoid with semiaxes a > b > c: (x /a)2þ ( y /b)2 þ (z /c)2 ¼ 1.
For the ellipsoid representing the stellar bar we use c /a ¼ 0:1.
For the dark matter bar c /a ¼ 0:5. The other axial ratio b /a was
varied for both ellipsoids to test its effect on the torque. We also
varied the angle between the bars. The density was chosen to
fall exponentially with the distance mimicking the decline of
the density in bars measured in ourN-bodymodels. The ellipsoid
representing the dark matter bar was 2 times shorter than the stel-
lar bar. We use the Monte Carlo method to estimate the torque
between the ellipsoids. We find that the torque 	 between the
ellipsoids scales as 	 / �DM�stellar sin (2��), which is what one
naively expects. Once the parameters of the ellipsoids are fixed,
the model also provides absolute value of the torque. We used
parameters of bars in model Dcb at 3 Gyr to roughly estimate the
torque. Indeed, we find that the expected torque between the bars

and the measured torque in model Dcb are quite close (within
30%). This is reassuring, but unfortunately, it is difficult to press
this issue because matching the masses and the density distri-
butions with bars in real simulations is difficult. Instead, we de-
cided to use only the scaling relation for the torque. In this case
we use the amplitude of the stellar bar A2 as a measure of the bar
strength. The amplitude of the expected torque is fixed to have
the observed value at one moment in our models: at 3 Gyr.
We tested three of our models. In Figure 12 we show the rate

of angular momentum loss of the disk as a function of time (top
panels) for models Dcb and Khb. In the bottom panels we show
the evolution of the quantity 	 ¼ A2�D sin (2��) measured at
r ¼ Rd and normalized at 3 Gyr. Parameters A2 , �D , and�� are
the amplitude of the disk bar, the ellipticity of the DM bar, and
the phase between the bars, respectively, introduced in previ-
ous sections. With the exception of the first�1 Gyr (modelDcb),
the observed torque dLz /dt and the estimated torque between
the bars are remarkably similar. After the initial stage, at t �
1 2:5 Gyr the torque declines. The second growth of the stellar
bar at about 4 Gyr in model Dcb produces an increase in dLz /dt
at later epochs.

Fig. 12.—Top panels show the specific torque dLz /dt experienced by the stellar component in modelsDcb andKhb with a strong and a moderate stellar bar, respectively.
The bottom panels show the evolution of an estimate of the torque due only to interaction between the stellar and the dark matter bars: 	 ¼ �DA2 sin (2��), where �D, A2,
and�� are the ellipticity of the halo bar, the amplitude of the stellar bar, and the lag angle, respectively. Torque dLz /dt is reasonablywell reproduced by interaction between
the bars during most of evolution.
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We also find an agreement between the measured and esti-
mated torques for other models. We note that none of the quan-
tities in the estimate of 	 can separately explain even qualitatively
the time behavior of dLz /dt. Indeed, the decline in the torque from
1.5 to 3 Gyr is mostly due to a decrease of the angle between the
bars. Yet the steep increase in dLz /dt at 4 Gyr in modelDcb is not
related with the angle: the angle keeps decreasing. The increase is
mostly due to the growth of the amplitude of the stellar bar, which
is accompanied by an increase in the ellipticity of the dark mat-
ter bar (see Fig. 8). In spite of general agreement of the torques,
there are some deviations. At early stages (t < 1 Gyr) the scaled
value of 	 is too small compared with the measured torque in the
cold modelDcb. This is hardly surprising because the disk in this
model develops instabilities very quickly. In addition, it was dif-
ficult to set the very central �200 pc of the disk initially in equi-
librium. Thus, irregular nonaxisymmetric waves are present
almost from the very beginning. These waves result in�1%–2%
loss of the disk angular momentum. At around 0.1 Gyr the disk
develops strong spiral arms, which likely account for a large frac-
tion of the torque at that time. As the spiral arms die and the bar
grows, the torque starts to be dominated by the interaction be-
tween the dark matter and the stellar bars, and the 	 approxima-
tion works better.

Judging by the similarities between dLz /dt(t) and 	(t), we find
it plausible that the torque between the stellar and the DM bars
is responsible for a large fraction of angular momentum transfer
between the disk and the dark matter.

7. DISCUSSION AND CONCLUSIONS

Like many other groups in the field (e.g., Athanassoula 2005a,
2005b; Shen& Sellwood 2004; Debattista & Sellwood 1998) we
find that our disk models develop strong, moderate, and weak
bars. They show what seems to be a generic feature of bar sim-
ulations: the growth in their amplitude is accompanied with a
decrease in their pattern speed. The role that the halo plays in this
phenomenon appears to be crucial. The dark matter ellipsoidal
figure, the halo bar, that arises due to the presence of the disk and
stellar bar exerts a torque on the stellar bar that slows it down. It
is thus not surprising to find that the first period of bar growth
(the only one in some models) coincides with a decline in the
phase difference between the disk and the halo bar. Interestingly,
an opposite trend seems to exist as well: bars rotate faster as they
weaken. This is clearly seen in models Kcb and Dhs.

Disk particles located in the middle 2–8 kpc region transfer
angular momentum to the halo and to the outer disk region. In
particular, this effect would explain the increase of the central
stellar density seen, for example, in Figures 8–9 of Valenzuela
& Klypin (2003; see also Avila-Reese et al. 2005). We have seen
in x 4 that this disk density increase is accompanied by a cor-
responding central halo density increase. We apply the adiabatic
contraction formalism to study whether the compression of the
halo could be modeled by it.We find that the modified formalism
by Gnedin et al. (2004) reproduces relatively well the inner

density growth, whereas the standard formula typically overes-
timates the density increase.

We compute the ellipticities of the halo bar in a plane parallel,
�D, and perpendicular, f, to the disk plane. The ellipticities de-
crease and the halo bar becomes more spherical as the radius in-
creases. In somemodels, after an initial increase, the flatness stays
roughly constant or decreases during the disk evolution. On the
other hand, in models with strong bars like model Dcb, the ellip-
ticity �D has a second period of increase, which agrees with the
second growth period of the stellar bar. As a result, at the end
of the evolution the inner dark matter halo ends up with a near
prolate-like shape.Our results roughly agreewith thosementioned
in Athanassoula (2005a, 2005b).

In all models, the inner halo (r P5 kpc) is flattened, with the
minor axis pointing perpendicular to the disk plane. The align-
ment of the minor axis with the disk axis is compatible with the
results of Bailin et al. (2005). In cosmological simulations of
disk galaxy formation Bailin et al. (2005) find that the inner halo
(r P 0:1Rvir) orients its minor axis parallel to the disk axis, re-
gardless of the orientation of the outer halo. As they explain,
the misalignment between the two halo regions should be taken
into account when modeling tidal streams in the halos of disk
galaxies.

Long et al. (1992) found that the presence of a stellar bar in the
center of our Galaxy does not strongly affect the destruction rates
of globular clusters. The results of Long et al. (1992) or of similar
studies (e.g., Pichardo et al. 2004) might change in light of our
findings: halo bars could enhance the dynamical effect of bars on
globular clusters distribution.

We use the same method of the tensor of inertia to study the
evolution with time of the orientation of the halo bar relative to
the disk bar. In all models, an alignment within�10

�
is obtained

after the initial bar growth. In some models, for example, model
Khb , the bars stay aligned during the whole evolution. It is inter-
esting to see that in model Dcb the periods of alignment roughly
agree with the two periods of stellar bar growth. In turn, the pe-
riods of bar growth are also the periods of higher angular mo-
mentum loss rate.

As in Valenzuela & Klypin (2003), we also find that the an-
gular momentum transfer from the disk to the halo is rather mod-
est: it is less than 10%. As it was shown by Valenzuela &Klypin,
this is partly due to the fact that a significant fraction of the disk
angular momentum is not lost but redistributed: outer regions
absorb part of the angular momentum of intermediate regions.
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