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ABSTRACT

We use a high-resolution grid-based hydrodynamics method to simulate the multiphase interstellar medium (ISM)
in a quiescent Milky Way–sized disk galaxy. The models are global and three-dimensional, and they include a treat-
ment of star formation and feedback. We examine the formation of gravitational instabilities and show that a form
of the Toomre instability criterion can successfully predict where star formation will occur. Two common prescrip-
tions for star formation are investigated. The first is based on cosmological simulations and has a relatively low thresh-
old for star formation but also enforces a comparatively low efficiency. The second only permits star formation above
a number density of 103 cm�3 but adopts a high efficiency. We show that both methods can reproduce the observed
slope of the relationship between star formation and gas surface density (although at too high a rate for our adopted
parameters). A run that includes feedback fromType II supernovae is successful at driving gas out of the plane, most
of which falls back onto the disk. This feedback also substantially reduces the star formation rate. Finally, we
examine the density and pressure distribution of the ISM and show that there is a rough pressure equilibrium in the
disk, but with a wide range of pressures at a given location (and even wider for the case including feedback).

Subject headings: galaxies: evolution — galaxies: ISM — galaxies: spiral — ISM: structure —
methods: numerical

Online material: color figures

1. INTRODUCTION

Star formation in galactic disk systems is the product of a large
number of physical processes and thus is potentially quite com-
plicated. In outline, gravity tries to form the densemolecular clouds
out of which stars form, while rotational shear, thermal pressure,
turbulence, magnetic fields, and cosmic-ray pressure resist the
collapse. Since the gas in disks does not turn into stars on a free-
fall time, one or more of these resistive mechanisms must be
effective. The classic condition for disk instability, the Toomre
Q parameter (Toomre 1964), encodes the impact of shear, which
suppresses large-scale perturbations, and the effective sound speed,
or pressure (which suppresses small-scale fluctuation and may be
any of the physical processes described earlier). WhenQ is above
some critical value, the large- and small-scale suppression ranges
overlap, and no (linear) perturbations are gravitationally unstable.

While this picture is theoretically pleasing and has substantial
observational support (Kennicutt 1989; Boissier et al. 2003;
Heyer et al. 2004), it is still not perfectly clear which of the phys-
ical processes listed above actually supply the local effective
pressure. Probably the leading candidate is turbulence because it
is seen in all disks and has many of the correct properties, but it
should be noted that the magnetic fields and cosmic-ray pressure
have similar energy densities (Boulares &Cox 1990). Turbulence
in galactic disks can be generated from a number of sources, in-
cluding gravity (Wada et al. 2002), stellar winds, supernovae
(e.g., Mac Low & Klessen 2004), the magnetorotational in-
stability (Sellwood & Balbus 1999), and even radiative heating
(Kritsuk & Norman 2002). Whatever the source, the combined
effect of the effective pressure, gravity, and shear must repro-
duce both the observed threshold density for star formation and
also the observed relation between gas surface density and

star formation (Schmidt 1959; Kennicutt 1989, 1998; Martin &
Kennicutt 2001).
A related question is the structure and distribution of gas den-

sities, temperatures, and pressures within the interstellar me-
dium (ISM). Observational and theoretical work have suggested
a picture of a multiphase medium with substantial turbulent mo-
tions (McKee & Ostriker 1977; McCray & Snow 1979; Larson
1981; Stanimirovic et al. 1999; de Avillez 2000; Elmegreen et al.
2001). However, the distribution of gas (in terms of both volume
and density) in the various phases is not well understood, although
substantial observational progress has been made (Jenkins 1978;
Shelton & Cox 1994; Ferguson et al. 1996; Chu 1999; Shelton
et al. 2001). It is clearly important to try to probe this topic theo-
retically in order to tease apart the connection between star forma-
tion, feedback, and the ISM, not simply for a better understanding
of our Galaxy and local galaxies, but also to model star formation
and galaxy formation at high redshift.
Numerical work often focuses on one of two aspects: either a

detailed analysis of the ISM and a smaller simulation area, or a
study of the global disk instabilities and star formation at the cost
of a simplified ISM model. Models that have tackled both topics
have either been in two dimensions (Wada & Norman 2001) or
restricted to a box size a few hundred parsecs across (Wada 2001).
Work performed in two dimensions by Rosen & Bregman

(1995) allowed the ISM to evolve self-consistently but treated
the stars as a collisional rather than collisionless fluid. They mod-
eled the galaxy side-on so that the simulation region included a
dimension out of the disk. They found that the gas formed a three-
phasemediumwith cold andwarmfilaments surrounding bubbles
of hot gas. The bubbles of hot gas extend to up to a kiloparsec
across, with filamentary structure similar to that observed in our
own Galaxy.
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Self-consistent treatment of the ISM and star formation has
been performed in two dimensions (with both dimensions in the
plane) byWada&Norman (2001) and in three dimensions over a
small box size (Wada 2001). They see three phases but also gas
that exists in unstable regions between these phases. They there-
fore argue that a simple two- or three-phase model of the ISM is
not sufficient to represent it properly, and that turbulence results
in the smearing out of the phases so that gas exists outside pres-
sure equilibrium. Wada also finds that the hot gas is a product of
the supernova explosions, and both the hot and warm gas exist
off the surface of the disk, leaving the cold gas on the disk plane.

In three dimensions but considering a small section of disk, de
Avillez (2000) also utilized a separate stellar disk to explore the
collective effects of Type I and II supernovae on the structure
of the ISM. His simulations were performed in three dimensions
for a section of a galactic arm, located 8.4 kpc from the galactic
center using a fixed gravitational field. The supernova locations
were determined randomly but with constraints imposed to give
a realistic distribution. His results show cold gas is present in a
thin, irregular layer on the galactic plane, intercrossed with tun-
nels of hot gas from supernova explosions. Around the cold gas
is a thick disk of neutral warm gas up to 500 pc, followed by
ionizedwarmgas and then hot gas at heights above 1.5 kpc. Places
where several supernovae merge form reservoirs of hot gas that
have enough energy to break free of the gravitational pull of the
stellar disk and expand upward in large bubbles.

Korpi et al. (1999) modeled a section of the ISM self-
consistently, including the effects of Type I and II supernovae
and that of magnetic fields, but left out star formation and self-
gravity. Their ISM formed a two-phase structure of warm and hot
gas with a bimodal temperature-density distribution. The warm gas
was found in scale heights less than 500 pc and the hot gas above
that. They also found a cold component, due to compression by the
warm gas, which was found at heights of less than 100 pc. The
supernovae in their simulations clustered to produce large non-
spherical shells.

Several numerical studies have simplified their treatment of
the ISM to study the global properties of the disk and star for-
mation. Robertson et al. (2004) and Semelin & Combes (2002)
both assumed a two-phase ISM consisting of cold clouds em-
bedded in a warm gas in pressure equilibrium. The ratio of gas
in these two phases is controlled statistically by allowing gas to
switch phases during supernova explosions, conduction, and cool-
ing processes.

In their paper, Robertson et al. (2004) compared simulations
that used first no star formation, then star formation but no feed-
back, and finally feedback with a two-phase ISM. In the non-
feedback cases, the gas cooled extremely efficiently, resulting in
a nearly isothermal ISM. They found that in these cases, disk
fragmentationwas catastrophic and the stars (when present) ended
up in two big clumps. The addition of star formation stabilized
the disk for slightly longer than that in the no–star formation
case. In both cases, the fragmentation was due to the Toomre
instability (Toomre 1964). The addition of feedback and a multi-
phase ISM resulted in increased pressure support and a smoother
distribution of gas and stars.

Li et al. (2005a, 2005b) used an isothermal gas for the ISM
and examined star formation for two different temperatures.
They found in both cases the gradient of the gas surface density
plotted against the surface density of the star formation rate is
around 1.5, in good agreement with the Schmidt law and the ob-
servations of Kennicutt (1989). They also observed a thresh-
old for star formation, where no stars are formed past two radial
scale lengths. This is also the point at which the Toomre Q

parameter drops below 1 and the disk becomes stable to Toomre
instabilities.

Kravtsov (2003) performed hydrodynamic simulations in a
cosmological context. In this work, the gas is converted into stars
on a characteristic gas consumption timescale, rather than on the
dynamical time. Kravtsov finds that this can still reproduce the
Schmidt law with a gradient of 1.4. The addition of feedback in
these simulations results in considerably more hot gas at low
densities, although the probability density function of the gas
density remains unchanged.

This paper is the first step in a longer range plan to understand
the fundamental processes of star formation and feedback in a
galaxy disk. These are the first three-dimensional simulations of
a global diskwithout the need to simplify the structure of the ISM,
using a grid-based code that is better able to resolve themultiphase
medium (except for the small-disk simulations of Wada [2001],
which are also grid-based). We use this model to investigate local
star formation throughout the evolution of the disk, from the early
fragmentation of the gas into stars through to the global and local
properties of the star formation rate and the effect on the evolution
of the interstellar medium. We compare the results for two differ-
ent models of star formation and with and without the inclusion of
stellar feedback fromType II supernovae. Ultimately, we hope the
better understanding of star formation gained from looking at our
isolated disk will act as a guide to cosmological simulations of
galaxy formation. For these simulations we use a high-resolution
adaptive mesh refinement (AMR) code, which includes a more
sophisticated treatment of star formation and feedback, as well
as a full treatment of self-gravity of the gas rather than the fixed
potential that is often used. We concentrate on hydrodynamical
effects, ignoring (for the moment) magnetic fields and cosmic-
ray pressure.

In x 2, we describe our computational approach, and in x 3 we
discuss the structural properties of the disk simulations, includ-
ing the formation of instabilities and the vertical distribution. In
x 4, we discuss how star formation is related to the surface den-
sity and compare this to observations, while x 5 contains an
analysis of the multiphase structure of the resulting ISM.

2. COMPUTATIONAL METHODS

2.1. The Code

To model the galaxy disk, we used the structured AMR grid
code, Enzo, described in Bryan & Norman (1997), Bryan (1999),
Norman & Bryan (1999), Bryan et al. (2001), and O’Shea et al.
(2004). Enzo is a three-dimensional hydrodynamics code that
uses a grid-based scheme for the gas and particles for the stars. A
large advantage to using AMR codes over static grids is that in-
dividual regions of the simulation box can have different levels of
refinement. This significantly reduces computational time by only
refining areas that need it. An AMR code works by initially plac-
ing a single, uniform grid over the whole simulation box. This is
the ‘‘parent’’ or root grid and consists of large grid squares allow-
ing a small number to cover the entire volume. The small number
of grid cells allows the average properties of each cell to be cal-
culated quickly. However, the detail that this grid describes ismin-
imal; anything smaller than one of these cells goes unnoticed. The
code therefore looks at each cell and decides whether further res-
olution is required. In this work, the decision is made based on
whether the baryon density is above a threshold value. If it is, a
finer ‘‘child’’ grid is placed inside the parent cell, and the proper-
ties of each of its grid cells are then computed. The process can
then be repeated, with the child grid itself becoming a parent grid
and so on until the desired level of resolution is reached. The result
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is a nested structure of grids, with very fine grids only over the
areas that require high levels of resolution.

The AMR technique has been particularly successful in re-
solving the multiphase nature of the ISM in the presence of star
formation and feedback processes (Slyz et al. 2005). Particle-
based codes tend to overmix the hot and cold gas, which leads to
an overestimate of the radiative losses, although algorithmic im-
provements have alleviated this problem somewhat (the problem
and proposed solutions are discussed in detail in, e.g., Marri &
White [2003] and Springel & Hernquist [2003]). Grid codes
suffer less from this problem as the mesh allows distinct bound-
aries to be more sharply resolved. This is one of the reasons that
we use Enzo to study the instabilities produced in the disk and
the resulting ISM structure.

The disk is modeled in a three-dimensional periodic box of
side 1 h�1 Mpc. The size of the parent grid is 1283, and we pro-
ceed down to an additional eight subgrids of refinement, which
gives us a maximum resolution (i.e., minimum cell size) of about
50 pc (and include some runs with resolution down to 25 pc).
Once set up, the diskwas allowed to evolve over a period of�z ¼
0:1 � 1:4 Gyr. The simulations were performed using comoving
coordinates, although over the small range of redshift examined
here, the impact of the expansion is very slight (for complete-
ness we note that the model adopted is a �CDM universe with
�m ¼ 0:3, �� ¼ 0:7, and H0 ¼ 67 km s�1 Mpc�1).

The gas is evolved using a three-dimensional version of the
ZEUS hydrodynamics algorithm (Stone & Norman 1992). Ra-
diative gas cooling follows the cooling curve of Sarazin &White
(1987) down to temperatures of 104 K. Further cooling down to
Tmin ¼ 300 K is introduced in the second simulation and used
thereafter, where the cooling curve is extended using rates given
in Rosen & Bregman (1995). This is larger than the minimum
temperature of dense molecular clouds but is in the upper range
of temperature for the cold neutral medium (Wolfire et al. 2003).
In their paper, Rosen & Bregman (1995) argue that other phys-
ical processes (e.g., cosmic-ray pressure or magnetic fields) may
be crudely modeled by such a choice. More practically, it allows
us to observe the formation of a multiphase medium, including
the primary phases commonly discussed, and yet resolve the Jeans
length over most of the disk (we will return to this issue in more
detail).

For the simulations in which star formation was allowed to
occur, the following criteria were used to decide whether a grid
cell would produce a star (Cen & Ostriker 1992; O’Shea et al.
2004): (1) the gas density in that grid cell exceeds a threshold
density, (2) the mass of gas in the cell exceeds the local Jeans
mass, (3) there is convergent flow (i.e., : = v < 0), and (4) the
cooling time is less than the dynamical (�cool < �dyn), or the gas
temperature is at the minimum allowed value. If a grid cell meets
all the previous criteria, then some gas is converted into a ‘‘star
particle.’’ The mass of this star particle is calculated as

m� ¼ �
�t

tdyn
�gas�x3; ð1Þ

where � is the star formation efficiency (more properly the ef-
ficiency per dynamical time),�t is the size of the time step, tdyn
is the time for dynamical collapse, and �gas is the gas density.
This set of conditions has one extra criterion added to it: even if
a cell fulfills all of the previous four criteria, a star particle will
not be formed if its mass is less than a minimum star particle
massm�min. In most of our simulations, the value form�min used
was 105 M�. The reason for this addition is purely computa-
tional: a large number of small stars would greatly slow down

the simulation. However, in the case in which this criteria is the
only mechanism preventing a star particle from forming, a by-
pass exists that allows a star particle with mass less thanm�min to
form with a probability equal to the ratio of the mass of the
predicted star particle over m�min (in which case the resulting
star mass is m�min or 80% of the mass in the cell, whichever is
smaller).
To model the star formation in a molecular cloud, which will

typically spread out over a dynamical time, the star particle’s
formation is spread out over time such that its mass at a time t is

mstars(t) ¼ m�

Z t

tSF

(t � tSF)

�2
exp

�(t � tSF)

�
dt; ð2Þ

where m� is the mass of the star particle, tSF is the time the star
particle was formed, and � ¼ max (tdyn; 10 Myr).
The code also allows the inclusion of stellar feedback from

Type II supernova explosions. This form of feedback has often
been suggested as the main driving force for self-regulated star
formation. If this option is switched on in the code (as it is for two
of our simulations), then 10�5 of the rest-mass energy of gen-
erated stars is added to the gas’ thermal energy over a time period
equal to tdyn. This is equivalent to a supernova of 1051 ergs for
every 55M� of stars formed. All this energy goes into the cell in
which the star particle has been created.

2.2. Initial Conditions

Our simulations start with an isothermal gas disk with a
temperature of 104 K and a density profile given by

�(r; z) ¼ �0e
�r=r0 sech2

1

2

z

z0

� �
: ð3Þ

Integrating this expression for the density gives us the total
mass Mgas(r) ¼ 8��0R

2
0z0, where �0 ¼ 2:36 ; 10�20 kgm�3,

which is based on a total gas mass of 1 ; 1010 M�. We begin
with no preexisting stellar disk. We note that the total disk mass
we adopt is low compared to the Milky Way disk, which is
roughly 4 times more massive (e.g., Klypin et al. 2002), al-
though below we do include one simulation with a heavier disk.
For the scale radius and height we took typical values of r0 ¼
3:5 kpc and z0 ¼ 400 pc, respectively.
The disk sits in a dark matter profile that takes the form de-

scribed by Navarro et al. (1997). This produces a dark matter
mass at a radius R of

MDM(r) ¼
M200

f (c)
ln (1þ x)� x

1þ x

� �
; ð4Þ

where the virial mass M200 ¼ 1012 M�, x ¼ Rc/r200, and the
concentration parameter c ¼ 12. Here f (c) is an expression given
by

f (c) ¼ ln (1þ c)� c

1þ c
: ð5Þ

Adding together the gaseous and dark matter mass compo-
nents allows us to calculate the initial circular velocity of the
disk using Vcirc(R) ¼ GMtot/Rð Þ1/2.

2.3. Summary of the Performed Runs

Table 1 presents the simulations we ran, outlining the different
parameters used in each run. There are four main groups of sim-
ulations: simulation A permitted cooling only down to 104 K,
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which is the minimum allowed by neutral hydrogen line cooling.
Simulation B (and the remainder of the simulations) was allowed
to cool down to our lower limit of 300 K. Simulation C included
star formation with an efficiency typical of large-scale cosmo-
logical simulations (5%). This efficiency is appropriate for the
galactic disk as a whole, so we adopted a low-density threshold
that allows stars to form even in relatively low-density regions
(provided they pass the other criteria). In this picture, we admit
that we are not following the formation of all dense clumps and
thus use a Schmidt-like law to model the star formation rate.
Simulation D, on the other hand, assumes that stars will only
form in the giant (molecular) clouds resolved in the simulation,
and so we adopt a high efficiency and a high threshold (corre-
sponding approximately to a number density of 103 cm�3). In
addition to the basic C and D runs, we also perform a number of
variants. In each case, we include high-resolution runs (CHIRES
and DHIRES) that use a root grid with twice as many cells and
thus twice the spatial resolution and 8 times the mass resolution
of the standard runs as well as runs that include feedback from
Type II supernovae (CFDBCK and DFDBCK). In addition, we
examine the impact of reducing the star formation efficiency by
a factor of 10 (CLOWEFF) and adding an additional refinement
criteria that forces the local Jeans length to be resolved by at least
four cells (DJEANS), as suggested by Truelove et al. (1997; at
least until we reach the maximum refinement level, or the mini-
mum�x given in Table 1). We also perform one final simulation
(DCONST) where we changed our function for star particle mass

as given in equation (1) to depend on a set timescale, rather than
on the dynamical time.

3. STRUCTURAL RESULTS

In this section, we investigate how the disk cools and fragments
and the impact that star formation has on the three-dimensional
structure.

3.1. Evolution and Structure of the Disk

In the first simulation performed (simulation A in Table 1,
with cooling limited to a minimum temperature of 104 K), the
disk remained largely uniform with only small fluctuations oc-
curring in the central few kiloparsecs. As we show below, this is
consistent with our expectations from the growth of gravitational
instabilities. No star formation would have occurred even if we
had allowed it.

However, when cooling is allowed down to 300 K (as in runs
B, C, and D), the result is quite different. Figure 1 shows the
growth of the perturbations over the first 150 Myr. The perturba-
tions start in the center where the dynamical time is the shortest
(recalling that tdyn � ��0:5) and spread outward with time. Ini-
tially, the perturbation begins as a spiral density wave as the ra-
dial direction collapses first. This forms spiral filaments that then
fragment in the azimuthal direction. Knots quickly appear and
accrete matter along the filament, in a manner reminiscent of
cosmological structure formation. Eventually, the filament dis-
appears and neighboring knots start to interact. The interactions
lead to mergers but also to high-velocity encounters that can strip
material from the knots. Eventually, the entire face of the disk that
is prone to instabilities develops these clumps. The presence or
absence of star formation in our simulations does not significantly
change this picture.

These images are similar in many respects to the two-
dimensional simulations presented in Wada & Norman (2001),
albeit on a somewhat larger scale. Increasing the dimensionality
does not appear to significantly change the early evolution of
the clumps. However, examining images of disks in a side-on
projection shows that the clumps do make excursions out of the
plane during interactions, and the later evolution we see differs
significantly from the two-dimensional Wada & Norman results.
We discuss the vertical structure in more detail below.

Figure 2 shows the later evolution of run B, with cooling. The
projections here show the evolution of the disk pressure (bottom)
in addition to the gas density (top) and temperature (middle) for

TABLE 1

Simulation Parameters

Parameter

Tmin

(K)

min�x

( pc) �

nthresh
(cm�3) Feedback

A.............................. 104 50 0 0.02 No

B.............................. 102.5 50 0 0.02 No

C.............................. 102.5 50 0.05 0.02 No

CHIRES .................. 102.5 25 0.05 0.02 No

CLOWEFF.............. 102.5 50 0.005 0.02 No

CFDBCK................. 102.5 50 0.05 0.02 Yes

D.............................. 102.5 50 0.5 103 No

DHIRES .................. 102.5 25 0.5 103 No

DFDBCK ................ 102.5 50 0.5 103 Yes

DJEANS.................. 102.5 25 0.5 103 No

DCONST................. 102.5 50 0.5 103 No

Fig. 1.—Evolution of the gas density as a function of time for the DHIRES run in the central 21.4 kpc of the run. From left to right, the frames are at 50, 100, and
150 Myr, respectively. The density ranges from 10�1 to 103 M� pc�2.

SIMULATING GALACTIC DISKS 881No. 2, 2006



four of the simulations outputs. The dense knots show up clearly
in the temperature plot as the coldest gas. This is consistent with
the very short cooling times implied by such dense gas. Basi-
cally, the gas is as cold as our truncated cooling curve allows.
The anticorrelation between density and temperature implies some
degree of pressure balance. However, the bottom set of panels in
this figure show that while this is true for the low- and moderate-
density gas, the highest density clumps are significantly over-
pressured compared to the rest of the ISM (note that the pressure
here is only thermal pressure—we do not try to characterize any
turbulent component to the pressure). Farther out in the disk
(beyond about 10 kpc), the gas fails to form cold, dense clumps.
The gas also shocks up to temperatures around 105–106 K (also
the temperature of the gas in the interclump regions near the
center of the disk).

In runs C and D, star formation is introduced via the param-
eters described in the previous section. The initial evolution is
quite similar in that the gas quickly fragments, but now the ad-
dition of star formation depletes gas from the self-gravitating
clumps. Stars only form in the central 10 kpc (where cold clumps
exist in Fig. 2). On a timescale of several hundredMyr, the gas is
largely converted to stars, and the gas density of the disk drops
below that required to sustain instabilities, cutting off star for-
mation except in the innermost regions.

3.2. Disk Instability

In Figure 3 we show the gas and stellar densities of the simu-
lations with and without feedback, including a nonfeedback star
formation run at high resolution. It is clear that the typical clump
size is strongly affected by resolution, with smaller fragments
appearing at higher resolution. This is consistent with the fact
that we do not always resolve the Jeans length in the center of the
disk, particularly for the standard D run. On the other hand, there
is a well-defined radius beyond which star formation does not

occur, and this does appear to be well resolved. In particular,
a run for which we ensure that the Jeans length is resolved
(DJEANS) up to the maximum resolution of the adaptive mesh,
produces results that are essentially identical. For gas at our
minimum temperature (300 K), the Jeans length is 25 pc at a
number density of 102 cm�3; thus, in the DHIRES run we resolve
the Jeans length nearly until the threshold at which gas is con-
verted into stars (103 cm�3). Therefore, we believe that the cutoff
in star formation beyond a radius of 7 or 8 kpc seen in Figure 3 is a
robust result (this low radius compared to theMilkyWay is due to
our assumed low disk density—a more realistic gas disk would
have a larger cutoff radius).
This star formation threshold can be understood with the

Toomre stability parameter (Toomre 1964), defined as Q ¼
�cs/�G�g, where � is the usual epicyclic frequency, cs is the
thermal sound speed as measured in the disk (about 2 km s�1 for
our minimum temperature of 300 K), and �g is the gas surface
density. This parameter is plotted as a function of radius in
Figure 4, along with the current star formation rate (averaged
over the last 20 Myr) at that radius for a variety of simulations.
In each case, there is a sharp cutoff at a particular value of the
Q parameter. From the runs represented in the top panel of Fig-
ure 4, we see this cutoff is unaffected by feedback. As we de-
scribe below, feedback acts to reduce the star formation rate, but
it has no bearing on this stability cutoff point. The critical Q pa-
rameter derived this way is about 0.6. A linear analysis for a two-
dimensional dimensional disk predicts 1 (Toomre 1964), while a
finite disk thickness reduces the critical value to 0.676 (Goldreich
&Lyden-Bell 1965; Gammie 2001).We note that Kennicutt (1989)
finds values around 1.5; however, we have used the thermal
sound speed of the gas rather than the velocity dispersion. If
we adopt an effective sound speed of 6 km s�1, this boosts the
derived critical value by a factor of 3 and brings it into better
agreement with the Kennicutt value.

Fig. 2.—Gas surface density (top), mean mass-weighted temperature (middle), and mean pressure (bottom) in the inner 30 kpc region of the simulation box for run
B. From left to right, the frames show the results at t ¼ 0, 374 Myr, 561 Myr, and 1.32 Gyr. All scales are to the base-10 logarithm, and gas and star particle density is
measured in M� Mpc�2, temperatures in K, and pressure on an arbitrary scale. [See the electronic edition of the Journal for a color version of this figure.]
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For comparison, we also calculated the star formation rate and
Q for a disk with 4 times the gas mass, which is shown in the
bottom panel of Figure 4. The heavier disk draws out the star
formation cutoff to a greater radius, in close agreement with the
Milky Way’s own stellar radius of �15 kpc. The value for Q
at the absolute cutoff for the star formation, r ¼ 16 kpc, is 1,
slightly higher than that for the original disk. However, the star
formation rate starts to decrease at a smaller radius than this, at
around r ¼ 13 kpc. At this point,Q � 0:5, a closer agreement to
the lighter disk. The Q scaling therefore works well with the
changing weight of the disk, especially since the variation of Q
over the disk is of order 100. This scaling could be tightened still
more with a sharper estimate of the correct position of the star
formation rate cutoff.

3.3. Vertical Scale Height and the Galactic Fountain

Another important structural property is the vertical scale
height. In Figure 5, we show the density profile for the same
three simulations discussed previously. Both the low- and high-
resolution simulations without feedback show a thin disk, with a
scale height of approximately 100 pc. This does not change sig-
nificantly for the feedback simulation, although there is a clear
tail of higher density material that extends about a kiloparsec
above and below the disk. This is due to the transient gas streams
that are ejected from the disk due to supernova explosions. This
scale height is comparable but less than the observedMilkyWay
H i scale height, which ranges from about 150 pc at a radius of
5 kpc, to 300 pc at the solar radius (Malhotra 1995). Unfortu-

nately, even our highest resolution simulation has a cell size of
only 25 pc, so this is, at best, marginally resolved.

This is not to say that the feedback run does not have a sub-
stantial impact on the distribution of gas in the plane. Figure 6
shows side-on projections of density, temperature, and pressure
for the CFDBCK run. While it is clear from these three plots that
most of the gas still lies in the plane, large streamers can be seen
reaching several kiloparsecs above and below the plane. Hot
bubbles can be seen in the temperature distribution with some
gas around 106 K, but most are considerably cooler. These bub-
bles form in the plane but many quickly break out, driving warm,
diffuse gas upward. As this gas expands and cools, it is also
deaccelerated by halo gas. Clumps of the gas cool and fall back
toward the plane. Many of these can be seen at dark spots in the
temperature distribution but cannot be seen in the pressure im-
age, indicating that they are in a rough pressure equilibrium with
the hotter, more diffuse medium. Although this galactic foun-
tain effect does not significantly change the density profile near
the plane, it does very clearly change the dynamics of gas out of
the plane. We will examine the observational consequences in a
future paper.

4. STAR FORMATION PROPERTIES

Observational studies of star formation indicate that the rate of
star formation is closely tied (in a statistical sense) to the surface
density of the gas, increasing as�SFR / �1:5

gas (Kennicutt 1989). In
this section, we examine how star formation occurs in our model
galaxies.

Fig. 3.—Gas density (top) and stellar density (bottom) in a region 22 kpc on a side after 330 Myr of evolution. The left images are from the simulation with star
formation but no feedback, the middle images are from the high-resolution version of this simulation, while the right images are from the feedback simulation.
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4.1. Star Formation History

First, we examine the star formation history in the entire disk
as a function of time, as shown in Figure 7. The top panel depicts
the results for our model C, both the standard run and the high-
resolution CHIRES variant, along with the high-resolution run
for the D-algorithm, DHIRES. The close agreement between
these curves again demonstrates that the star formation is largely
resolved in these simulations. Each curve shows a rapid increase
in the star formation rate over roughly 100 Myr, in agreement
with the images in Figure 1. The rate then reaches a peak and
falls off in an exponential fashion. This is due to the gas depletion
resulting from the high star formation rate. After 1 Gyr, nearly all
of the gas in the unstable part of the disk is exhausted. This is
considerably shorter than the timescale for gas exhaustion in
present-day spirals and is related to the higher than observed star
formation that we see in these simulations, a point that we return
to in the next section.
Remarkably, the star formation history is nearly identical for

the D-model for star formation, which is more efficient but lim-
ited to the densest parts of the clumps. In fact, this agreement is
largely due to our choice of parameters. This is shown clearly in
themiddle panel of the same figure for theCLOWEFF simulation,
which is similar to the C run but with 10 times lower efficiency.

Fig. 5.—Vertical density profile 330 Myr into the evolution for the same
three simulations shown in Fig. 3. This is the density profile averaged within 2
radial scale heights.

Fig. 6.—Edge-on projections of the CFDBCK run demonstrating the impact
of SN feedback (runs without feedback show a thin, cold disk with hot, fea-
tureless gas above and below the plane). The top panel shows the projected
density, the middle panel shows the mean temperature, while the bottom panel
depicts the integrated pressure. Each image is about 22 kpc across and 10 kpc
high.

Fig. 4.—Top: Solid line shows the Q parameter computed shortly after the
start of the D simulation when the gas has reached its minimum value (300 K)
but before nonlinear instability formation. The instantaneous rate of star for-
mation (averaged over 20 Myr) is shown for four variants of the D simulation
(the C series shows similar results). Note that gravitational instability (and
hence star formation) only occurs below a critical ToomreQ parameter. The dot-
dashed curve shows theQ parameter for the A simulation (Tmin ¼ 104 K), which
never falls below this critical value. Bottom: Same plot but for a disk with a gas
mass 4 times greater than the other simulations. The cutoff this time it at a larger
radius and corresponds to a slightly larger Q value.
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This lower efficiency run has a much longer timescale for con-
verting gas into stars, with a lower peak rate andmore gas left after
1Gyr. This demonstrates the importance of parameter selection for
this type of star formation algorithm (which is very common in
cosmological simulations). However, note that the timescale for
gas exhaustion is a factor of�4 longer in the CLOWEFF run than
the C run, not the factor of 10 one would expect by decreasing the
efficiency by a factor of 10. This occurs because the longer time-
scale permits larger mass clumps to form (mostly through merg-
ing), and the larger clouds generate larger core densities, which
increases the star formation rate.

In contrast with the C-type algorithm, the parameter choice
(within reasonably bounds) is not important in our D-type run.
In a test run with the D-type parameters but with 10 times lower
efficiency, the result was nearly identical. This can be readily
understood—star formation is only permitted in dense regions
where the dynamical time is so short that the gas will be con-
verted into stars in a shorter time than the galactic timescale (the
dynamical time for gas at a number density of 103 cm�3 is about
a million years, so even increasing this by a factor of 10 by de-
creasing the efficiency by 10 would have little effect when com-
pared to the 100 Myr timescales of the disk itself ).

Finally, the simulations that include feedback from Type II
supernovaewith the C-type (CFDBCK) andD-type (DFDBCK)
algorithms are shown in the bottom panel. These both show
a longer timescale for star formation and, like CHIRES and
DHIRES, depict very similar histories. The extended timescale
for star formation is in part because individual star-forming
clumps are dispersed by the feedback before they can be con-
verted entirely into stars, and in part because winds from star-
forming clusters disperse and heat gas in nearby clouds before

they can form. The net result is that star formation is (at least
partially) self-regulated.

4.2. Star formation as a Function of Gas Surface Density

Next, we examine how star formation depends on density, as
observations indicate it does. In Figure 8, we show the global star
formation rate averaged over the star-forming part of the disk
(corresponding to the radius containing 95% of the star forma-
tion). The top two panels show results for the same set of sim-
ulations as in Figure 7. The C and CHIRES runs are quite similar
and run nearly parallel to the observed relation between star
formation and surface density, albeit at a rate almost an order of
magnitude above that observed. This large star formation is in
agreement with the short gas exhaustion times already discussed.
Decreasing the efficiency parameter as in the CLOWEFF run pro-
duces results that are closer to those observed, although we see
again that the decrease in the star formation rate is a factor of
4 rather than the expected order of magnitude decline (we de-
crease � from 0.05 to 0.005), for the reasons noted earlier. The
CFDBCK and DFDBCK run also decreases the star formation
rate. In the CFDBCK case this can be seen most clearly to be a
factor of 2 reduction for the same star formation efficiency.

One possible reason for the higher than observed star forma-
tion rates is related to our inability to model the physics and
structure of molecular clouds. Such clouds are observed to form

Fig. 7.—Star formation rate as a function of time for the models indicated
in the legend.

Fig. 8.—Global Schmidt law: Variation over time of the relationship be-
tween total star formation rate and gas surface density. Star formation rate is
plotted as a function of density averaged over the disk for a variety of models.
Each point with the same symbol represents the same simulation at a different
time, equally spaced along the 1.4 Gyr simulation run. The solid line is a best
fit from observations (Kennicutt 1989).
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stars with an efficiency that ranges from 5% to 30% (e.g., Lada &
Lada 2003), depending on if we are talking about the entire
molecular cloud or embedded clusters. The efficiency parameter
� is really the star formation efficiency per dynamical time (as an
inspection of eq. [1] will confirm), and if a cloud is permitted to
evolve for many dynamical time without disruption, then the
final fraction of gas converted into stars can be considerably higher
(approaching unity). This is true for most of our simulations,
since we do not include stellar winds and ionizing radiation,
which are thought to be a prime reason for the relatively low
efficiency (the exception is for the feedback case in which super-
novae can disrupt a cloud after about 10 Myr). Therefore, we
should bring down our estimate of the star formation rate by a
factor of 3–10 ( less for the feedback case).

In Figure 9, we show the relationship between star formation
rate and surface density for azimuthally averaged radial bins at a
given point in time (unlike the global relation which showsmany
outputs). Again, the slope is 1.5, in good agreement with obser-
vations, showing that the simulation reproduce both the global
and local relations (or at least their slopes). Most of the same
comments for the top two panels of the previous figure apply to

the top two panels of this figure. Note that in the local relations,
there is a relatively sharp cutoff at low disk surface densities
below which there is no star formation, as discussed in x 3.2.
The slope of the simulated relations in both of these plots is

very similar to that observed (although the global relations are
marginally steeper, particularly at low disk density rates). For the
C simulation series, this is not surprising as this behavior is built
into the star formation rate in equation (1) (the dynamical time is
proportional to ��1/2 so �̇sfr / �1:5). The D series also uses this
relation (but with a higher threshold), and so it appears that here
too we have just got out what we put in. However, this is not the
case. As discussed earlier, the dense clumps are transformed into
stars with a net efficiency that is quite high and largely inde-
pendent of the parameters chosen. This can be seen in two ways.
First, a simulation with an efficiency 10 times lower than the
standard D case produced essentially identical results to that shown
for the D run. More convincingly, we have performed a run in
which we use a constant timescale for formation rather than tdyn
in equation (1), which we denote DCONST (the time constant
was chosen to be the dynamical time at the fixed threshold
density). In this case, the local instantaneous star formation rate
is directly proportional to the local gas density; however, the
bottom panels of Figures 8 and 9 show a very similar scaling as
to the standard D run.

5. PROPERTIES OF THE INTERSTELLAR MEDIUM

Previous theoretical studies (McKee & Ostriker, 1977) have
modeled the ISM as a three-phase structure regulated by super-
nova explosions. This motivates us to divide the simulated gas
up into three temperature ranges: The cold ISMwith T < 103 K,
warm ISM having 103 < T < 105, and the hot ISM, T > 105 K.
The top panels of Figure 10 show the volume of gas in each phase
for three of our simulations, while the bottom panels show the
same results but for the mass fraction. These have been computed
only for gas within 3 radial scale heights and 400 pc above and
below the plane in order to focus on gas in the main disk.
The first-order result from these figures is that the volume and

mass fractions are generally quite robust to the physical model
we use. Generally, most of the volume is taken by the warm
and hot phases, with the cold phase occupying a minority of the
space in the disk, except during the first few hundred million
years of evolution. There are some variations about this picture,
of course. In particular, the feedback run (CFDBCK) shows (after
about 500 Myr of evolution) a slightly higher volume fraction in
the cold phase and a corresponding decrease in the hot phase. The
same panel in the mass fraction plots shows that the mass frac-
tion in this phase is relatively unaffected (and quite high), indi-
cating that the material in this cold phase must be less compressed
in the feedback run, probably due to supernova-driven cloud
disruption.
The relatively large fraction of volume in the hot ISM phase,

even for the nonfeedback runs, is somewhat surprising. This gas
is heated by the shocks induced via gravitational instabilities that
drive noncircular motions, as well as gas falling from above the
plane. The mass fraction in this hot phase is extremely small (note
that the scale on this panel differs from the others), indicating that
this high-temperaturematerial has very low density (and is, in fact,
in temperature equilibrium with the other phases).
The mass-weighted phase plots show that most of the mass is

in cold, dense clumps (this is particularly true for the CLOWEFF,
the low-efficiency case), with the vast majority of the rest in the
warm phase. Only a very small fraction of the mass ever gets
heated significantly; even for the feedback run (CFDBCK), the
mass fraction at temperatures above 105 K is always less than 1%.

Fig. 9.—Local Schmidt law: Variation over the disk’s surface of the relation
between star formation rate with gas surface density at a set time, t. Star for-
mation rate is plotted against gas surface density averaged azimuthally in radial
bins. Each point (for a given simulation) is averaged over a different radial range
but are all from the same point in time approximately 200 Myr after the start of
each simulation (other output times follow the same relation). The models
shown are the same as in Fig. 8. Radial bins with no star formation at all are
shown at the bottom of each graph. The solid line is a curve with slope 1.5, as
observations indicate (but with an arbitrary normalization). Note that there is a
relatively sharp cutoff for each set of curves below which there is no star for-
mation, in agreement with Fig. 4.
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We do not find that feedback increases the hot fraction, which
is contrary to many models of feedback in the ISM (e.g., McKee
& Ostriker 1977), although the actual fraction of the volume in
the hot fraction is in rough agreement with these models. A
possible reason for this is that the Type II supernovae we model
deposit their energy primarily in dense clumps, leading to their
disruption. Although the clumps are unbound by the supernovae,
they are not heated to high temperatures and quickly cool back
down. This dispersal of dense clouds results in a net increase in
the volume occupied by cool clouds for the feedback simulation,
as the top right panel shows.

5.1. Joint Distribution Function

A simple three-phase model in pressure equilibrium is, of
course, an oversimplification. The full nature of the ISM can be
better represented in contour plots of density versus temperature
for the volume and mass. Figure 11 shows the evolution of the
gas volume (top) and gas mass (bottom) in the C run for the four
outputs at t ¼ 191 Myr, 567 Myr, 945 Myr, and 1.32 Gyr. The
diagonal lines represent lines of constant pressure (assuming an
ideal gas equation of state and neglecting ionization changes).
The sharp peak on the left-hand side of the plots is due to the
cutoff temperature (of 300 K) introduced for radiative cooling.

These contour plots make clear that there is not a sharp di-
vision between the three phases discussed earlier, but instead a
wide distribution of densities, temperatures, and pressures. How-
ever, in all of the diagrams weighted by volume, there are peaks
at 104 and 106 107 K, demonstrating that there is some utility in

making these divisions. The gas at 104 K arises because of the
sudden drop in the cooling rate at this point, delaying further gas
cooling, while the hotter gas comes from shock heating and is
(roughly) the virial temperature of the halo. While there is not an
obvious peak at low temperatures in the volume distribution, it is
very obvious in the mass distribution, which clearly shows most
of the gas residing at the lowest temperature permitted by cooling.
We can see that the contour diagrams support the results from the
phase diagrams in that the majority of the gas volume is in the hot
and warm ISM phases. The mass contour plot shows the vast ma-
jority of the mass is in the cool, dense region, and this area shrinks
over time as stars are formed from this gas.

By examining the plots along the diagonal direction of con-
stant pressure we can see first that much of the disk is in rough
pressure equilibrium, although the width of the distribution per-
pendicular to these lines show a spread of at least 1 order of
magnitude. This indicates that simply the effect of the gravita-
tional instability can generate a substantial range of pressures.
There are two regions that clearly do not follow the pressure
equilibrium. The most obvious and easiest to explain are the
cold, dense clumps that stick up to high densities in a thin line.
These are our self-gravitating clouds. We remind readers that
the position of this line in the temperature direction is set by the
cooling cutoff of 300 K; however, it is clear that even if the gas
is simply shifted left by 1.5 orders of magnitude (to the mini-
mum observed ISM temperature of 10 K), it would still be
overpressured, even if the density did not increase. The second
feature is the peak at 104 K, which actually drops below the line

Fig. 10.—Fraction of the ISM volume that is cold (T < 103 K; left panels), warm (103 < T < 105 K; middle panels), and hot (T > 105 K; right panels), as a
function of time for three simulations. Solid lines represents the standard C run, the dotted line is for the run with feedback (CFDBCK), while the long-dashed lines
show the nonfeedback run with a low efficiency of 0.005 (CLOWEFF).
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of constant pressure. This probably is a consequence of the ther-
mal instability that sets in around 105:5 K, at which point the gas
cools so quickly that it drops out of pressure equilibrium with the
surrounding gas (e.g., Slyz et al. 2005 and references therein).

The evolution in the distribution function over time is rela-
tively moderate, with a mild increase in the pressure from the
first to the second frame (over which period the star formation rate
drops significantly), and then constant. This is somewhat sur-
prising considering that most of the gas is converted to stars
during this period. However, themass-weighted distributionmakes
clear that most of the mass is in the dense, self-gravitating clumps,

and it is this mass (which does not contribute significantly to the
pressure in the rest of the plane of the disk) that is converted into
stars.
Figure 12 shows the distribution functions for the run in which

feedback is included (CFDBCK). The most striking feature is
the dramatic increase in the width of the distribution function.
The injection of supernova energy produces gas with tempera-
tures throughout the full temperature range to be found at a large
range of densities. The distribution of pressures is also consider-
ably wider than in the nonfeedback case, although the median
pressure at a given temperature does not appear to be significantly

Fig. 11.—Two-dimensional contour plots for the volume (top) and mass (bottom) in run C with star formation but no feedback. Plots are shown for t ¼ 191 Myr,
567 Myr, 945 Myr, and 1.32 Gyr. Diagonal lines represent lines of constant pressure. [See the electronic edition of the Journal for a color version of this figure.]

Fig. 12.—Two-dimensional contour plots for the volume (top) and mass (bottom) in run CFDBCK with star formation and feedback from supernovae. Plots are
shown for the same times as the previous figure. [See the electronic edition of the Journal for a color version of this figure.]
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increased. We also see that the peak in the volume-weighted dis-
tribution at high temperatures (and low densities) quickly dis-
perses in the early part of the simulation but starts to reemerge in
the final image. The cold, high-density gas on the far left of the
contour plots also seems slower to disperse, in agreement with the
slower star formation rate documented earlier.

6. DISCUSSION

What controls star formation in our simulations? We break this
down into two questions, the first is whether stars can form at all at a
given radius in the disk, and second, at what rate? As demonstrated
in x 3.2, the growth of instabilities (and hence the possibility of
star formation) is clearly controlled via the Toomre instability
criteria. We derive a critical Q value of approximately 0.6, in
reasonable agreement with a linear analysis of finite-thickness
disks (Goldreich & Lyden-Bell 1965) and shearing box simu-
lations (Kim & Ostriker 2001) that find 0.676 and 0.72, respec-
tively. Increasing the disk’s gas mass by a factor of 4, in better
agreement with a Milky Way–sized galaxy, raises the value of
Q to approximately 1, although taking a lower threshold for
the star formation cutoff radius gives a Q value of around 0.5.
Therefore,Q scaleswell with theweight of the disk, while refining
measurement of the star formation rate cutoff should improve this
further. The presence of a stellar disk would modify these results
slightly (Kim & Ostriker 2001; Rafikov 2001). The addition of a
magnetic field with moderate strength can lead to enhanced col-
lapse due to the magneto-Jeans instability and a larger effective
Q value (Kim et al. 2003).

Instabilities result in clouds forming over (roughly) a dynam-
ical period, and so clearly the rate at which gas can be funneled
into the densest regions is set by this timescale. In the absence of
star formation, the clouds are long-lived entities and continue to
accrete gas and grow bymergers (in the B simulation the number
of individual clumps drop as the mass of each clump grows until
by the end of the simulation only a handful of very large clouds
remain).When star formation is turned on, stars form at the high-
est rate in the dense centers of these clouds, which tend to create
bound clusters; this is particularly pronounced in the D series,
where star formation is only allowed in the dense cores. As long
as there is no feedback from the forming stars, their formation does
not disrupt the group, although the stars and the gas may become
separated due to the different forces on the two components (which
is why it is important to model the stars as collisionless particles).
Mergers and further accretion operate on the dynamical time and
feed further star formation. Therefore, it is natural to expect the
star formation rate to scale with the local dynamical time as our
results demonstrate.

This explains the scaling but not the amplitude of relation
shown in Figure 8. As we argued in x 4, this is too large because
our effective efficiency for star formation is rather high (near unity
integrated over many dynamical times, despite the low � values
adopted), again related to the longevity of the clusters. One pos-
sible reason behind the overproduction of stars is the lack of
photoionization feedback from the newly formed stars. This will
help in a number of ways, as the massive stars will quickly halt
star formation in the rest of the cloud that has not collapsed,
decreasing the efficiency in each cloud. It will also lead to the
dispersal of the cloud, whichwill prevent mergers from producing
clouds more massive than those observed. Indeed, in our sim-
ulations with Type II supernovae, these processes can be seen to
operate, leading to a drop by a factor of 2–3 in the star forma-
tion rate for a given disk surface density. The timescale for photo-
ionization is even shorter than the �10 Myr period before the

first massive stars end their life and explode, which should lead
to an even lower net efficiency.

We do not see clear large-scale spiral features in our simulated
disks, perhaps indicating that the small-scale perturbations that
we observe are insufficient to trigger low-mmode density waves.
It remains to be seen if a more realistic simulation, including
satellite perturbers, would be more successful at reproducing
grand-design spiral features.

Recently, Li et al. (2005a, 2005b) have used SPH simulations
of quiescent disks to argue that it is primarily the gravity that
controls the star formation and gives rise to the Kennicutt rela-
tion between star formation and gas surface density. The results
presented in this paper agree in the sense that gravity, rotation,
and pressure naturally give rise to the observed slope of the
Kennicutt relation, as well as a cutoff in the star formation rate
beyond a certain radius. However, it is equally clear that some
sort of feedback from the forming stars is required. The simu-
lations of Li et al. (2005a, 2005b) used an isothermal equation
of state and argued that an effective sound speed of approximately
10 km s�1 would match the observed star formation rates. They
also adopted an efficiency of star formation in molecular clouds
of 35%, again ascribing this to unmodeled feedback effects. Our
simulations with supernova feedback do indeed reduce the star
formation rate, and it is plausible that the addition of photo-
ionization feedback would decrease this further. It is clear that
further work is required.

One of the advantages of a more realistic equation of state is
that we can naturally produce a multiphase ISM, with hot and
cold phases existing in rough pressure equilibrium. A more de-
tailed comparison with observations would be interesting, al-
though a better heating and cooling model is probably required.
In particular, we do not include a photo-heating source, which
probably leads to an overestimate of the amount of cold, dense
gas that can cool. Heating may reduce the star formation rate (al-
though heating will be ineffective in the dense clumps that form
from gravitational instabilities). The feedback also generates a
galactic fountain, with star-forming regions ejecting gas out of
the plane, which then falls back onto inactive regions.

Finally, we ask whether cosmological simulations adopting
the C-type of star formation algorithm can realistically be used to
model star-forming galactic disks. The answer appears to be a
tentative yes, assuming that sufficiently high resolution is used to
prevent spurious fragmentation in the stable part of the disk. As
long as the correct parameters are chosen, we reproduce most of
the features of the more realistic D-type model, in which stars
form only in dense molecular clouds. The exception is the frac-
tion of stars formed in bound clumps, which is lower in the
C models than the D models. Models with supernova feedback
reduce this discrepancy.

Although throughout this paper we have emphasized the sim-
ilarities in the large-scale features between the C- and D-type
models, the results are not identical. A more detailed study of
the differences and their effects on the disk’s structure and ISM
will be a topic of future work.

7. CONCLUSIONS

We have performed high-resolution adaptive mesh refinement
simulations of an isolated galactic disk evolved for more than
1 Gyr. We include many of the physical processes that must be
important for the long-term evolution of the gas in spiral galaxies
including cooling, shocks, self-gravity, star formation, and super-
nova feedback in a global three-dimensional model. Our adaptive
meshmethodology allows us to resolve scales from100 kpc down
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to 25 pc, the size of typical giant molecular clouds. The physical
model for the galactic disk is clearly oversimplified in a number
of respects: it does not include magnetic fields, cosmic rays, or
chemistry, and the cooling/heating model is incomplete. Still,
this represents a substantial improvement over previous work in
a number of ways (see x 1 for a discussion of previous simulation
work) and represents some of the most realistic global disk sim-
ulations ever performed.

We performed a number of simulations while varying the
input physics. This included runs with cooling down to two
minimum temperatures (104 and 300 K), but no star formation.
A series of runswere performedwith cooling and two different pre-
scriptions for star formation, the first a cosmological-simulation–
inspired star formation algorithm that allowed star formation at
relatively low densities but with a low efficiency, and the second a
more physically minded algorithm that adopted a high-density
threshold (comparable to that found in giant molecular clouds)
before stars could form. These two forms we have denoted as
C-type and D-type, respectively. We also performed some runs
with spatial resolution 2 times better and mass resolution 8 times
better in order to investigate numerical convergence. Finally, feed-
back from supernovae from massive stars was introduced.

Our results are summarized below:

1. Gravitational instabilities grow as long as the Toomre Q
parameter is less than a critical value (0.6). Outside of this region,
no stars form (although stars can be scattered into this region).
This appears to be a well-resolved result and does not depend on
the star formation algorithm.

2. If no star formation occurs, the clumps merge and form
more massive, denser clouds. If star formation is permitted, stars
form preferentially in the densest part of the clumps (particular
for the D-type star formation algorithm). Without some form of

feedback, the clouds are long-lived and convert a high fraction of
their mass into stars.
3. Both star formation algorithms reproduce the slope of the

observed relation between star formation and gas surface den-
sity. This appears to be because clump formation is controlled by
the dynamical time. The C-type (cosmological) method can be
tuned (with a sufficiently low efficiency parameter � < 0:005) to
reproduce the observed normalization of the relation as well. The
D-type method (with a high-density threshold) produces too
many stars and will require some additional form of feedback
to match the normalization. Energy input from Type II super-
novae does indeed decrease the star formation rate (althoughmore
feedback, such as photoionization, seems to be required to match
observations).
4. A multiphase ISM is naturally reproduced with most of the

mass (>80%) in cold, dense clouds and peaks in the volume
distribution at temperatures of approximately 104 and 106:5 K.
5. Feedback from Type II supernovae drives material out of

the plane of the disk (which then falls back). However, it does
not increase the mean pressure in the plane of disk or generate
large amounts of hot gas, or substantially increase the vertical
scale height of the gas.
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