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ABSTRACT

We investigate the connection between collisionless equilibria and the phase-space relation between density � and
velocity dispersion � found in simulations of dark matter halo formation, F ¼ �/�3 / r�� . Understanding this
relation will shed light on the physics relevant to collisionless collapse and on the subsequent structures formed.We
show that empirical density profiles that provide good fits to N-body halos also happen to have nearly scale-free �/�3

distributions when in equilibrium. We have also done a preliminary investigation of variables other than r that may
match or supersede the correlation with F. In the same vein, we show that �/�m, wherem ¼ 3, is the most appropriate
combination to use in discussions of the power-law relationship. Since the mechanical equilibrium condition that
characterizes the final systems does not by itself lead to power-law F distributions, our findings prompt us to posit that
dynamical collapse processes (such as violent relaxation) are responsible for the radial power-law nature of the �/�3

distributions of virialized systems.

Subject headinggs: dark matter — galaxies: kinematics and dynamics — galaxies: structure

1. INTRODUCTION

The ‘‘poor man’s’’ phase-space density proxy F ¼ �/�3,
where � is density and � is total velocity dispersion, is a power law
in radius (F / r�� ) for a surprising variety of self-gravitating,
collisionless equilibria. Isothermal systems have � / r�2 and
constant �, giving� ¼ 2. A broader class of systems with power-
law behavior in both � and � also naturally produce power-law
behavior for F. For example, the self-similar collisionless infall
models in Bertschinger (1985, x 4) have � / r�9/4 and � / r�1/8,
leading to � ¼ 1:875. More surprising is that systems in which
neither � nor � are power laws can still possess F distributions
that are. For example, there is a growing body of evidence, sup-
ported by results from simulations of increasingly higher res-
olution and detail, that seems to suggest that collisionless halos
formed in cosmological simulations are characterized by nearly
scale-free F distributions, although they have decidedly non–
power-law density profiles. This was first noted by Taylor &
Navarro (2001), who at the time determined that � ¼ 1:875
over 3 orders of magnitude in radius. This value of �, coinci-
dently, is the same as that derived by Bertschinger (1985). More
recent N-body simulations have produced �-values of 1.95
(Raisa et al. 2004), 1.90 (Ascasibar et al. 2004), and 1.84
(Dehnen & McLaughlin [2005], based on the simulations in
Diemand et al. [2004a, 2004b]). Austin et al. (2005) report that
a very different, semianalytical halo formation method results in
power-law F distributions over similar radial ranges. However,
these authors find a range of �-values (including 1.875) that
depend on initial conditions. As this formation method is much
simpler than an N-body evolution but still reproduces scale-free
F, the physics responsible for the distribution must be common

to both techniques. One such process is violent relaxation. In
this work, we use ‘‘violent relaxation’’ as shorthand for the
incomplete relaxation process that is due to the varying of po-
tential during collapse rather than the strict, complete relaxation
discussed in Lynden-Bell (1967). Also, in the Austin et al.
(2005) work, it is shown that in a totally isotropic system the
Jeans equation can be solved analytically and that there is a
‘‘special’’ � ¼ 35/18 ¼ 1:944̄:

It appears that power-law distributions of F are robust fea-
tures of collisionless equilibria. The exponents of the power laws
vary, but cluster near valuesP2. This paper is part of a continuing
series of investigations aimed at understanding the ubiquity and
the origin of the phenomenon. We specifically want to exploit
its occurrence to gain insights into the processes governing the
virialization of collisionless halos.

In this paper we review the conditions for hydrostatic equi-
librium, the Jeans equation. By examining density profiles mo-
tivated by N-body simulations and analyzing the associated F
distributions, in x 3 we demonstrate that the Jeans equation by
itself is not sufficient to force a power law for �/�3. At present,
we restrict ourselves to spherical equilibria with isotropic ve-
locity distributions. Interestingly, typical density profiles that are
used to characterize data from cosmological N-body simulations
all seem to have nearly scale-free F distributions, as do halos that
are formed semianalytically (Austin et al. 2005). This aspect of
N-body and semianalytically generated halos is certainly un-
expected, and consequently, in x 4 we investigate the implica-
tions of explicitly imposing the requirement of scale-free �/�3

on the density profiles of equilibrium structures. We summarize
our findings in the final section.

2. EMPIRICAL DENSITY PROFILES

In this work we focus on several specific density profiles,
shown in Figures 1 and 2. The standard Navarro-Frenk-White
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(Navarro et al. 1996, 1997, hereafter NFW),Moore et al. (1998,
hereafter M98), and Hernquist (1990) (solid, dotted, and dashed
lines, respectively) profiles are examples of dual–power-law dis-
tributions with differing asymptotic behaviors that have been used
to fit density profiles of cosmological N-body halos. The gen-
eralized dual–power-law profile has the form

�

�s
¼ r

rs

� ��c1

1þ r

rs

� ��c 2

; ð1Þ

where �s and rs are a scale density and length, respectively. The
exponents c1 and c2 determine the asymptotic power-law behavior
of the profile: NFW (c1¼ 1, c2 ¼ 2); M98 (c1¼ 1:5 ¼ c2); and
Hernquist (c1¼ 1, c2 ¼ 3). We define the negative logarithmic
density slope to be � � �d log (�/�s)/d log (r/rs). For general-
ized dual–power-law profiles, the � distributions are given by

�¼ c1þ (c1 þ c2)(r=rs)

1þ (r=rs)
: ð2Þ

The Navarro et al. (2004) profile (dash-dotted line) has been
proposed as an improvement over NFW for describing high-
resolution cosmological N-body density profiles. This profile
never displays power-law behavior; instead, the logarithmic
density slope changes continuously with r. The expression that
generates this curve is

ln
�

�2

� �
¼ � 2

�

� �
r

r2

� ��

�1

� �
; ð3Þ

where r2 is the radius at which � ¼ 2 and �2 is the density at that
radius. The corresponding � profile is

� ¼ 2
r

r2

� ��

: ð4Þ

As Navarro et al. (2004) found that � ¼ 0:17 best fit several
N-body halo profiles, we refer to profiles (� and �) with � ¼ 0:17
as N04 profiles, but we consider 0:001 � � � 0:22.

The final profile type that we consider is the Sérsic function
(Sérsic 1968). The Sérsic function is expressed analytically as

ln
�

�s

� �
¼ �an

R

Rs

� �1=n

�1

" #
; ð5Þ

where� is surface density, R is projected distance, n determines
the shape of the profile, and an is an n-dependent constant
chosen so that the projected mass interior to Rs is equal to the
projected mass interior to R ¼ r2 for the N04 profile (eq. [3]).
This differs from the usual definition of the Sérsic constant,
which demands the projected mass within Rs be half the total
mass. Unfortunately, Sérsic profiles do not readily provide ana-
lytical expressions for � or � (but see Trujillo et al. 2002 and
Graham et al. 2005). The double-dot–dashed and long-dashed
lines in Figure 1 show the calculated deprojected density distri-
butions for n ¼ 2:9 and n ¼ 4:0 (de Vaucouleurs profile), respec-
tively. Larger (smaller) n-values reduce (increase) the difference
between the inner and outer logarithmic density slopes. Dalcanton
& Hogan (2001) and Merritt et al. (2005) both suggest that the
Sérsic profile describes the results of N-body simulations at least
as well as the previously discussed forms. Further, Dalcanton &
Hogan (2001) point out that n P 4 Sérsic and NFW profiles
have similar behaviors, while Merritt et al. (2005) find that n � 3
provides the best fit to their dwarf- and galaxy-sized halos.

3. �/�3 DISTRIBUTIONS AND EQUILIBRIUM

Mechanical equilibrium for a spherical and isotropic colli-
sionless system is determined through the Jeans equation (Jeans
1919; Binney & Tremaine 1987),

d

dr
�(r)�2(r)
� �

¼�3G�(r)
M (r)

r 2
; ð6Þ

where M (r) is the mass enclosed at radius r and the factor of 3
comes from the definition �2 ¼ �2

r þ �2
� þ �2

� and the isotropy
of the system. This equation certainly links � and �, but does it
alone impose power-law F distributions?

3.1. Specific Distributions

We demonstrate that the answer is no by providing a counter-
example. Inserting the Hernquist density profile into equation (6),
we solve for � and thereby ensure that the halo is in equilibrium.
The resulting F distribution is shown as a solid line in Figures 2a
and 2b. In the top panels of this figure, the dashed lines have
slopes of �1.875, the dotted lines have slopes of �35/18, and
each line is normalized to the F value at log (r/rs) ¼ 0. The
curves in the bottom panels highlight departures from the best-
fit power-law behavior (horizontal double-dot–dashed lines). The
dashed and dotted lines denote the same power laws as in the top
panels, but scaled to the best-fit slope. We use � ¼ 1:875 as a
fiducial value because it is the result of straightforward analytical
calculation (Bertschinger 1985), aswell as being representative of
the mean of the N-body results discussed in x 1. At the same time,
we also highlight the analytically motivated � ¼ 35/18 (Austin
et al. 2005). The abscissa range for the figure reflects that halos
are usually resolved over roughly 3 orders of magnitude, from the
virial radius [log (r/rs) � 1] to about 1/1000 of the virial radius
[log (r/rs) � �2]. The double-dot–dashed lines in the bottom
panels indicate the best linear fits to the F profiles. The dotted
and dashed lines represent the same lines as in the top panel re-
scaled to the best linear fit slope. The �-values indicate the slope
(modulo a minus sign) that the best linear fit would have in the
top panel.

Fig. 1.—Plots showing the NFW (solid line), Moore et al. (1998; dotted line),
Hernquist (1990; dashed line), Navarro et al. (2004; dash-dotted line), Sérsic
n ¼ 2:8 (double-dot–dashed line), and Sérsic n ¼ 4:0 (long-dashed line) density
distributions. The line types have the same meaning in both plots. (a) The log-
log density profiles. The vertical normalization is arbitrary and the curves have
been somewhat separated to aid identification. (b) The log-log density profiles
of the same distributions divided the NFW (horizontal solid line). These ratio
profiles have been normalized to agree at the scale radius.
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We use the rms deviations �rms between the F distributions
and the best power-law fits to quantify how close to a power law
each F is. These deviations are calculated over the resolved
range of N-body halos, from log (r/rs) � �2 to log (r/rs) � 1.
We adopt the following convention for the rest of the paper:
F distributions with�rms � 0:05 will be considered power laws,
those with�rms > 0:05will not. This approximately reflects the
level at which one can detect a power law by eye, e.g., by look-
ing at Figure 2a. With this criterion, the Hernquist profile, with
� rms ¼ 0:07, is evidence that simple mechanical equilibrium
does not enforce power-law F behavior. The Hernquist profile
is not unique in this regard; King models (King 1966, not
discussed in detail here) also produce F distributions that have
quite obvious deviations from power-law shapes.

Having found these counterexamples, we now demonstrate
that the other empirical density profiles from x 2 generally lead

to scale-free F distributions. In Figure 2 we present the F dis-
tributions calculated by solving equation (6) using the NFW
(Figs. 2c and 2d ), M98 (Figs. 2e and 2f ), andN04 (Figs. 2g and
2h) density profiles. These profiles have power-law F distri-
butions with �rms P 0:03 and � ¼ 1:881, 1.956, and 1.910 for
NFW, M98, and N04, respectively. The N04 profile produces
the best power-law F distribution of these three models, with
�rms ¼ 0:007. The NFW and M98 profiles are poorer (but still
acceptable) power laws with �rms � 0:03. Sérsic profiles also
produce power-law F distributions, with the best power-law
F (n ¼ 2:5,�rms ¼ 0:005, � ¼ 1:832) shown in Figures 2i and
2j. We also include the results from the de Vaucouleurs pro-
file (Sérsic n ¼ 4:0) Figures 2k and 2l. This range of �-values
(1.83–1.96) is approximately the same as the range of results
from N-body simulations (see x 1). These findings are also in
broad agreement with the results of Graham et al. (2005).

Fig. 2.—Plots showing the raw F distributions (a, c, e, g, i, k) and versions scaled to highlight departures from a pure power law (b, d, f, h, j, l ). The dashed and dotted
lines show the behavior of power-law F distributions with � ¼ 1:875 and � ¼ 35/18, respectively. The �-values indicated in the bottom panels are the slopes of the
lines that best-fit the scaled profiles. Also in the bottom panels, the scaled best linear fits are the double-dot–dashed horizontal lines, and the dotted and dashed lines are
the scaled power laws corresponding to the lines in the top panels. The density profiles are noted in the plots: (a, b) Hernquist (1990); (c, d ) NFW; (e, f ) Moore et al. (1998);
(g, h) Navarro et al. (2004); (i, j ) Sérsic n ¼ 2:5; and (k, l ) Sérsic n ¼ 4:0.
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3.2. General Distributions

In addition to these specific profiles, we have also examined
the generic forms of equations (1), (3), and (5). Varying the shape
parameters (c1, c2, �, n) of these profiles allows us to (1) find the
profiles that have the best power-lawF behavior and (2) determine
the ranges of �-values that each profile supports. We summarize
the findings in Figures 3 and 4.

Three classes of profiles are presented separately in Figure 3
to show the impact of the shape parameters on the F distributions.
Figures 3a and 3b display the results for generalized dual–power-
law profiles with the constraint that c1 þ c2 ¼ 3 (like NFWand
M98) and 0:5 � c1 � 2:0. One can see that � ¼ 1:875 is ob-
tained when c1 � 1:0 (c2 � 2:0), very nearly the canonical NFW
profile. However, the shallow local minimum in Figure 3b around
c1 ¼ 1:1 indicates that the NFW profile does not give the best
power-law F (for isotropic systems).3 The shallowness of this
minimum suggests that all values 1:0 P c1 P 1:5 give similar
quality power-law �/�3 distributions. We note that the M98 pro-
file (c1 ¼ 1:5) produces an �-value closer to the analytical value
of 35/18, with the (c1 ¼ 1:3) case providing the best fit to
� ¼ 35/18. We have also investigated a few profiles with c1 þ
c2 ¼ 4 and found that they do not form acceptable power-law
F distributions. Like the Hernquist profile (c1 ¼ 1, c2 ¼ 3), the
�rms values for these profiles are always >0.05. The Navarro et al.
(2004) profiles with 0:001� � � 0:22 give rise to Figures 3c and
3d . The F distribution that produces the best power law has � �
0:16, which is very close to the best-fit value � ¼ 0:17 from
Navarro et al. (2004). For�� 0:14, the corresponding�� 35/18.
This range in � values is consistent with halos found in the sim-
ulations of Navarro et al. (2004), 0:1 P � P 0:2. Among Sérsic
profiles with 2:0 � n � 15:0 (Figs. 3e and 3f ), the model at
which �rms is minimum has n ¼ 2:5. This n value lies in the
range of values found in the Merritt et al. (2005) study. Inter-

estingly, the Sérsic profile that produces � ¼ 35/18 has n P 4,
basically a de Vaucouleurs profile.
Pursuing this further, we turn to Figure 4, which combines the

results from the three profile types by relating � and�rms values.
The plus signs represent Sérsic profile values, asterisks mark the
Navarro et al. 2004 values, and diamonds show generalized dual–
power-law values. The vertical structure of this plot illustrates that
theNavarro et al. (2004) and Sérsic profiles generally result in bet-
ter power-lawF distributions than the dual–power-law form. Inter-
estingly, if we think of the various simulation-inspired profiles in
chronological order (NFW,M98, andN04), it appears that the �/�3

distributions are becoming better power laws as the number of
particles in simulations increases and the simulations themselves
improve. Such a trendmay be due to a decreased impact by two-
body relaxation (whichmasks the dynamics relevant to actual halos
and decreases in importance with increasing particle numbers),
or it may be that the larger particle numbers allow simulations to
more faithfully reflect the pertinent physics, e.g., violent relaxation.
In the horizontal direction of Figure 4, we clearly see that the

profile types produce their best power law at varying �-values.
However, the minimum value of � rms for all the profiles occur
in a relatively narrow range of �-values, between 1.84 and 1.97,
close to the analytically derived value of � ¼ 1:944̄. One thing
to keep in mind is that this study deals only with isotropic sys-
tems. It could be that simulated N-body halos, which have aniso-
tropic velocity distributions (Hansen&Moore 2006; Barnes et al.
2005), are sufficiently different from these isotropic models to
cause the offsets.

3.3. A More Fundamental Relation?

The scale-free relationship between F and r has been firmly
established, but we would like to know if there is a more dynami-
cally relevant quantity that shows a similar power-law correlation
with F. The list of candidate quantities is long, but we focus on
two choices: enclosed mass M (r) and a proxy for the radial ac-
tion r�r. The log F versus logM plots do not have power-law
forms for any of the distributions. On the other hand, the log F
versus log r�r curves do have approximately scale-free shapes,

Fig. 3.—Plot of the � and�rms values vs. the shape parameters for (a, b) gen-
eralized dual–power-lawprofiles, (c, d ) N04 profiles, and (e, f ) Sérsic profiles. The
shape parameters are c1 (c2 ¼ 3� c1), �, and n for the dual–power-law, N04,
and Sérsic profiles, respectively. In the top panels, the solid line lies at � ¼ 1:875
and the dashed line marks � ¼ 35/18. The dashed line in the bottom panels
illustrates the acceptable power-law cutoff value of �rms ¼ 0:05.

Fig. 4.—Plot shows � vs.�rms for generalized dual–power-law (diamonds),
N04 (asterisks), and Sérsic ( plus signs) profiles. Along the Sérsic track, the n
values increase from 2 to 15, with a turnaround point at n ¼ 5. The � values
decrease from left to right (0:22 ! 0:001) along the N04 track. The top leftmost
diamond has (c1 ¼ 0:8, c2 ¼ 2:2), the diamondwith the largest� corresponds to
the M98 profile (c1 ¼ c2 ¼ 1:5), and the diamond with the smallest � rms has
(c1 ¼ 2:0, c2 ¼ 1:0). The NFW (c1 ¼ 1:0, c2 ¼ 2:0) profile is marked by the dia-
mond nearest to the solid line at� ¼ 1:875. The dashed and dash-dotted linesmark
� ¼ 35/18 and � ¼ 1:975, respectively.

3 We point out that all of these profile types can produce perfect power-law F
distributions (� rms ¼ 0) in the limit that the density becomes a pure power law:
c1 ! 3, c2 ! 0 for the generalized dual–power-law form, � ! 0 for the Navarro
et al. (2004) form, and n ! 1 for the Sérsic form. Since these pure power-law
density profiles result in unphysical infinite mass objects, we define the ‘‘best’’
power-law F distributions to be determined by the local minima apparent in the
bottom panels of Fig. 3.
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as shown in Figure 5a. The best-fit line to this curve has a slope
(! ¼ 1:955) that is very close the slope in Figure 2e (� ¼ 1:956).
However, the comparison between the residuals shown in Fig-
ure 5b and those in Figure 2f demonstrate that F versus r is the
better scale-free relation. Indeed, the near power-law relation
between F and r�r occurs because �r has a very weak relation
on r, making F versus r�r very similar to F versus r.

Hoeft et al. (2004) find that a nontrivial function of potential
accurately describes the velocity dispersion profile in N-body
halos. Utilizing a more general form of this function of potential,

A ¼ �a(�out � �)b; ð7Þ

we have investigated whether or not F versus A provides a
superior power-law relation to F versus r. We find that with ap-
propriate choices of a, b, and�out, a power law can be found for
F versus A that is of comparable quality to that for F versus r.
However, we find that the degrees of freedom present in this
function allow it to closely resemble r itself, making this func-
tion unenlightening. Despite the results of this brief search for
a more physically fundamental relation, we plan to continue in-
vestigating alternative dynamical quantities.

One could also question whether or not our F function is the
most illuminating choice of combination of � and �. Certainly,
�/�3 is an interesting quantity, as it has the dimensions of phase-
space density, but would �/�m work just as well (R. Henriksen
2006, private communication)? For the NFW, N04, and Sérsic
functions, the answer is no. The deviations from a power-law dis-
tribution rapidly increase as m varies from 3 (over the interesting
radial range �2 � log r/rs � 1). This affinity for m ¼ 3 is obvi-
ous in Figure 6, which shows the amplitude of the residuals
from a power-law F versus r relationship asm is varied from 1.5
to 4.5.

In this section we have shown that the condition of hydro-
static equilibrium by itself does not produce power-law �/�3.
However, the density profiles that are used to fit the data from
cosmological N-body simulations all seem to have nearly scale-
free �/�3 distributions, unlike the Hernquist and King profiles.
We have also tried, in vain, to find more physically meaningful
correlations betweenF and other quantities; enclosedmass, r�r,
etc. Furthermore, halos formed semianalytically, through violent
relaxation (Lynden-Bell 1967), also display F / r�� (Austin

et al. 2005). This aspect of N-body and semianalytically gen-
erated halos is certainly unexpected and prompts us to consider
systems that have explicitly scale-free �/�3.

4. THE CONSTRAINED JEANS EQUATION

Imposing the constraint that �/�3 ¼ (�0 /v
3
0 )(r/r0)

�� and using
the dimensionless variables x � r/r0 and y � �/�0, we rewrite
equation (6) as

� x2

y

d

dx
y5=3x2�=3

� �� �
¼ BM (x); ð8Þ

where B ¼ 3G/r0v
2
0 . Differentiating this equation with respect

to x gives us

d

dx
� x2

y

d

dx
y5=3x2�=3

� �� �	 

¼ Cyx2; ð9Þ

where C ¼ 12��0r
2
0 /v

2
0 . This expression is equivalent to that

presented in Taylor & Navarro (2001). Following Austin et al.
(2005), we eliminate the constant C by solving for y, differen-
tiating with respect to x again, and grouping like terms. The
resulting constrained Jeans equation is

(2�þ � � 6)
2

3
(�� �)þ1

� �
(2�� 5�)¼15� 00 þ 3� 0(8�� 5��5):

ð10Þ

In this notation, � ¼ �(x) ¼ �d ln y/d ln x and the primes in-
dicate derivatives with respect to ln x.

One way to connect power-law F distributions and equilibria
is by making an analogy to fluid systems. In hydrostatic equilib-
rium, the term on the left-hand side of equation (6) is replaced
by a derivative of a single variable, the pressure P (related to the
random motion in the system). The important point is that P is
related to � through an equation of state. This extra relation
closes the system of equations and, given boundary conditions,
allows one to solve for the equilibrium density distribution. A
power-law F distribution acts as a radius-dependent equation of
state, linking � and the system’s randommotion, measured by �.

Austin et al. (2005) demonstrate that this equation has a rich
set of solutions that depend on the choices made for �, initial
� [� (0)], and initial � 0 [� 0(0)]. In specific density profiles, the

Fig. 5.—Representative curves showing the relationship between �/� 3 and
the radial action proxy r�r. These specific curves are for the M98 profile and
should be compared to those in Figs. 2e and 2f. Panel a shows the raw corre-
lation between log F and log r�r along with the best linear fit (double-dot–
dashed line). Panel b displays the residuals between the best-linear fit and the
actual correlation. The slope of the best-fit line is given by the ! value.

Fig. 6.—Curves showing that the best �/�m vs. r power law occurs when
m ¼ 3. The dotted line is the result of varying m for an NFW profile, while the
dashed and solid lines illustrate the variations for N04 and Sérsic n ¼ 2:5
profiles, respectively.
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asymptotic behavior of �(x) can be made to increase without
bound, to approach constant values, or even to oscillate. We show
several types of solutions in Figure 7. We choose �(0) through
the relation 2� � 5�(0) ¼ 0, representing a zero ‘‘pressure’’
derivative at the center (Austin et al. 2005). Once we choose an
�-value, the central � is set. This figure shows the impact of
changing � 0(0) from 5 ; 10�6 to 5 ; 10�5 [see Austin et al. 2005
for examples of solutions with larger � 0(0) values]. Smaller values
of � 0(0) force the �(x) distribution to change less rapidly with
increasing x. Since changing � 0(0) values simply shifts � distri-
butions horizontally and does not affect the overall shape [for
� 0(0) P 10�3], we fix the � 0(0) value from here on. Larger � 0(0)
values can make the � distribution convex in the region where
r ¼ rs, unlike the distributions that are of interest here. Once �
changes from its initial value, the behavior is largely determined
by �. As mentioned earlier, � profiles display one of three kinds
of behavior, and we choose to focus on three �-values to provide
concrete examples: � ¼ 1:875, � ¼ 35/18, and � ¼ 1:975. � ¼
35/18 divides solutions in which �(x) increases indefinitely (like
those in the top panel with � ¼ 1:875) from those in which �(x)
acts as a damped oscillator ( like those in bottom panel with � ¼
1:975). A more extensive discussion of this special �-value can
be found in Austin et al. (2005, x 3).

In previous sections, we have discussed many types of den-
sity profiles and have just shown that the constrained isotropic
Jeans equation has a wide variety of solutions. We are now faced
with the following questions: Which (if any) of the density
profiles from x 3 provides the best description of the constrained
Jeans equation solutions? And does the answer to this question
depend on the Jeans equation parameter �?

The thin solid lines in Figure 8 are the � profiles for the solu-
tions of equation (10) with various �-values and � 0(0) ¼ 1 ;
10�5. The vertical solid lines denote the radius at which � ¼ 2,
and the dotted vertical lines mark 0.01 and 10 times this radius.
Figure 8a has � ¼ 1:875. It is clear that the Sérsic form with
n ¼ 2:8 provides a much better representation of the solution
curve than do the Navarro et al. (2004) profiles. In Figure 8b, � ¼
35/18 and the quasi-asymptotic behavior of the solution curve
looks much more like one would expect for an NFW profile. How-
ever, an NFW � profile has a larger � 0(rs) than the solution curve
and does not provide a good approximation. For this case, neither
the Sérsic (n ¼ 4:0) nor the Navarro et al. (2004) curves are very

Fig. 7.—Various � distributions that result from solving eq. (10). Panel a
shows solutions with � ¼ 1:875, panel b utilizes � ¼ 35/18, and panel c has
� ¼ 1:975. The solid lines in each panel are solutions with � 0 ¼ 5 ; 10�6. The
dashed and dash-dotted lines have � 0 ¼ 1 ; 10�5 and � 0 ¼ 5 ; 10�5, respec-
tively. The separations of the various profiles have been exaggerated for clarity.

Fig. 8.—Solutions of eq. (10) with � 0(0) ¼ 1 ; 10�5 (solid lines). The top
plots in each panel show � distributions, while the bottom panels present the
corresponding density profiles normalized by the N04 distribution. The line
types have the same meaning in both plots. The thick-dashed and dash-dotted
lines correspond to Sérsic and N04 density distributions, respectively. The thin
dash-dotted lines are Navarro et al. (2004) profiles with � ¼ 0:12; the thin double-
dot–dashed lines have � ¼ 0:22. Note that the range of ln x is much smaller than
in Fig. 7; the vertical solid lines mark the positions of rs or r2; the dotted vertical
lines are 1/100 and 10 times this radius. In panels a and b, � ¼ 1:875 and the
Sérsic n ¼ 2:8. Panels b and c have (� ¼ 35/18, n ¼ 4:0), and panels e and f
have (� ¼ 1:975, n ¼ 5:0).
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good matches to the solution. The bottom panel shows the solu-
tion for � ¼ 1:975. Again, the behavior of the solution curve is
poorly represented by either the Sérsic (n ¼ 5:0) or Navarro et al.
(2004) curves. The Sérsic behavior is not very surprising since
Figure 4 shows that no Sérsic profile can produce �-values as
large as 1.975. While these last two plots point out the inadequa-
cies of our fitting functions for general solutions of the constrained
Jeans equation, in the casewith� ¼ 1:875, an average value from
N-body simulations, the Sérsic profile provides a substantially
better fit over the N04 profile to the solution of the isotropic con-
strained Jeans equation.

5. SUMMARY AND CONCLUSIONS

The apparent commonness of power-law distributions in the
phase-space density proxy F � �/�3 / r�� (density divided
by velocity dispersion cubed) in collapsed collisionless systems
(e.g., Taylor & Navarro 2001; Austin et al. 2005) has led us to
investigate (1) whether or not arbitrary equilibrium density
profiles automatically lead to such behavior and (2) the types of
equilibria that occur under the constraint that F is scale-free. In
this study we have only investigated isotropic, spherically sym-
metric systems, but we will soon extend this work to include
anisotropic distributions.

We find that the F distribution corresponding to the Hernquist
(or King) profile is not an acceptable power law and refutes the
idea that mechanical equilibrium alone is responsible for power-
law F distributions. In general, profile types that empirically
provide good fits toN-body halos produce power-law F behavior,
with the Navarro et al. (2004) and Sérsic types being superior
to the generalized dual–power-law profiles in this regard. We
speculate that this ubiquity is not coincidence but rather that
scale-free F is a generic result of the physics of collisionless
collapse. For the isotropic systems considered here, the Sérsic
profile F distributions with the smallest�rms values tend to have
smaller�-values than those corresponding toNavarro et al. (2004)
profiles. However, each type of density profile covers the range of
�-values found in N-body simulations.

Taking power-law F behavior as a given allows us to write a
constrained Jeans equation that only involves the logarithmic
density slope �, its derivatives, and �. This approach of deriving
equilibrium density (actually, �) distributions and comparing
them to the � profiles corresponding to the Navarro et al. (2004)
and Sérsic density profiles complements our earlier findings.
The � ¼ 1:875 results (Fig. 8, top panel ) echo our previous
conclusions that N-body halos formed in cosmological simu-
lations are best described by Sérsic models.

The preceding points depend on �/�3 versus r being the rel-
evant relationship. As we do not have a compelling explanation

for this relation, we have also investigated other correlations of
Fwith possibly more physical quantities. These quantities have
so far failed to best the power-law correlation between F and r.
Another possibility is that F itself is not the most illuminating
variable. Based on a thoughtful suggestion fromR.Henriksen, we
have also looked at whether or not the exponent of � in the com-
bination �/�m can be changed to produce a better power law.
Our results clearly point to m ¼ 3 as the most interesting value.

One other question to ask is whether or not any type of re-
laxation to equilibrium results in scale-free �/�3. In particular
we have wondered what effect two-body relaxation may have.
This is not to suggest that current N-body simulations are
affected by two-body relaxation, but see El-Zant (2005). One
argument against the importance of two-body relaxation in
forming power-law F is demonstrated by King profiles, which
accurately model two-body relaxed globular clusters, but do not
produce F / r�� . This is reminiscent of the findings of Binney
(1982). That study found significant differences between the de
Vaucouleurs and King models’ N (E ) distributions [N (E ) dE is
the number of particles with energies near E ]. Combining these
findings with our own results for the King profile, as well as the
results of Austin et al. (2005; halo formation without any two-
body effects produces scale-free F ), brings us to conclude that
relaxation effects other than two-body interactions are responsible
for the power-law F distributions.

We have demonstrated that, in equilibrium, density profiles that
accurately describe the end results of simulated collisionless
collapses (and hence violent relaxation) produce power-law F
distributions, while those that have been designed mostly for ana-
lytical tractability (e.g., Hernquist profiles) or to describe systems
significantly different than galaxies (e.g., King models) do not.
And although there is no general theory explaining power-law
F behavior, our findings encourage us to speculate that dynamical
collapse processes (violent relaxation in particular) are playing
a major role in making �/�3 of equilibrium systems scale-free.
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Nac. Córdoba)

Taylor, J. E., & Navarro, J. F. 2001, ApJ, 563, 483
Trujillo, I., Asensio Ramos, A., Rubiño-Martı́n, J., Graham, A., Aguerri, J.,
Cepa, J., & Gutiérrez, C. 2002, MNRAS, 333, 510

DENSITY PROFILES OF COLLISIONLESS EQUILIBRIA. I. 803No. 2, 2006


