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ABSTRACT

Strong peaks in the emission measure–temperature (EM-T ) distributions in the coronae of some binary stars are
associated with the presence of hot (107 K), dense (up to 1013 cm �3) plasma. These peaks are very reminiscent of
those predicted to arise in an impulsively heated solar corona. A coronal model comprised of many impulsively
heated strands is adapted to stellar parameters. It is shown that the properties of the EM-T distribution can be accounted
for in general terms provided the emission comes from many very small loops ( length under 103 km) with intense
magnetic fields (1 kG) distributed across part of the surface of the star. The heating requires events that generally
dissipate between 1026 and 1028 ergs, which is in the range of solar microflares. This implies that such stars must be
capable of generating regions of localized intense magnetic fields.

Subject headinggs: binaries: general — stars: coronae

Online material: color figure

1. INTRODUCTION

The distribution of the emission measure as a function of tem-
perature in the corona of the Sun and other stars provides impor-
tant information about both the structure of the corona, and the
process(es) responsible for its high temperature. The emission
measure can be defined as EM ¼

R
n2e dV , where ne is the elec-

tron density and V is the emitting volume. Under the assumption
of ionization equilibrium, measurements of the intensity of a
range of emission lines forming at known temperatures deter-
mine the EM-T relation. For the solar corona, EM / T 3=2 near
106K, but information about the EM-Tscaling above 2 3 ; 106 K
is minimal due to inadequate temperature coverage. If the emit-
ting volume can be estimated, as is possible for the Sun, the as-
sumption of a homogeneous plasma then permits a determination
of the density. This will never be the real density, since sub-
resolution filamentary structures will be present, with radiation
coming from only a subset of the measured volume. However,
the real density can be determined from suitable pairs of density-
sensitive lines, and one can then determine the actual volume
responsible for the radiation, and hence the scale of the fila-
mentary structure (Cargill 1993; Klimchuk & Cargill 2001).
Although measurements of absolute densities in the solar corona
are possible (see Ugarte-Urra et al. 2005), they are scarce.

In contrast, when studying stellar coronae, it is not possible
to determine the emitting volume (other than using very general
constraints based on, for example, the stellar radius, coronal scale
height, and analogies with the Sun). However, broad temperature
coverage can reveal features in the EM-T distribution unknown at
the Sun, and a range of density-sensitive lines can provide good
density diagnostics. For example, Extreme Ultraviolet Explorer
(EUVE ) observations were used by Dupree et al. (1993) to deter-
mine densities between 1012 and 1013 cm�3 at a temperature of
107 K from a small-scale source in the corona of �Aur (Capella),
while in a study of the contact binary 44i Boo Brickhouse &
Dupree (1998) noted that there was a dominant component of the
emission measure that peaked around 107 K and was associated
with densities of order 1013 cm�3, far higher than anything ever

measured in the solar corona. The EM of 1051.3 cm�3 implied a
source region with scale 0.004R� , or a few thousand kilometers,
and the sources were long-lived (i.e., not related to large flares).
Sanz-Forcada et al. (2001) presented results from quiescent and
flaring corona of k And and noted that the EM peak was present
in both instances. A review of these early observations and their
interpretation can be found in Dupree (2002).
A more extensive survey of the EM-T distribution from ac-

tive binary stars such as RS CVn and BY Dra systems, as well
as single stars such as AB Dor, by Sanz-Forcada et al. (2003,
hereafter SF03) revealed similar EM and density properties.
SF03 showed complex EM-T distributions that they attributed
to (1) solar-like loops with a modest temperature and density
(106.3 K and 109–1010.5 cm�3, respectively), (2) hot loops sim-
ilar to those discussed by Brickhouse & Dupree (1998) with
T � 106:9 K and n > 1012 cm�3, and (3) a very high tempera-
ture component. The second component typically has EM >
1050 cm�3, and the EM-T profiles show a significant amount of
plasma lying above the peak temperature. An example of such
an EM-T distribution is shown in Figure 1.
In this paper we address the second of these emission sources:

the sharp peak near 107 K. It is natural to try and understand such
distributions in terms of models and data of the better studied
solar corona, but this has not been successful in the past because
of the difficulty in accounting for the high densities (Dupree
2002), and the component of the EM-T distribution above the
peak. Conventional steady state coronal loop models (e.g.,
descendants of those originally developed byRosner et al. [1978],
Craig et al. [1978], Hood& Priest [1979], and Serio et al. [1981])
do not lead naturally to this form of EM-T distribution and, for
typical solar coronal loop lengths, give densities 2 or 3 orders of
magnitude too small (Dupree, 2002).
However, as suggested by Dupree (2002) and discussed

further in x 2, another class of solar coronal heating models,
namely those associated with impulsive heating (often referred
to as ‘‘nanoflare’’ heating on account of the original assumption
that the heating events had energies of 1024 ergs) can readily
account for the observed EM-T profiles. In x 3 we adapt these
models for a situation in which there is no assumed information
on the size of the emitting structures and deduce the coronal
parameters that correspond to the observed stellar emission.
Section 4 presents a discussion of the results and, in particular,
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addresses the implications for the magnetic field of the stellar
corona.

2. IMPLICATIONS FROM THE SOLAR CORONA

In x 3we adapt the nanoflare coolingmodel for the solar corona
developed by Cargill (1993, 1994), Cargill & Klimchuk (1997,
2004), and Klimchuk & Cargill (2001) to address the strong
peak in the EM-T distribution seen in stellar coronae. Here we
discuss why this model is well suited for addressing the observed
EM-T profiles. For the solar case, it is assumed that the corona is
comprised of many narrow thermally isolated threads that are
heated randomly by small events with energies in the range 1023–
1025 ergs (hence the term nanoflares). A collection of many of
these threads comprise the observed loop structures (see also
Warren et al. 2002). The heating is assumed to be impulsive, so
that the principal observed signature comes from cooling plasma.
The cooling process is described by an energy equation of the form

@p

@t
þ v

@p

@s
¼ ��p

@v

@s
þ (� � 1)

@

@s
�oT

5=2 @T

@s

� �
� n2f (T )

� �
ð1Þ

in the usual notation, where �0 ¼ 10�6 in cgs units is the thermal
conductivity coefficient and f (T ) is the optically thin radiative
loss function. If f (T ) ¼ �T� , a loop of half-length L will cool
by conduction and radiation with characteristic times � c and � r ,
respectively, (Cargill et al. 1995, hereafter CMA95) and a ratio
� c /� r :

�c ¼
3nkL2

�0T 5=2
; �r ¼

3kT1��

�n
;

�c
�r

¼ �n2L2

�0T 7=2��
: ð2Þ

A typical value for � is �1
2
(Priest 1982; Griffiths 1999), so

conductive cooling dominates for hot, tenuous loops, and ra-
diative cooling for cool, dense loops, with the ratio of cooling
times as defined in equation (2) increasing from small to large as
a loop cools. Both cooling mechanisms have associated mass
motions: the conductive phase is believed to drive an upflow
from the chromosphere into the loop (Antiochos & Sturrock
1978), while the radiative phase is associated with a downflow
toward the chromosphere (Antiochos 1980; CMA95, Bradshaw
& Cargill 2005). Thus, the loop density takes on its maximum
value when the cooling changes from conduction to radiation
(see also Warren et al. 2002). This is also when the instanta-
neous cooling time is maximized.

To understand the implications of this for stellar EM-T dis-
tributions, we show a case discussed previously in Cargill &
Klimchuk (1997, 2004) and Klimchuk & Cargill (2001) of
an active region loop heated by many millions of nanoflares.
The details can be found in these papers, but in Figure 2 we
show an EM-T distribution. A strong peak around 106.5 K is
clearly evident: to the right of this temperature, loops cool by
conduction and to the left by radiation. There are thus signifi-
cant amounts of plasma on both sides of the peak, as seen in the
stellar observations. The task now is to adapt this model from a
situation in which the input parameters include the loop length,
to one in which it is unknown.

3. APPLICATION TO STELLAR CORONAE

3.1. Analytic Description of Multistrand Coronal Model

Later in this section we present some numerical results for
stellar coronae, but we first make use of the analytic approach de-
veloped by Cargill (1993, 1994) and Cargill & Klimchuk (2004).
In these papers, we showed that for given loop dimensions, simple
scalings relate the temperature and emission measure at the peak
of the EM-T distribution to the nanoflare energy. We must now
adapt this to stellar coronae, while retaining the following as-
sumptions: (1) the emission comes from an ensemble of loop-
like structures (or strands) of typical length 2L, with the plasma
confined by the magnetic field; (2) these strands are heated by a
swarm of small impulsive heating events, but there is no a priori
assumption made about the energy in the events, although for
convenience, we retain the word ‘‘nanoflare’’; (3) the heated
strands cool by the two-part process described in x 2; and (4) the
strands cool completely to subcoronal temperatures before they
are reheated. The final assumption is relaxed in our numerical
results in x 3.2.

The temperature where the EM-T distribution peaks (here-
after the peak temperature) arises approximately when �c ¼ �r,
so that we can relate the peak temperature, density, and loop
length to each other. We assume that the density corresponding
to the peak of the EM-T distribution (hereafter the peak density)
can be determined approximately from the ratios of appropri-
ate density-sensitive pairs of iron lines (SF03). For simplic-
ity we define the radiative loss function as f (T ) ¼ �T�1=2 with
� ¼ 8 ; 10�20. (This is a slight modification of the form pro-
posed by Griffiths [1999], who suggested that it is valid in the
range 106:8 K < T < 107:4 K. However, it seems likely that a

Fig. 1.—Sample EM-T distribution from VY Ari (from SF03). Note the
strong peak at T ¼ 107 K. [See the electronic edition of the Journal for a color
version of this figure.]

Fig. 2.—Differential emission measure from a nanoflare model of the solar
corona (from Klimchuk & Cargill 2001).
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bremsstrahlung component proportional to T1/2 will become im-
portant at the upper end of this temperature range.) For ameasured
peak temperature and density, the loop half-length is determined
from equation (2) by

L ¼ T 2

n

ffiffiffiffiffiffi
�0

�

r
¼ 3:54 ; 108

T

107

� �2
1012

n

� �
cm ð3Þ

(Note that the values of L determined from eq. [3] are uncer-
tain by a factor of at least 2 on the short side due to the approx-
imate way the conductive losses are treated. Specifically, the
approximate model using eq. [2] neglects numerical factors that
arise in a more precise solution of the heat conduction equa-
tion [e.g., Antiochos & Sturrock 1978].) The conductive and
radiative cooling times at the EM-T peak are then �c ¼ �r ¼
163 T /107ð Þ3=2 1012 /nð Þ s.

The lack of imaging means that we cannot make any precise
statements about the scale of any coronal structures, although
Brickhouse &Dupree (1998) inferred this from density and emis-
sion measure measurements. Instead we assume that the strands
each have a diameter�l and that N such strands are available to
produce the entire coronal emission. Therefore, the total volume
from which emission is feasible is 2L�(�l /2)2N , although not
all the strands need be filled with plasma at any time. For sudden
heating by a nanoflare of energy Q, the postheating plasma pa-
rameters in a strand satisfy 6nkTL�(�l /2)2 ¼ Q. Because the
pressure remains approximately constant during the conductive
cooling phase, this relationship is also valid at the time of the
peak of the EM-T distribution. Using equation (3) one finds

�l ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q

6nkTL�

r
¼ 2

�

�0

� �1=4 ffiffiffiffiffiffiffiffiffiffiffiffiffi
Q

6�kT3

r

¼ 6:6 ; 105

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q

1024

� �
107

T

� �3
s

cm: ð4Þ

The solar EM-T distributions discussed in x 2 are often rep-
resentative of loops having what are said to be small ‘‘filling
factors.’’ The definition of a filling factor in the solar corona is
the ratio of the volume of plasma that actually contains radiating
material to the total volume of the loop system. The determination
of the solar filling factor requires the calculation of the density
from line pairs, and an ‘‘average’’ density from the emissionmea-
sure, which in turn requires an estimate of the volume. The filling
factor is thus both a measure of how poorly imaging instruments
resolve the actual coronal structure and of the scale of the coronal
energy release (Cargill 1994; Cargill & Klimchuk 1997).

However, in the absence of images, a filling factor based on
such a definition has no meaning. Instead, we define the stellar
filling factor to be the ratio of the number of strands filled with
radiating plasma to N. Note that the following analysis is only
valid for a small filling factor, since we require the strand to cool
below coronal temperatures before being reheated (Cargill, 1993).
Indeed, when a strand is reheated frequently, its temperature and
density remain around one pair of values, and one approaches a
steady state model that gives a different EM-T profile from that
seen. Cooling strands produce a broad EM-T distribution.

We followCargill (1993, 1994) andCargill &Klimchuk (2004)
and define the filling factor as � ¼ �cool /�nano, where � cool is the
loop cooling time (defined in our earlier papers) and �nano ¼
NQ/ET is the characteristic interval between nanoflares in a given
strand, with ET being the total coronal energy requirements in

ergs per second. Following the approach of Cargill & Klimchuk
(2004), we find

� ¼ 5kLET�l1=3

NQ7=6

(3k�)2

4�5
0�

7

� �1=12

¼ 5kETT
3=2

NQ�n
¼ 273

N

ET

Q

� �
1012

n

� �
T

107

� �3=2
: ð5Þ

Defining the emission measure at the peak of the distribution
as EM� ¼ n2VR, where VR ¼ N�2L� �l /2ð Þ2 is the total emit-
ting volume, and using equations (3), (4), and (5) to substitute
for L, �l, and �, respectively, we find

EM� ¼ N�n22L�
�l

2

� �2
¼ 5

3

ET

�T�1=2

¼ 6:6 ; 1046
ET

1024

� �
T

107

� �1=2
: ð6Þ

One can then eliminate ET from equations (5) and (6) to derive
an expression for the filling factor in terms of the observed in-
dependent quantities T, EM, and n:

�¼ 3kTEM�

nQN
¼ 4:1 ; 105

N

1024

Q

� �
EM�

1050

� �
1012

n

� �
T

107

� �
:

ð7Þ

The actual coronal volume radiating at any given time is

VR¼1026
EM�

1050

� �
1012

n

� �2
cm3¼ 2:9 ; 10�7 EM�

1050

� �
1012

n

� �2
R3
s;

ð8Þ

which gives scales (lR) of around lR � 10�2Rs , similar to those
noted by Brickhouse &Dupree (1998). However, the total coro-
nal volume that participates in the emission over a long time
depends on � and is given by VT ¼ VR /�; this can be of order
0.1Rs for small filling factors.
A maximum nanoflare energy permitted in this model (Qmax)

can be derived from equation (4) by assuming �l < L:

Qmax ¼
3�k

2

�0

�

� �3=2
T 7

n2
¼ 2:87 ; 1029

T

107

� �7
1012

n

� �2
ergs:

ð9Þ

If �lTL, then Qmax will be smaller. This gives a minimum
filling factor (�min ) of

�min ¼
2nEM�

�NT6

�

�0

� �3=2
¼ 1:44

N

n

1012

� �
EM�

1050

� �
107

T

� �6

:

ð10Þ

We have summarized the results presented by SF03 in Table 1.
Of the 21 stars in the SF03 list, four are neglected. Three are
classed as ‘‘low activity stars’’ by SF03 (" Eri, Procyon, and �
Cen) and do not show the characteristic EM-T peak at high
temperatures. Procyon and � Cen have the EM-T peak at 106.3–
106.4 K, and while " Eri has emission up to 106.9 K, the distribu-
tion is flat rather than peaked. LQ Hya is omitted because of the
absence of electron density measurements in SF03. All quantities
are shown as logarithms. The parameterN is chosen as 106. This
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is motivated by the desire to have values of �minT1 and to have
the characteristic overall coronal scale lT � V�1=3

T a small fraction
of a radius. Values of order 106 meet these requirements: smaller
( larger) values ofN give large filling factors ( large volumes) for
some cases.

Columns (1)–(4) show the star and its spectral type (using the
notation of SF03), the peak emission measure, the temperature
at that peak, and the estimated density. Some comments are nec-
essary. The peak emission measure and temperature were deter-
mined from Table 8 of SFD03. The density is taken as being the
mean of measurements using a number of iron line ratios (SF03,
Table 6). The errors quoted in the density measurements are typ-
ically between 0.2 and 0.6 on a log scale. Note also that the time
to establish ionization equilibrium is very short because of the
high densities and is much shorter than the cooling time.

Columns (5) and (6) show the characteristic scale of the
emission (lT as defined above) in units of a solar radius, and the
values of L calculated from equation (3), respectively. We have
calculated lT from the emission measure, density, and minimum
filling factor, and note that the values range around 10�2 R�.
Columns (7) and (8) of the table show, respectively, the maximum
nanoflare energy and the minimum filling factor when N ¼ 106,
as calculated from equations (9) and (10). Column (9) shows the
magnetic field intensity in gauss needed to confine a plasma with
the peak density and temperature. We discuss these in turn:

1. The typical calculated loop size (2L) lies between roughly
200 and 2000 km, although we stress that the treatment of con-
duction implies this is underestimated. These values of L are
those required in an impulsive heating model to give the peak in
the emission measure curve at the measured temperature. They
are, of course, much smaller than the ‘‘characteristic’’ length
scales (lR and lT ), because the total emitting volume comprises
many loops of dimension 2L. They are also much smaller than
typical loops in the solar corona.

2. The maximum energies mostly lie in the range 1026–
1028 ergs, bigger than those believed to occur in the quiescent

solar corona, but of order observed solar microflares. It is not sur-
prising that the energies are larger than their quiescent solar
counterparts, since the energy is likely to scale with B2, and the
magnetic field in these stellar loops is much stronger as we dis-
cuss in a moment.

3. The minimum filling factors are all small, in many cases
T1, hence consistent with the assumptions of our model.

4. The magnetic field required to confine the plasma is be-
tween a few hundred gauss and 1 kG. This should not be confused
with the coronal magnetic field, which will almost certainly be
larger.

The scalings withQ andN are obvious. For a fixedN, whenQ
is smaller than the maximum value, the filling factor increases.
As N increases (decreases), the filling factors decrease (increase).

3.2. Numerical Results

The above analytical model, while shedding light on the
origin of the EM-T peaks, is limited in many ways. It can only
accommodate a single power-law radiative loss function, can
only model energy release with one value ofQ, and assumes the
loop cools completely before reheating. However, this approach
can be readily adapted to a numerical model that eliminates these
constraints. Cargill (1994) introduced such a model (see also
Cargill & Klimchuk 1997, 2004; Klimchuk & Cargill 2001) in
which the heating and cooling of many thousand strands can be
modeled. We demonstrate this approach for the corona of AR
Lac with a peak emissionmeasure of 1052.4 cm�3 and a peak tem-
perature and density of 106.9 K and 1012.8 cm�3, respectively.
The six-part radiative loss function presented in Klimchuk &
Cargill (2001) is used. The multistrand model has been run for
the analytic example in x 3.1 and gives good agreement between
the input and output.

The approach is as follows. The loop length is determined
from the peak density and temperature using equation (3) (354 km
in this case). The total energy required per second comes from
equation (6), modified slightly to account for the more accurate

TABLE 1

Results

Star

(1)

EM�

(cm�3)

(2)

T

(K)

(3)

n

(cm�3)

(4)

lT
(R�)

(5)

L

(cm)

(6)

Qmax

(ergs)

(7)

�min

(8)

B

(G)

(9)

AY Cet (G5/WD) .................. 52.7 6.9 12.7 �1.13 7.65 27.36 �1.84 2.72

AR Psc (G7/K1).................... 51.8 7.0 13.1 �1.33 7.45 27.26 �2.94 2.97

CC Eri (K7/M3).................... 51.2 6.9 13.3 �1.73 7.05 26.16 �2.74 3.02

VY Ari (K3) .......................... 52.6 6.9 13.4 �1.83 6.95 25.96 �1.24 3.07

YY Gem (M1/M1)................ 51.2 6.9 13.2 �1.63 7.15 26.36 �2.84 2.97

BF Lyn (K2).......................... 51.6 6.7 12.9 �1.73 7.05 25.56 �1.54 2.72

DH Leo (K0/K7) .................. 51.9 6.8 12.4 �1.03 7.75 27.26 �2.34 2.52

� UMa (G5/K) ....................... 51.1 6.8 12.0 �0.63 8.15 28.06 �3.54 2.32

BH Cvn (F2/K2)................... 52.1 6.9 13.1 �1.53 7.25 26.56 �2.04 2.92

s2 CrB (F6/G0) ..................... 52.3 6.7 13.0 �1.83 6.95 25.36 �0.74 2.77

V824 Ara (G5/K0) ................ 52.4 6.9 12.3 �0.73 8.05 28.16 �2.54 2.52

V478 Lyr (G8) ....................... 51.9 6.8 12.7 �1.33 7.45 26.66 �2.04 2.67

ER Vul (G0/G5)..................... 52.3 6.8 12.4 �1.03 7.75 27.26 �1.94 2.52

AR Lac (G2/K0) ................... 52.4 6.9 12.8 �1.23 7.55 27.16 �2.04 2.77

AR Lac 2 (G2/K0) ................ 52.5 6.9 13.2 �1.63 7.15 26.36 �1.54 2.97

Fk Aqr (M2/M3)................... 50.9 6.9 12.6 �1.03 7.75 27.56 �3.74 2.67

BY Dra (K4/K7) ................... 51.6 6.8 13.3 �1.93 6.85 25.46 �1.74 2.97

Notes.—Columns (1)–(6) show the star(s) and spectral type(s) taken from SF03, the emission measure, temperature, and density
at the peak of the EM-T distribution, the characteristic scale of the emission, and the half-length calculated from eq. (3), respectively.
Columns (7) and (8) show, respectively, the maximum heating event energy and the minimum filling factor (eqs. [9] and [10]) for a
corona with N ¼ 106. Column (9) shows the magnetic field intensity needed to confine the plasma. All numbers are on a log scale.
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loss function. A range of nanoflare energies subject to condi-
tion (9) is used, as described below. One can generate a range
of models by looking at different values of�l,Q, and N. For all
examples we assume N ¼ 106.

Figure 3 shows results in a similar (but compressed) format
to that in Cargill & Klimchuk (2004). The two columns are for a
collection of loops with a total energy loss of 7 ; 1029 ergs s�1,
but the left (right) panels have �l ¼ L and a nanoflare energy
range randomly distributed between 2 ; 1026 and 2 ; 1027 ergs
(�l ¼ L/5 and a nanoflare range between 8 ; 1024 and 8 ;
1025 ergs). From top to bottom, we show a contour plot of the
emission measure differential in temperature and density, the
emission measure from all strands as a function of temperature
integrated over a temperature range T � �log T , with �log T ¼
0:15, and the maximum density (not to be confused with the
‘‘peak’’ density defined previously as the density of peak EM)
as a function of temperature. The filling factor in each case is
0.014 and 0.28, respectively.

The figure shows the following:

1. The emissionmeasure differential in temperature and den-
sity is a measure of the distribution of density and temperature
in the strands. It is clear that the emission comes from a wide
range of temperatures and densities, with the highest density

plasma generally being associated with the highest temperature.
However, these results also show the existence of plasma over
all temperature ranges from a few times 107 to 105 K, as seen in
the observed emission measures. For a given temperature, plasma
exists over a range�log n ¼ �0:5, and for a given density, the
temperature range is�log T ¼ �0:4 or so. Decreasing�l for a
fixed range ofQ leads to a broader range of densities, especially
at the high-density end (see eq. [4]).
2. For both cases, the total emission measure peaks near

1052.4 cm�3 at a temperature of 107 K and shows a steep falloff
with temperature on either side of the peak. The slope (defined
as d log EM/d log T ) is over 2, taking on a value of 2.3.
3. The density distribution peaks somewhat below 1013 cm�3

at a temperature of 107 K. Thus, the overall properties of the emis-
sionmeasure, density, and temperature are reproduced in themodel.
4. The filling factor is small.

Figure 4 shows results from two other stars: � UMa (left) and
BY Dra (right) that have significantly lower and higher densi-
ties that AR Lac. The parameters in each case are L ¼ 1:4 ; 108

and 7:1 ; 106 cm, and the range of energies is between 1027 and
1028 ergs and 3 ;1024 to 3 ; 1025 ergs, respectively.We see that the
model again is able to give the general shape of the EM-Tcurves.

4. DISCUSSION

We have presented a simple model to account for the strong
peaks in the emission from active binary coronae at around 107 K.

Fig. 3.—Left: Emission measure differential in density and temperature,
where the emission measure is integrated over density and a temperature in-
terval of log (�T ), and the maximum density as a function of temperature for a
case in which �l ¼ L for the corona of AR Lac. The heating events are ran-
domly distributed in the range 2 ; 1026 2 ; 1027 ergs. The right column has the
same parameters except �l ¼ L/5.

Fig. 4.—Same as Fig. 3, but for � UMa (left) and BY Dra (right).
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Such emissionmeasure distributions are very reminiscent of those
predicted in a solar corona heated by impulsive events. The
coronal scenario can be readily adapted to the stellar case with
the relevant emissionmeasures and densities being produced by
a number of short magnetic loops occupying a small fraction of
the stellar surface.

It is natural to relate these results to the solar corona. The loop
sizes are reminiscent of X-ray bright points, the event energies
are typical of microflares, the temperatures are characteristic
of solar flares, and the densities are larger than anything ever
measured at the Sun. As has been shown by Testa et al. (2005),
classical loop models can give high temperatures and emission
measures for loops with lengths of order 1010 cm, but the den-
sities in such amodel are too small by up to 3 orders ofmagnitude.

How arewe to understand themajor source of emission coming
from very small loop sizes (as also predicted by Brickhouse &
Dupree [1998]) in the context of what we know about the mag-
netic activity of the Sun and stars? One can immediately calculate
the magnetic field having an energy density equivalent to that of
the hot plasma: this is given in column (9) of Table 1 and is typ-
ically at least a few hundred gauss. The field must be stronger
than this in order to confine the plasma. If one then recalls that
coronal reconnection needs a nonpotential field and that perhaps
this component is 25% of the total, one then has field strength
well in excess of 1 kG.

It seems that a requirement is the continual presence of many
small magnetic structures that brighten, flicker, and die over a
short time. These structures may extend over a significant part
of the surface of a star. This would imply that the emission from
such stars is dominated not by active regions as at the Sun, but
by regions of very mixed magnetic polarity. Whether this is

similar to the magnetic carpet on the Sun, but operating more
effectively, remains to be determined. We can speculate that a
surface dynamo, which produces mixed polarities, is stronger in
these stars than a deep-seated tachocline-type dynamo, which
produces active regions (although see Schrijver 2005).

In this paper we have argued that a process similar to solar
nanoflares operates implying that the coronal field is stressed by
continual footpoint motions. One can use Poynting’s theorem to
show that the velocities required for this are

v ¼ 2Q

BtBl �l=2ð Þ2�nano
;

where Bl and Bt are the field components along the loop axis and
in the transverse direction respectively. Simulations suggest a
ratio Bt /Bl between 0.25 and 0.5 (e.g., Dahlburg et al. 2005).
Taking Q ¼ 1027 ergs, Bl ¼ 1 kG, �l ¼ 100 km, and �nano ¼
1000 s, we find v ¼ 3:2 km s�1, a reasonable number. The
scalingswith the parameters are obvious. Alternatively, onemight
have a heating scenario inwhich small-scale flux elements emerge
and immediately reconnect with an overlying field, hence giving
an impulsively heated, confined plasma. However, this may give
a pair of loops, one short and one long, that would not be con-
sistent with the EM-T profile.
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