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ABSTRACT

Although N-body simulations of cosmic structure formation suggest that dark matter halos have density profiles
shallower than isothermal at small radii and steeper at large radii, whether observed galaxy clusters follow this profile
is still ambiguous. We use one such density profile, the asymmetric Navarro-Frenk-White (NFW) profile, to model
the mass distributions of 10 galaxy clusters with gravitational arcs observed by the Hubble Space Telescope (HST ).
We characterize the galaxy lenses in each cluster as NFWellipsoids, each defined by an unknown scale convergence,
scale radius, ellipticity, and position angle. For a given set of values of these parameters, we compute the arcs that
would be produced by such a lens system. To define the goodness of fit to the observed arc system, we define a �2

function encompassing the overlap between the observed and reproduced arcs, as well as the agreement between the
predicted arc sources and the observational constraints on the source system.Weminimize this�2 to find the values of
the lens parameters that best reproduce the observed arc system in a given cluster. Here we report our best-fit lens
parameters and corresponding mass estimates for each of the 10 lensing clusters. We find that cluster mass models
based on lensing galaxies defined as NFWellipsoids can accurately reproduce the observed arcs and that the best-fit
parameters to such a model fall within the reasonable ranges defined by simulations. These results assert NFW pro-
files as an effective model for the mass distributions of observed clusters.

Subject headings: dark matter — galaxies: clusters: individual (3C 220, A370, Cl 0016, Cl 0024, Cl 0054, Cl 0939,
Cl 2244, MS 0451, MS 1137, MS 2137) — gravitational lensing

1. INTRODUCTION

While numerical simulations of dark matter halos in the cold
dark matter (CDM) model of cosmic structure formation invari-
ably predict density profiles that are steeper than isothermal out-
side and flatter inside a scale radius that is of order 20% of the
virial radius for cluster-sized halos (e.g., Navarro et al. 1997,
2004; Moore et al. 1998; Power et al. 2003), it is yet unclear
whether real galaxy clusters have such density profiles. Galaxy
rotation curves (see Sofue&Rubin 2001 for a review) and strong-
lensing constraints (e.g., Rusin & Ma 2001; Rusin et al. 2003;
Treu & Koopmans 2004; Keeton 2001) have shown that galaxies
need to have at least approximately isothermal density profiles,
which are, however, the result of baryonic physics such as gas
cooling and star formation. In galaxy clusters, baryonic effects
should be substantially weaker, and thus their density profiles
outside the innermost cores should still reflect the typical CDM
density profile found in numerical simulations.

Gravitational lensing has been used in its strong and weak
variants for constraining the density profiles of clusters. Weak
lensing measures the gravitational tidal field caused by mass dis-
tributions, and thus allows density profiles to be directly inferred.
While there is agreement amongmost studies ofweak cluster lens-
ing that cluster density profiles are compatiblewith the shape pro-
posed by Navarro et al. (1996, 1997; hereafter NFW), they are
typically similarly well fit by isothermal profiles (e.g., Clowe et al.
2000; Clowe & Schneider 2001; Sheldon et al. 2001; Athreya
et al. 2002). This is because most of the weak-lensing signal

comes from the cluster regions that surrounded the scale radius if
the clusters had NFW density profiles, and there the NFW profile
has an effective slope close to isothermal.

Strong lensing can happen in the cores of sufficiently dense
and asymmetric clusters and gives rise to highly distorted, arc-
like images. There are now well over 60 clusters known to con-
tain arcs with high length-to-width ratios. Mass models have been
constructed for many of them but mostly using axially symmetric
or elliptically distortedmassmodelswith isothermal profiles. Sev-
eral of these isothermal models turned out to be spectacularly suc-
cessful (Kneib et al. 1993, 1996). Constructed based on few large
arcs, they were detailed and accurate enough to predict counter-
images of arclets found close to critical curves. Gavazzi et al.
(2003) find that the core ofMS 2137 seems to be closer to isother-
mal, while Kneib et al. (2003) give an example for a cluster that is
better fit by NFW than isothermal mass components.

While models of strong lensing in clusters thus tend to favor
density profiles steeper than expected fromnumerical simulations,
Sand et al. (2004) followed Miralda-Escudé (1995) in combining
the location of radial and tangential arcs with velocity-dispersion
data on the central cluster galaxies and showed that cluster density
profiles should be substantially less cuspy in their cores than even
the NFW profile. This conclusion hinges on the assumption of
axial cluster symmetry and can be shown to break down for even
mildly elliptical mass models (Bartelmann & Meneghetti 2004).
However, the situation is obviously puzzling, and it seems appro-
priate to ask whether samples of arc clusters can be successfully
modeled with appropriately asymmetric NFWmass components.
This entails two questions; first, can cluster mass models based on
mass components with NFW density profiles be found that repro-
duce the observed arcs; and second, are the best-fitting model pa-
rameters within reasonable ranges defined by simulations?

As our sample, we choose clusters that are known to have arcs
and that have been imaged by the Hubble Space Telescope
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(HST ). Our sample consists of 10 clusters: 3C 220.1, Abell 370,
Cl 0016+1609, ZwCl 0024+1652, ClG 0054�27, Cl 0939+
4713, ClG 2244�02, MS 0451.6�0305, MS 1137.5+6625, and
MS 2137.3�2353. We model each cluster with one or more el-
liptical NFW halos, each of which is completely defined by its
scale convergence, scale radius, ellipticity, and position angle. In
determining the values of these parameters that best reproduce
the observed arcs, we constrain the mass distribution of the clus-
ter.We find that all 10 clusters can be successfullymodeled using
elliptical NFW cluster mass profiles, and we tightly constrain the
parameters defining each cluster’s mass distribution.

The rest of this paper is organized as follows. In x 2 we de-
scribe our method for estimating the parameters describing a
cluster’s set of dark matter halos. In x 3 we define our error es-
timation for the derived parameters. In x 4 we test our method
of estimating lens parameters on a simulated lensing cluster of
known properties. In x 5we outline ourmethod of calculating the
masses of our sample clusters. In x 6 we present results for each
of the 10 clusters. Finally, in x 7 we discuss our main results and
then summarize the implications of this work. Throughout this
paper, we adopt a spatially flat cosmological model dominated
by cold dark matter and a cosmological constant (�m0 ¼ 0:3,
��0 ¼ 0:7, h ¼ 0:7).

2. LENS PARAMETER ESTIMATION

Approximately 85% of the matter in galaxy clusters is dark.
Gas cooling plays a substantial role only in their innermost cores,
if at all, where the gas density may be high enough for cooling
times to fall below the Hubble time. It is yet unclear what in-
fluence gas physics may have on strong cluster lensing. While
adiabatic gas seems to have little effect, efficient cooling and star
formation may steepen the density profile very near the cluster
center and thus increase strong-lensing cross sections (Puchwein
et al. 2005). In detail, any theoretical treatment of baryonic phys-
ics on strong cluster lensing depends on the numerical and artifi-
cial viscosity of the gas flow, the assumed star formation efficiency,
and the combination of a variety of feedback mechanisms. For
simplicity, here we model each cluster in our sample as a com-
bination of purely dark matter halos.

We model each dark matter halo with an asymmetric NFW
profile. The spherical NFW density profile is

�(r) ¼ �s

(r=rs)(1þ r=rs)
2
; ð1Þ

where �s is a characteristic density and rs is the scale radius,
which describes where the density profile turns over from
� / r�1 to � / r�3.

Following the common thin lens approximation, the lens is
approximated as a mass sheet perpendicular to the line of sight,
and the scale convergence is defined as the ratio of surface mass
densities, �s � �srs/�crit , where �crit is the critical surface mass
density,

�crit �
c2

4�G

Ds

DlDls

; ð2Þ

with the angular diameter distancesDl, s, ls from the observer to the
lens, to the source, and from the lens to the source, respectively.

Obviously, �s is valid for a single source redshift only. In clus-
ters showing arcs at multiple redshifts, �s needs to be adapted
in the following way. Assuming two source redshifts z(1)s and
z(2)s > z(1)s for simplicity, we refer �s to the lower source red-

shift z(1)s . Fitting the lens model to the data, we adapt �s by the
factor

f � D
(2)
ls

D
(2)
s

D(1)
s

D
(1)
ls

ð3Þ

for the more distant sources, where D(i)
s � Dsðz(i)s Þ and D

(i)
ls �

Dlsðzl; z(i)s Þ, with zl as the lens redshift. Analogous factors are
applied for sources at additional redshifts, if there are any.
To elliptically deform the mass distribution, we alter the po-

tential to have ellipsoidal rather than axial symmetry. If the
potential is spherically averaged and then put into Poisson’s
equation, the resulting density will have the NFW shape, and the
surface mass density � will have a radial dependence described
by the projected elliptical radius,

re ¼ (r cos �)2(1� e)þ (r sin �)2=(1� e)
� �1=2

; ð4Þ

rather than the circular radius r. We define the potential ellip-
ticity e ¼ 1� b/a, where a and b are the major and minor axes,
respectively, and we define the position angle � in degrees
counterclockwise from the +y-axis.
For a given cosmology and halo redshift, an elliptical NFW

halo depends on only four parameters: the scale convergence �s ,
scale radius rs , ellipticity e, and position angle �. Numerical sim-
ulations predict that the halo concentration, i.e., the ratio between
the virial radius r200 and the scale radius rs , is determined by the
halo mass, albeit with considerable scatter (Navarro et al. 1997;
Bullock et al. 2001; Eke et al. 2001; Dolag et al. 2004). This im-
plies that the two parameters �s and rs characterizing a spherically
symmetric NFWhalo are not independent. However, with the aim
of testing numerical results using strong cluster lensing, we do not
adopt any correlation between these two halo parameters.
We identify the arcs on the HST image of a cluster and define

them by an array (xi , yi) of x and y positions of the image points
constituting each arc. These points are arranged on a grid with
spacing � in x and y. Generally, we take the spacing to be � ¼ 5
HST pixels, in order to limit the number of arc points. This array
of grid positions forms the data set we use to define a cluster’s
arcs.
We use SExtractor (Bertin & Arnouts 1996) to define the po-

sition of each lens as its center of light on the HST image of the
cluster. Then, for a given set of lens parameters (�s , rs , e, � ) for
each lens, we use the lensing equations to map the arc data back
to the source plane. This yields a set of points describing the
source. We next use the lensing equations again to map the source
points back to the lens plane by finding all images of all source
points. The result is a set of points that defines the image of the
source reproduced by the lens model. Our goal is to find the par-
ticular values of the lens parameters that yield predicted arcs that
most closely match the arc data, the number of sources predicted
by observations, and reasonably sized sources. Note that our ap-
proach does not require multiple arclike images of a single source
to be present and identified.
For this purpose we define a�2 function of the lens parameters

to quantify the goodness offit of our model to the data, so that the
minimum of �2 produces the best fit. Our �2 consists of three
components.
First we define how well each data point is fit by the image

points by finding the image point that lies closest to a given data
point. We introduce a �2 component �2

1 that depends on the
distance between each data point and its closest image point. If
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we let the N arc data points be (xi , yi) and the closest predicted
image point to a given data point be (ucl; i; vcl; i), then this com-
ponent of the �2 is

�2
1 ¼ 1

N

XN
i¼1

(xi � ucl; i)
2

�2
þ ( yi � vcl; i)

2

�2

� �
: ð5Þ

This �2
1 thus implicitly assumes that the reproduced image points

are distributed in a Gaussian fashion centered on the data points,
with a standard deviation of �.

Second we define how well each image point is predicted by
the data points by finding the data point that lies closest to a
given image point. This is not redundant to the �2

1 calculation
above, because even if every data point has a nearby image point,
there may still be distant, errant image points that are close to no
data points. We thus introduce another �2 component �2

2 that
depends on the distance between each image point and its closest
data point. If we let theM predicted image points be (uj; vj) and
the closest data point to a given image point be (xcl; j; ycl; j), then
this component of the �2 is

�2
2 ¼

1

M

XM
j¼1

(uj � xcl; j)
2

�2
þ (vj � ycl; j)

2

�2

� �
; ð6Þ

assuming again a Gaussian distribution of data with respect to
image points.

Third we require that arcs indicated by observations to be im-
ages of the same source do indeed belong to a single source in our
model. Some clusters host several families of arcs, each of which
belongs to one unique source. We require that our model predicts
both the number of sources suggested by observations of a clus-
ter’s arcs and the correct correlation between individual arcs and
sources, as suggested by observations. In addition, we require that
the predicted source be small and compact, as lensed sources are
commonly observed to be.

Define Ns as the number of sources suggested by observations
to produce a given cluster’s set of arcs. We examine the ith source
and its corresponding source points and image points predicted by
our best-fit model to the cluster lens system. If we let the Pi pre-
dicted source points be ( pi; j; qi; j), themean pi position be p̄i , and
the mean qi position be q̄i, then we define the contribution to �2

from the source configuration as

�2
3 ¼

1

Ns

XNs

i¼1

1

Pi

XPi

j¼1

( pi; j � p̄i)
2

�2
s

þ (qi; j � q̄i)
2

�2
s

� �( )
; ð7Þ

where the source points are assumed to have a Gaussian distri-
bution with standard deviation �s . The choice of �s is delicate,
as it controls the relative weight of the constraints in the lens
plane, quantified by �2

1;2, and in the source plane, quantified by
�2
3 . Large values of �s may yield best fits with unreasonably

large source configurations, while low values of �s may enforce
very small sources at the expense of considerable deviations be-
tween image and data points. Thus, it may be necessary to try
several fits with different choices of �s to obtain both good agree-
ment between image and data points and compact sources.

We add these three components to yield our total �2,

�2 ¼ �2
1 þ �2

2 þ �2
3: ð8Þ

By minimizing this quantity we maximize the overlap between
data points and predicted image points, reproduce the number

of sources indicated by observations, and require that the sources
be reasonably small in size. Each combination of (�s , rs , e, and � )
for each lens describes a different lens system that produces a
different set of source and image points and hence a different �2.
We use a downhill simplexminimization routine (‘‘amoeba’’ from
Press et al. 1992) to determine the combination of each lens’s (�s ,
rs , e, and � ) that minimizes �2. These best-fit values are the ones
we use to define the cluster’s lens system.

In most cases, we find that both �2
1 and �

2
2 are zero for the best

fits to the clusters, meaning that the predicted images and the
observed arcs exactly match. In these cases the total �2 scales in-
directly proportional to the squared assumed source radius, and
the uncertainty in the best-fit model is dominated by the source
size. In addition, when �2

1 and �
2
2 are zero, the best-fit parameter

values themselves are sensitive to the choice of source priors. For
example, if we relax all assumptions on the source size, then a lens
with zero mass would excellently fit all possible data. Hence, we
carefully choose source constraints with a physical basis and re-
quire that the sources are small and compact.

In clusters where the best-fit �2
1 and �2

2 are nonzero (e.g.,
A370 and MS 2137), the best-fit parameter values and the un-
certainties are dominated by the mismatch between data and
images and are not greatly influenced by the source priors.

3. ERROR ESTIMATION

To estimate errors on the cluster dark matter halo parameters
derived according to x 2, we employ �2 statistics as outlined in
Press et al. (1992). We must do so with caution. Formally, the �2

function is the log likelihood, assuming Gaussian distributions
of model points relative to data points. We cannot be sure that
this accurately describes our situation, in which we need to quan-
tify the deviation between given data and reproduced image
points. Assuming Gaussian likelihood factors, the two contribu-
tions �2

1;2 quantify the likelihoods of reproducing the data points
with the image points, and of finding image points exclusively
near data points. Taken as another contribution to �2, �2

3 quan-
tifies the log likelihood of the sources being well modeled as

Fig. 1.—A �37000 ; 37000 surface density map of the numerical cluster
used to test our lens parameter estimation method.
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Gaussians with widths �s . Strictly speaking, our �2 is a figure-
of-merit function, as it quantifies the deviation of the model from
the data in a well-defined sense. However, we interpret it as a true
�2 function, i.e., assuming that all deviations can be described by
appropriate Gaussians.

Recall that for a given lens system, the �2 function reaches a
minimum for the best-fit parameter values. Since its gradient
vanishes at the minimum, the �2 function can, to lowest order of
a Taylor expansion, be described as parabolic in the neighbor-
hood of the minimum. By varying each of the parameters around

this minimum, we thus expect to follow a parabolic section along
the parameter axes through the �2 surface.
For a cluster with Nl lenses, each modeled with an ellipsoidal

NFW density profile, we define a vector of best-fit parameters

abf ¼ (�s;bf ;1; rs;bf ;1; ebf ;1; �bf ;1; : : : ; �s;bf ;Nl
; rs;bf ;Nl

; ebf ;Nl
; �bf ;Nl

)

We then calculate the 16 N2
l components of the curvature ma-

trix akl by noting that

akl ¼
1

2

@2�2

@ak@al

����
����
a¼abf

; ð9Þ

where k and l vary from 1 to 4Nl . The partial derivatives can be
calculated from the parabolic fits along all parameter axes to the
local �2 function. The covariance matrix is the inverse of the
curvature matrix, C ¼ a�1, and the 1 � error in each parameter
is �ak ¼ C1/2

kk . We generally find these errors to be of order a few
percent. An interesting approach for estimating errors on strong-
lensing model parameters based on Monte Carlo Markov chains
was recently proposed by Brewer & Lewis (2006).

4. COMPARISON OF PARAMETER ESTIMATION
METHOD WITH SIMULATIONS

To test our method of lens parameter estimation outlined in
x 2, we use a numerically simulated galaxy cluster producing
arcs. The cluster was kindly made available by K. Dolag. It was
obtained by resimulating at higher resolution a patch of a pre-
existing large-scale numerical simulation of the �CDM model
with parameters�m0 ¼ 0:3,��0 ¼ 0:7,H0 ¼ 70 km s�1 Mpc�1,
and normalization �8 ¼ 0:9. The ‘‘ZIC’’ technique used is de-
scribed in detail in Tormen et al. (1997). The cluster has redshift
z ¼ 0:3 and a virial mass of Mvir ¼ 2:29 ; 1015 h�1 M�. The
particlemass in the resimulation ismpart ¼ 1:3 ; 109 h�1 M�. The
gravitational softening is set to 5 h�1 kpc.

Fig. 2.—Central region of Fig. 1, illustrating the critical lines for the numer-
ical cluster as well as examples of arcs produced by this cluster lens. We used
such systems of arcs to test our method of lens parameter estimation.

TABLE 1

Best-fit Parameters to Lenses in the Cluster Sample

Cluster Lens �s

rs
(h�1 kpc) e

�

(deg)

ClG 2244�02 ............................ 0.178 � 0.003 260 � 20 0.113 � 0.005 179 � 1

Abell 370 ................................... G1 0.164 � 0.007a 254 � 2 0.28 � 0.01 78 � 2

G2 0.165 � 0.004b 212 � 1 0.073 � 0.004 167 � 1

3C 220.1 .................................... 0.178 � 0.002 226 � 4 0.265 � 0.005 25 � 1

MS 2137.3�2353 ...................... 0.67 � 0.02 64 � 2 0.11 � 0.02 95 � 3

MS 0451.6�0305 ...................... 0.276 � 0.006c 262 � 8 0.215 � 0.004 156 � 1

MS 1137.5+6625 ....................... 0.256 � 0.002 279 � 1 0.143 � 0.005 58 � 2

ClG 0054�27 ............................ G1 0.047 � 0.001 340 � 20 0.175 � 0.003 92 � 1

G2 0.100 � 0.001 259 � 7 0.14 � 0.01 18.6 � 0.8

Cl 0016+1609 ............................ DG 256 0.102 � 0.003 270 � 10 0.123 � 0.002 64.7 � 0.4

DG 251 0.087 � 0.001 192 � 4 0.121 � 0.005 11.0 � 0.5

DG 224 0.219 � 0.004 261 � 7 0.1691 � 0.0008 7.1 � 0.4

Cl 0939+4713 ............................ G1 0.126 � 0.005 136 � 6 0.364 � 0.008 2.65 � 0.03

G2 0.114 � 0.002 190 � 10 0.215 � 0.008 73 � 1

G3 0.156 � 0.005 170 � 1 0.044 � 0.003 87 � 3

ZwCl 0024+1652....................... #362 0.158 � 0.003 198 � 2 0.059 � 0.002 6.6 � 0.2

#374 0.170 � 0.002 250 � 7 0.153 � 0.006 135 � 7

#380 0.116 � 0.003 285 � 2 0.0020 � 0.0001 58.1 � 0.8

a The value of �s at the source redshift of the giant arc A0. At the source redshift of the arc pair B2/B3, �s ¼ 0:181 � 0:008, and at
the source redshift of the radial arc R, �s ¼ 0:24 � 0:01.

b The value of �s at the source redshift of the giant arc A0. At the source redshift of the arc pair B2/B3, �s ¼ 0:183 � 0:004, and at
the source redshift of the radial arc R, �s ¼ 0:242 � 0:006.

c The value of �s at the source redshift of the upper arc ARC2. At the source redshift of the lower arc ARC1, �s ¼ 0:55 � 0:01.
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We simulate lensing by this massive cluster using standard
ray-tracing techniques. First the particles contained in a cube of
3 h�1Mpc comoving side length are selected. Then, to produce a
two-dimensional density field, their masses are projected along
the line of sight, interpolating their positions onto a regular
grid of 256 ; 256 pixels using the ‘‘Triangular Shaped Cloud’’
method (Hockney & Eastwood 1988). This surface density map,
shown in Figure 1, is used as the lens plane in the following
lensing simulation.

A bundle of 2048 ; 2048 light rays is traced from the observer
through the central quarter of the lens plane, and their deflection
due to the cluster mass distribution is calculated as described in
several earlier papers (see, e.g., Meneghetti et al. 2000, 2001,
2003a, 2003b). The arrival positions of the light rays on the
source plane, which we place at redshift zs ¼ 2, are used to re-
construct the lensed images of several sources distributed around
the caustic curves, so as to produce strong lensing features. The
sources are modeled as ellipses, with random orientation and
axial ratios randomly drawn with equal probability from [0.5, 1].
Their equivalent diameter (the diameter of the circle enclosing

the same area as the source) is re ¼ 100. Several arc configura-
tions have been used to test our method, and some of these are
illustrated in Figure 2.

We conduct a blind test of our parameter estimation method
by applying it to the simulated cluster and arcs without knowl-
edge of any of the cluster’s physical properties but its position.
We permit knowledge of the cluster’s position, because when we
model an HST cluster, we determine the positions of its galaxy
lenses on the HST image with SExtractor.

We model the simulated cluster based on the cluster position
and arc points, which is the same information we have when we
model HST clusters. Applying the parameter estimation method
described in x 2, we estimate the scale convergence, scale radius,
ellipticity, and position angle of the simulated cluster. We then
compare with the true values of these parameters in the simulated
cluster mass distribution.

In the simulation, the cluster is found to be well-described as
an NFWellipsoid with �s ¼ 0:54, rs ¼ 92B4, e ¼ 0:18, and � ¼
99

�
. With our arc modeling method, we found the cluster’s best-

fit parameters to be �s ¼ 0:55, rs ¼ 88B9, e ¼ 0:17, and � ¼
96�, which are within 4% of the parameter values used to ap-
proximate the cluster. This is a convincing match, even more so

TABLE 2

Estimated Cluster Lens Masses

Cluster Lens zarc

rs
(h�1 kpc)

M (�rs)

(h�1 M�) Reference

ClG 2244�02 ................................ 2.237 260 9.33 ; 1013 1

Abell 370 ....................................... G1 0.724/0.806/1.3 254 1.31 ; 1014 2

G2 0.724/0.806/1.3 212 9.21 ; 1013 2

3C 220.1 ........................................ 1.49 226 7.65 ; 1013 3

MS 2137.3�2353 .......................... 1.501 64 2.3 ; 1013 4

MS 0451.6�0305 .......................... 0.917/2.911 262 2.38 ; 1014 5

MS 1137.5+6625 ........................... 279 7.36 ; 1013 a

ClG 0054�27 ................................ G1 340 2.30 ; 1013 a

G2 259 2.85 ; 1013 a

Cl 0016+1609 ................................ DG 256 270 3.29 ; 1013 a

DG 251 192 1.39 ; 1013 a

DG 224 261 6.45 ; 1013 a

Cl 0939+4713 ................................ G1 3.98 136 1.52 ; 1013 6

G2 3.98 190 2.68 ; 1013 6

G3 3.98 170 2.92 ; 1013 6

ZwCl 0024+1652........................... #362 1.675 198 4.75 ; 1013 7

#374 1.675 250 8.17 ; 1013 7

#380 1.675 285 7.21 ; 1013 7

a Because the arcs have no published redshifts, we compute the mass assuming Ds/Dls ¼ 1.
References.— (1) Smail et al. 1997b; (2) Bézecourt et al. 1999; (3) Ota et al. 2000; (4) Gavazzi 2005; (5) Borys et al. 2004;

(6) Trager et al. 1997; (7) Broadhurst et al. 2000.

Fig. 3.—A 2000 ; 20 00 section of the F555W WFPC2 image of ClG
2244�02 (left) and same section of the best fit (right). The plot on the right
illustrates the reproduced giant arc (gray points), the predicted source (black
points), and the lens’s critical curves. The gray image points are scaled such
that darker grays denote brighter points in the image.

Fig. 4.—As Fig. 3, but enlarged to 3000 ; 3000 and using a model with each
lens parameter 3 � greater than its best-fit value (right).
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because the true cluster parameters are the results of a fit and
carry errors themselves. Hence, we proceed with confidence in
our lens parameter estimation routine to model our sample of
HST clusters.

5. CLUSTER MASS ESTIMATES

If we know the lens parameters of a cluster and the source and
lens redshifts, we can determine the mass of the lens within a
given radius. Because the clusters’ three-dimensional shapes are
unknown, we cannot calculate elliptical masses for the clusters.
Rather, we determine the equivalent mass of a spherical NFW
halo with the best-fit parameters calculated in x 2.

We assume the lens is described by an NFW density profile,
where the characteristic density is the density at the scale radius,
given by �s ¼ �s�crit /rs . If we define x � r/rs, then the mass
contained within a (three-dimensional) radius R is

M (�R) ¼ 4�r 3s �s

Z R

0

x2

x(1þ x)2
dx

¼ 4��crit�sr
2
s ln (1þ y)� y

1þ y

� �
; ð10Þ

where y � R /rs. The critical surface mass density is given in
equation (2).

For each lens in a cluster, we calculate the projected mass con-
tained within the lens’s scale radius. We note that for the clusters
in our sample without published arc redshifts (MS 1137, Cl 0054,
and Cl 0016), we can only estimate the lens masses to within the
unknown ratio of angular diameter distances Ds/Dls.

6. PARAMETRIZATIONS AND MASS ESTIMATES
OF THE CLUSTERS

Here we present the best fit to each cluster based on the ob-
served arcs, as described in x 2. We will discuss each cluster

individually. For a summary of the best-fit parameters for all
sampled clusters, see Table 1. Our mass results are summarized
in Table 2, which includes the reference for each cluster’s arc
redshifts.

ClG 2244�02.—The cluster ClG 2244�02 has a redshift
z ¼ 0:33 and hosts a spectacular tangential arc (Smail et al.
1997b). Lynds & Petrosian (1989) discovered this giant lumi-
nous arc, which is located near the cluster center. The arc is a par-
tial Einstein ring, and we take the lens to be the large galaxy seen
in Figure 3 (left ) near where the Einstein ring is centered.
Although the errors we calculated for the best-fit parameters

are as small as 0.5%, they are indeed realistic. In Figure 4 (right)
we illustrate what the predicted source and images are when we
increase each lens parameter to 3 � greater than its best-fit value.
The predicted giant arc is much larger than that observed and is
broken into two sections. Two small images are also produced
near the source that are not seen in observations.
Changing the lens parameters by only 3 � significantly alters

the lensed images, which indicates that the lens parameters must
be tightly constrained around our best-fit values. We use this
example to justify the small errors we find for ClG 2244�02, and
also extend the argument to the small errors we find for clusters
that follow.
Abell 370.—The rich cluster Abell 370 is at redshift z ¼ 0:375

(Abdelsalam et al. 1998) and has a bimodal mass distribution
with two cD galaxies. These two galaxies mark the centers of
twomass components in our model, and we identify the northern
cD as G1 and the southern cD as G2.
By the classification of Bézecourt et al. (1999), the giant arc

is A0, the nearby radial and two tangential arcs are R, B2, and
B3, and the upper tangential arcs are A1 and A2. These six arcs,
as well as the cD galaxy lenses, are visible in Figure 5 (left ).
We assume A1 and A2 to be at the same redshift as the dom-

inant arc A0. They are likely to form a double image of the same

Fig. 5.—As Fig. 3, but showing an 8000 ; 8000 section of the F675W
WFPC2 image of Abell 370.

Fig. 6.—As Fig. 3, but showing a 2000 ; 20 00 section of the F555W WFPC2
image of 3C 220.1.

Fig. 7.—As Fig. 3, but showing a 4500 ; 4500 section of the F702W WFPC2
image of MS 2137.3�2353.

Fig. 8.—As Fig. 3, but showing a 6000 ; 6000 section of the F702W WFPC2
image of MS 0451.6�0305.
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source. Arcs B2 andB3 share the same redshift and are images of
a separate source; R is an image of yet another source (Bézecourt
et al. 1999). Accordingly, our best-fit model produces four in-
dependent sources for these six arcs.

Our best fit also produces three additional images that we did
not identify in our initial arc sample. They correspond to fuzzy
patches on theHST image, which may reflect actual images. The
exact number of arcs in the cluster is unclear; Bézecourt et al.
(1999) identify as many as 81 arclets. Further study would offer
more insight into the complex nature of Abell 370.
3C 220.1.—The cluster containing the radio galaxy 3C 220.1

is at redshift z ¼ 0:62 and hosts a giant arc (Ota et al. 2000). The
lens responsible for producing this arc is 3C 220.1, which is
identifiable as the largest source in the HST image (Fig. 6, left).
MS 2137.3�2353.—MS 2137.3�2353 is a rich cluster at

redshift z ¼ 0:313 that contains a giant luminous arc and several
arclets (Gavazzi 2002). The cluster is dominated by a single cD
galaxy, which we define as the lens. Adopting the classification
system of Gavazzi (2002), the giant arc is A0, the radial arc near
the cD galaxy is A1, the arc to the left of the cD galaxy in Fig-
ure 7 (left ) is A2, and the two arcs to the right of the cD galaxy
are A4 and A5. The lens and the five arcs are visible in the HST
image of MS 2137.3�2353 (Fig. 7, left).

Gavazzi (2005) also fit an NFW model to MS 2137.3�2353,
and the ellipticity found in that paper is within the error bars
of our best-fit ellipticity. In contrast, our scale radius is �30%
smaller than, and our scale convergence is twice as large as, the
corresponding values found in Gavazzi (2005). Because our lens
model and data differ from those used by Gavazzi (2005), how-
ever, we do not expect the derived parameters to agree precisely.
Despite the discrepancies, both our findings and those of Gavazzi
(2005) agree that the concentration of the cD galaxy in MS
2137.3�2353 is high.

Our lens model predicts an additional arc, near the center of
the cD galaxy, which was also discussed and possibly detected
by Gavazzi et al. (2003). Gavazzi (2002) suggests that the arcs in
MS 2137.3�2353 can be categorized into two different systems,
each with a unique source. The arcs A0, A2, and A4 are images
of one source, and A1 and A5 are images of a separate source.
We use these correlations to constrain the lens parameters, and
Figure 7 (right) illustrates the two unique sources predicted by
our best-fit lens model.
MS 0451.6�0305.—The cluster MS 0451.6�0305 is located

at z ¼ 0:55 and hosts two tangential arcs (Borys et al. 2004). The
two arcs, as well as the cD galaxy lens, are apparent in the HST
image in Figure 8 (left). Following the classification of Borys
et al. (2004), the lower arc in the figure is ARC1, and the upper
arc is ARC2.

Borys et al. (2004) note that the two arcs in MS 0451.6�0305
are at different redshifts and thus are not images of a single source.
These two separate sources can be seen in our fit, shown in Fig-
ure 8 (right).
MS 1137.5+6625.—The lensing cluster MS 1137.5+6625 at

z ¼ 0:783 (Clowe et al. 1998) has the highest redshift of the
clusters in our sample and hosts several faint arcs. Wemodel five
arcs, and because there are no published redshifts for the arcs, for
simplicity we assume that they are all at the same redshift and
that each arc has an independent source. The lens in our model is
the cD galaxy at the center of the cluster.

The lens defined by the parameters in Table 1 accurately re-
produces the five observed arcs, as seen in Figure 9. Each arc has
its own independent source.
ClG 0054�27.—The cluster ClG 0054�27 is located at red-

shift z ¼ 0:56 and has one lensed arc (Smail et al. 1997a). To
reproduce the arc, we take the two lenses in the cluster to be the
central galaxy (which we call G1) and the upper left galaxy (G2)

Fig. 9.—As Fig. 3, but showing a 4500 ; 4500 section of the F814W WFPC2
image of MS 1137.5+6625.

Fig. 10.—As Fig. 3, but showing a 2000 ; 20 00 section of the F555W
WFPC2 image of ClG 0054�27.

Fig. 11.—As Fig. 3, but showing a 4500 ; 4500 section of the F555W
WFPC2 image of Cl 0016+1609.

Fig. 12.—As Fig. 3, but showing a 40 00 ; 4000 section of the F702W
WFPC2 image of Cl 0939+4713.
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in Figure 10 (left). These two lenses combined reproduce the
observed arc accurately.
Cl 0016+1609.—The cluster Cl 0016+1609, at redshift z ¼

0:545, has one thin lensed arc (Lavery 1996). The three approx-
imately collinear elliptical galaxies seen in Figure 11 (left) define
the center of the cluster and are the lenses we use to reproduce the
observed arc. These three giant galaxies are, from top to bottom in
Figure 11 (left), DG 256, DG 251, and DG 224. The combination
of these three lenses reproduces the single thin arc convincingly.
Cl 0939+4713.—The cluster Cl 0939+4713 is at redshift z ¼

0:41 and has three radial arcs near its center (Seitz et al. 1996).
Three giant elliptical galaxies are visible in Figure 12 (left ), and
these galaxies make up the cluster’s core. We take these galaxies
to be the gravitational lenses, and call the top one in Figure 12
(left) G1, the leftmost oneG2, and the rightmost oneG3. The three
arcs are also visible in Figure 12 (left).

Defined by their best-fit parameters given in Table 1, the three
lenses are able to reproduce the three arcs observed in Cl 0939+
4713. Trager et al. (1997) argue that two of the arcs in Cl 0939+
4713 are likely images of the same source, whereas the third arc is
probably an image of a separate galaxy. Consistentwith this expec-
tation, our model predicts two unique sources for the arc system.
ZwCl 0024+1652.—The cluster ZwCl 0024+1652 has redshift

z ¼ 0:395 and hosts five images of a single background galaxy
(Ota et al. 2004). The three central elliptical galaxies in the cluster,
seen roughly collinear in Figure 13 (left), act as the lenses for this sys-
tem. From left to right in Figure 13 (left), these galaxies are labeled
numbers 362, 374, and 380 in the Czoske et al. (2001) catalog.

As lenses, these three central galaxies can accurately repro-
duce the five observed arcs in ZwCl 0024+1652, as shown in
Figure 13. Ota et al. (2004) note that all five arcs are images of a
single background galaxy, and our results are consistent with
that observation.

7. CONCLUSIONS

We have modeled 10 clusters hosting gravitational arcs and
observed with HST as systems of dark matter halo lenses defined
by elliptical NFW density profiles. Given its position on the HST
image, each lens is completely defined by its scale convergence,
scale radius, ellipticity, and position angle.We use a minimization
routine to vary these parameters for each lens until the reproduced
images match the observed arcs in the cluster, and each obser-
vationally confirmed family of arcs belongs to a unique source.
We also require that the predicted sources are compact. With this
routine, we find the best-fit scale convergence, scale radius, el-
lipticity, and position angle for each lens in each cluster.
Our main results can be summarized as follows:

1. Each cluster in our sample is successfully modeled as a sys-
tem of mass components with asymmetric NFW density profiles.
The model produces images that correspond to observed arcs in
the cluster, and the system of arc sources suggested by observa-
tions is reproduced.
2. The best-fit parameters to each modeled cluster fall within

the range of reasonable values set by simulations. Because the
scatter in concentrations in simulated dark matter halos at fixed
mass is large (Jing 2000; Bullock et al. 2001; Dolag et al. 2004),
a more direct comparison is impossible for a sample of our size.
Our estimates of the lens masses are also reasonable for large
galaxies.
3. The accuracy of our minimization technique for finding the

best-fit parameters to a system of NFW ellipsoids is verified by
our fit to a simulated cluster with arcs. The cluster was simulated
as an NFW ellipsoid, and we successfully reproduced the sim-
ulated cluster’s parameters to within 4%.

Clusters containing arcs have been commonly and success-
fully modeled using mass components defined with spherical or
ellipsoidal isothermal density profiles. We show, however, that
galaxy clusters can also be convincingly modeled with NFW
ellipsoids. The NFW profile is predicted for dark matter halos in
numerical simulations of cosmological structure formation, and
our result lends more credibility to NFW profiles as models of
actual observed galaxy clusters.
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