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ABSTRACT

By fitting a flexible stellar anisotropy model to the observed surface brightness and line-of-sight velocity dispersion
profiles of Draco we derive a sequence of cosmologically plausible two-component (stars + darkmatter) models for this
galaxy. Themodels are consistent with all the available observations and can have either cuspyNavarro-Frenk-White or
flat-cored dark matter density profiles. The dark matter halos either formed relatively recently (at z � 2 7) and are
massive (up to �5 ; 109 M�), or formed before the end of the reionization of the universe (z � 7 11) and are less
massive (down to �7 ; 107 M�). Our results thus support either of the two popular solutions of the ‘‘missing
satellites’’ problem of � cold dark matter cosmology—that dwarf spheroidals are either very massive or very old.
We carry out high-resolution simulations of the tidal evolution of our two-component Draco models in the potential
of the Milky Way. The results of our simulations suggest that the observable properties of Draco have not been
appreciably affected by the Galactic tides after 10 Gyr of evolution. We rule out Draco being a ‘‘tidal dwarf ’’—a
tidally disrupted dwarf galaxy. Almost radial Draco orbits (with the pericentric distanceP15 kpc) are also ruled out
by our analysis. The case of a harmonic dark matter core can be consistent with observations only for a very limited
choice of Draco orbits (with the apocentric-to-pericentric distances ratio of P2.5).

Subject headings: galaxies: evolution — galaxies: individual (Draco dwarf spheroidal) — stellar dynamics

1. INTRODUCTION

Galactic dwarf spheroidal galaxies (dSphs) are intriguing ob-
jects with a deceptively simple appearance—roughly spheroidal
shape, no gas, and no recent star formation. Due to their close-
ness, these galaxies are studied in significantly more detail than
other external galaxies (see the review of Mateo 1998). Despite
that, the nature of dSphs and their place in the larger cosmological
picture is not well understood.

The first wave of enhanced interest in dSphs took off after the
pioneer work of Aaronson (1983). Based only on the three stars
inDracowithmeasured line-of-sight velocities, he boldly claimed
that Draco can be significantly dark matter (DM) dominated.
The fact that the stellar velocity dispersion in dSphs is signifi-
cantly larger than what would follow from the virial theorem for
the luminous mass was later confirmed with much larger studies.
For example, the latest compilation of Wilkinson et al. (2004)
contained 207 Draco stars with measured line-of-sight velocities.
Similar results were obtained for other dSphs as well—both
for the Milky Way and M31 satellites. There were attempts to
explain the large stellar velocity dispersion in Galactic dSphs
without invoking the DM hypothesis. Most notably, Kroupa
(1997) presented a model where dSphs are considered to be
‘‘tidal dwarfs’’—virtually unbound stellar streams from dwarf
galaxies tidally disrupted in the Milky Way potential. The model
of Kroupa (1997) appears to be not applicable to Draco as it
is unable to reproduce the narrow observed horizontal branch
width of this dwarf (Klessen et al. 2003). In this paper we
present additional evidence against Draco being a tidal dwarf.
The overall consensus now appears to be that dSphs do contain
significant amounts of DM and are hence the smallest known
objects with (indirectly) detected DM. This makes them very
interesting objects, as they can be an important test bench for
modern cosmological models and for the theories of DM.

More recently, the interest in dSphs was rejuvenated after the
realization that simple (DM-only) cosmological models over-

predict the number of the Milky Way satellite galaxies by 1–
2 orders of magnitude (Klypin et al. 1999; Moore et al. 1999).
This was coined the ‘‘missing satellite problem’’ of cosmology.
The original analysis was done under the assumption that DM
in dSphs has the same spatial extent as stars. Relaxation of the
above assumption led to a suggestion that only the most massive
subhalos predicted to populate a Galaxy-sized halo managed to
form stars, with the rest of the subhalos staying dark (Stoehr et al.
2002). Another way of solving the missing satellites problem is to
assume that only the oldest subhalos formed stars, with the star
formation in the younger subhalos being suppressed by the meta-
galactic ionizing radiation after the reionization of the universe
was accomplished around z � 6:5 (Bullock et al. 2000). In reality,
both mechanisms could have realized (Ricotti & Gnedin 2005).
To discriminate between the two above solutions of the missing

satellites problem and to place Galactic dSphs in the right cos-
mological context one has to know the global parameters of these
dwarfs, andmost importantly, their total DMextent andmass. The
traditional approach is to assume that the dwarf is in equilibrium
(thus ignoring the possible impact of the Galactic tides), and to
solve the Jeans equation to infer the density profile of the DMhalo
based on the observed surface brightness and line-of-sight ve-
locity dispersion profiles. As the proper motions of individual
stars in dSphs are not known, one has to resort to making certain
assumptions about the anisotropy in the stellar velocities. Due to a
well-known degeneracy between the assumed stellar anisotropy
and inferred total enclosed mass there are many solutions to the
Jeans equation that are consistent with the observations. Another
limitation of the above approach is that DM can be traced only
within the stellar body extent of the dwarf, so no conclusion can
be made about the total mass of the galaxy. It is also not clear at
what distance from the dwarf’s center the virial equilibrium as-
sumption breaks down due to Galactic tides. Some work has been
done on the impact of tidal forces on the structure of Galactic
satellites (e.g., Oh et al. 1995; Piatek & Pryor 1995; Hayashi et al.
2003; Kazantzidis et al. 2004), where it was clearly demonstrated
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that the tidal stripping and shocking is a complex dynamic
process. The deficiency of the above work is in using single-
component models for the dwarf galaxies, which made it impos-
sible to directly compare the results of the numerical simulations
with the observations. In general, stars in dSphs are distributed
differently from DM, so they also behave differently in reaction
to the external tides. To correctly describe the observable mani-
festations of the Galactic tides in dSphs it is essential to use two-
component (stars + DM) dwarf models (Read et al. 2006).

In this paper we place joint constraints on the global properties
of Draco (one of the best studied dSphs) by (1) using cosmo-
logical predictions for the properties of DM halos, (2) developing
very flexible stellar anisotropy model for dSphs, and (3) run-
ning a large set of high-resolution simulations of the evolution
of two-component dwarfs in the Galactic tidal field.We derive a
sequence of cosmologically plausible models for Draco that are
consistent with all the observed structural and kinematical
properties of this dwarf. Our results are consistent with either of
the two above solutions for the missing satellite problem.

2. GLOBAL CONSTRAINTS ON DRACO
DM HALO PROPERTIES

We consider two types of DM halos: theoretically motivated
Navarro-Frenk-White (1997, hereafter NFW) halos with a � ¼ �1
density cusp at the center, and observationally motivated Burkert
(1995) halos, which have a flat core:

�(r) ¼ �s

r=rs (1þ r=rs)
2

(NFW); ð1Þ

�(r) ¼ �s

(1þ r=rs) ½1þ (r=rs)
2�

(Burkert): ð2Þ

Here �s and rs are the scaling density and radius. At large distances
from the center both halos have the same asymptotic density slope
of � ¼ �3.

Analysis of cosmologicalN-body simulations showed that the
concentration c ¼ rvir /rs of low-mass DM halos (with the virial
massmvir ¼ 108 1011 M�) has a lognormal distribution with the
mean

c ¼ 27

1þ z

mvir

109 M�

� ��0:08

ð3Þ

and dispersion 0.14 dex (Bullock et al. 2001, with the correction
of Sternberg et al. 2002). Here rvir is the virial radius of the halo
and z is the redshift.

Sternberg et al. (2002) showed that the four dwarf galaxies
with a Burkert DM halo profile studied by Burkert (1995) have
the same dependence of the DM halo scaling density �s on the
scaling radius rs as do the NFW halos in cosmological simu-
lations. This result was obtained for z ¼ 0. We assume that it
holds true for other redshifts as well, and use equation (3) to find
concentrations of both NFW and Burkert halos.

Using the formula of Sheth& Tormen (1999), one can estimate
the comoving number density of DM halos per unit lnmvir and
per standard deviation in concentration:

F � dn

d lnmvir d�c

¼ 0:322

2�
1þ 1

�0:6

� �
�m�

S

dS

dmvir

����
���� exp � �2 þ �2

c

2

� �
: ð4Þ

Here �c is the number of standard deviations from the mean con-
centration, � ¼ (0:707/S)1/2�(z), where �(z) is the critical over-

density for spherical collapse extrapolated linearly to z ¼ 0,
�m is the present day mass density of the universe, and S is the
variance of the primordial density field on mass scale mvir ex-
trapolated linearly to z ¼ 0. To estimate the above parameters
we follow Mashchenko et al. (2005). Throughout this paper
we assume a flat �CDM cosmology and use the following
values of the cosmological parameters: �m ¼ 0:27, �b ¼ 0:044,
H ¼ 71 km s�1 Mpc�1, and �8 ¼ 0:84 (Spergel et al. 2003).

It is interesting that one can derive quite general and (stellar)
model-independent constraints on the properties of the Draco
DM halo by combining the available observational data on this
galaxy with the predictions of cosmology. Throughout this paper
we assume that the distance toDraco is 82 � 6 kpc (Mateo 1998).
It is convenient to consider different DM halo constraints in the
plane of two scaling parameters, �s and rs. We summarize the
global constraints in Figure 1.

The most obvious constraint is that the Draco DM halo should
have formed before the bulk of the Draco stars formed. We as-
sume that the first star burst in Draco took place at least 10 Gyr
ago (Mateo 1998), or at zo1:8. In Figure 1 the areas to the right
of the dashed lines marked ‘‘z ¼ 1:8’’ correspond to halos older
than 10 Gyr.

The next constraint,FoFmin, comes from the requirement for
DM halos to be abundant enough to explain the observed number
(�20) of dwarf spheroidal galaxies in the Local Group. Following
Mashchenko et al. (2005), we adopt Fmin ¼ 0:01Mpc�3. As the
function F does not explicitly depend on �s and rs (it depends on
mvir and z), in Mashchenko et al. (2005), we designed a numerical
method for finding the most probable combination of (mvir, z)
corresponding to given values of (�s , rs). As a by-product we also
obtain the corresponding value of �c. The areas below the solid
lines in Figure 1 correspond to DM halos that were abundant
enough to have been progenitors of dwarf spheroidals in the
Local Group.

Assuming that the tidal field of the Milky Way has not per-
turbed significantly the stars in the outskirts of Draco out to a
distance of rout � 1:2 kpc from its center (the last observed
point in the Draco surface brightness profile of Odenkirchen
et al. 2001; see Fig. 2a), the third constraint can be written as
rvir o rout. (It is hard to imagine stars forming beyond the virial
radius of its DM halo.) The halos in the areas above the dash-
dotted lines in Figure 1 satisfy the above criterion.

In Figure 3 we plot the observed line-of-sight velocity disper-
sion profile for Draco (from Wilkinson et al. 2004). It has been
noted that in Draco and UrsaMinor the galactic outskirts appear
to be kinematically cold (Wilkinson et al. 2004). There appears
to be no good explanation for this phenomena. Given the fact
that in the case of Draco the only (outermost) radial bin that is
‘‘cold’’ contains only six stars with measured line-of-sight ve-
locities, and is marginally (at �1 � level) consistent with the
global average for Draco, h�losi ¼ 9:5 km s�1, we decided to
exclude the last bin from our analysis. Our assumption is that at
the distance of r1 ¼ 0:74 kpc from the Draco center (halfway
between the two last points in Fig. 3) the line-of-sight velocity
dispersion for Draco is roughly equal to the global average:1

�los(r1) � 9:5 km s�1 (Fig. 3, circle with a cross). At this distance
the stellar density in Draco is steeply declining (see Fig. 2a). As
a result, most of stars observed at the projected distance r1 from
Draco’s center are located roughly in the plane of the sky at the
spatial distance r1 from the center of the dwarf. We can then
use �los(r1) as a lower limit of Draco circular velocity at this

1 This is consistent with the results of Munoz et al. (2005), who observed
Draco to have �los � 10 km s�1 out to a distance of �1 kpc from the center.
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distance,Vc,1. Indeed, if one considers the extreme of purely radial
orbits, the line-of-sight velocity dispersion at large distance from
the galactic center will be close to zero. In the opposite extreme of
purely circular orbits, one can show that �los becomes approxi-
mately equal to the circular velocity at this distance. We plot the
solution of the equation Vc;1 ¼ 9:5 km s�1 as long-dashed lines
in Figure 1. The areas above these lines correspond to halos that
satisfy the above criterion. The result we derived here is ap-
proximate, but of model-independent nature. We present more

accurate (but alsomore model-dependent) treatment in x 3, where
we fit stellar models to all the reliable observed �los points in
Figure 3.
The last constraint is that the virial mass of the Draco halo is

somewhere between ‘‘ridiculously’’ low and high values 107 and
1011M� (Fig. 1,area between dotted lines). The lower limit is even
lower, by a factor of 2–3, than the classical ‘‘mass follows light’’
estimates (Mateo 1998; Odenkirchen et al. 2001). The upper
limit corresponds to a satellite that would very quickly spiral in

Fig. 2.—(a) Stellar surface density profiles for Draco. The observed profile of Odenkirchen et al. (2001), their sample S2 is shown as solid circles with 1 � error bars.
The best-fitting profiles for a Plummer-like model with � ¼ 7, the Plummer model, and the King model are shown as solid, dotted, and dashed lines, respectively. (b) Stellar
anisotropy profile �(r) for the best-fitting Draco model with NFWDM halo (� ¼ 7, log �s ¼ 7:2, log rs ¼ 0:45, k ¼ 1, �0 ¼ 0:9, �1 ¼ �0:7) is shown as a solid line. For
comparison, anisotropy profiles are shown for other values of k: 0.5 (dotted line), 3 (short-dashed line), and 5 (long-dashed line).

Fig. 1.—Exclusion plots for Draco DM halo parameters �s and rs. (Both NFW case [left panel ] and Burkert case [right panel ] are shown.) The hatched areas
correspond to DM halos that satisfy all global constraints. Here Vc,1 is the circular speed at the distance r1 ¼ 0:74 kpc from the center of the halo.
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to the center of theMilkyWay due to dynamical friction. As one
can see, the last constraint does not add any new information to
our exclusion plots in Figure 1.

From comparison of Figures 1a and 1b one can see that all
the constraints except for the fourth one (Vc;1o9:5 km s�1) are
very similar for both NFW and Burkert DM density profiles.
This is intimately linked to our assumption that for a given virial
mass mvir and redshift z both types of halos have the same
concentration—given by equation (3). This automatically makes
the scaling radii rs equal in both cases. At the same time, one can
show that the scaling densities for NFW and Burkert halos are
related through

�s;Burkert
�s;NFW

¼ 2
ln (1þ c)� c=(1þ c)

ln (1þ c)þ ½ln (1þ c2)�=2� arctan c
; ð5Þ

which is close to unity for realistic halos (the ratio changes from
0.966–0.921 for c ¼ 3:5 10). The fourth constraint, unlike the
rest of the criteria, does not deal with a global property of a halo
(such as mvir and z or their derivatives, rvir and F ). Instead, it
deals with the average DM density within a certain fixed radius—
which can be dramatically different for cuspy NFWand flat-cored
Burkert models.

The hatched areas in Figure 1 correspond to DM halos that
satisfy all of the above global constraints. As one can see, the
Draco halo parameters are not particularly well constrained, es-
pecially in the case of the NFW profile. Still, one can make a few
interesting observations. First, the most restrictive (and useful)
constraints are Fo0:01 Mpc�3 and Vc;1o9:5 km s�1. Second,
there is plenty of room for Draco to have formed before the end
of the reionization of the universe at z � 6:5 (hatched areas to
the right of the dashed lines marked ‘‘z ¼ 6:5’’ in Fig. 1). Third,
we can derive the range of possible values of different halo

parameters. For NFW halos, our exclusion plot implies that
logmvir ¼ 7:7 10:7, z ¼ 1:8 11, rs ¼ 0:16 7:8 kpc, and log �s ¼
7:0 9:1. (Here units for mvir and �s are M� and M� kpc�3,
respectively.) For Burkert halos, logmvir ¼ 7:8 10:5, z ¼ 3:9 11,
rs ¼ 0:17 5:0 kpc, and log �s ¼ 7:4 9:1. Interestingly, for both
NFW and Burkert cases, Draco could not have formed before
z � 11, or more than 13.2 Gyr ago. The reason for that is that at
larger redshifts DM halos with the virial radiio1.2 kpc become
too rare to correspond to a typical dwarf spheroidal galaxy in
the Local Group.

The main purpose of generating the exclusion plots in Figure 1
was to significantly reduce the computational burden in the next
step of our analysis, described in the next section, where we use
the whole observed line-of-sight velocity dispersion profile along
with the surface brightness profile to find the best-fitting stellar
models and to further reduce the uncertainty in (�s , rs) values for
the Draco DM halo.

3. STELLAR MODEL

The equilibrium state of a spherically symmetric stellar
system can described by the Jeans equation,

1

��

d(���
2
r )

dr
þ 2

r
�2
r � �2

t

� �
¼ � d�

dr
ð6Þ

(Binney & Tremaine 1987), which is obtained by taking the
first velocity moment of the collisionless Boltzmann equation.
Here r is the distance from the center of the system, �� is the
stellar density, �r and �t are the one-dimensional stellar radial
and tangential velocity dispersions, respectively, and � is the
total gravitational potential (due to stars and DM). The radial
gradient of the gravitational potential can be calculated as
d�/dr ¼ G½m(r)þ m�(r)�/r2, where m(r) and m�(r) are the en-
closed DM and stellar masses, respectively, and G is the grav-
itational constant. From equations (1) and (2) we derived

m(r) ¼ 4�r3s�s½ln (1þ x)� x=(1þ x)� (NFW); ð7Þ
m(r) ¼ 2�r3s�s

; ½ln (1þ x)þ (1=2) ln (1þ x2)� arctan x� (Burkert):
ð8Þ

Here x � r/rs. We neglect impact of baryons on DM distribution,
as in Draco the stellar density is more than an order of magnitude
lower than DM density even at the center of the galaxy.

The Plummer density profile,

�� ¼ �0 1þ (r=b)2
� ��5=2 ð9Þ

(Binney & Tremaine 1987), is used sometimes to describe simple
spherically symmetric stellar systems, such as globular clusters
and dwarf spheroidal galaxies. It has a core of size b and a
power-law envelope with the slope � ¼ �5. We found that a
‘‘generalized Plummer law,’’

�� ¼ �0 1þ (r=b)2
� ���=2

; ð10Þ

which has a surface density profile of the form

� ¼ �0 1þ (R=b)2
� ��(��1)=2

; ð11Þ

provides much better fit to the Draco star count profile of
Odenkirchen et al. (2001) than the Plummer model and the

Fig. 3.—Line-of-sight stellar velocity dispersion profile for Draco. Obser-
vational data of Wilkinson et al. (2004) are shown as circles with 1 � error bars.
The last point, which we consider to be unreliable, is shown as an open circle
with error bars. The horizontal dotted line marks the global �los ¼ 9:5 km s�1 for
Draco. The �los profiles for our eight best-fitting stellar models are shown as
solid lines. The big circle with a cross shows our assumption for �los at the
distance of r1 ¼ 0:74 kpc from the Draco center.
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theoretical King (1966) model, if one chooses � ¼ 7 (see
Fig. 2a).2 Here � is an integer numbero2 and R is the projected
distance from the center of the system. For � o 4, the total
stellar mass can be calculated as

M� ¼
2��0b

2

� � 3
: ð12Þ

For � ¼ 7, the stellar enclosed mass is

m�(r) ¼
4��0r

3

15

5þ 2(r=b)2

(1þ r2=b2)5=2
; ð13Þ

and �0 ¼ 15�0 /(16b). The 	
2 fitting of equation (11) to the Draco

profile ofOdenkirchen et al. (2001) gave�0 ¼1:08 ; 107 M� kpc�3

and b ¼ 0:349 kpc. (We assumed that the stellar V-bandmass-to-
light ratio of Draco stars is � ¼ 1:32, which is an average value
of the Salpeter and composite model estimates of Mateo et al.
1998.)

Traditionally, in equation (6) one uses �r and 
 � 1� �2
t /�

2
r

instead of �r and �t . The anisotropy parameter 
 is equal to�1,
0, and 1 for purely tangential (circular), isotropic, and purely
radial stellar orbits. We advocate a different anisotropy parameter,

� � �2
r � �2

t

�2
r þ �2

t

: ð14Þ

Unlike 
, parameter � is symmetric: it is equal to �1, 0, and 1
for circular, isotropic, and purely radial orbits. The equations con-
necting 
 and � are � ¼ 
/(2� 
 ) and 
 ¼ 2�/(1þ �). Another
useful expression is �2

t ¼ �2
r (1� �)/(1þ �). The Jeans equa-

tion (6) can now be rewritten as

1

��

d(���
2
r )

dr
þ 4�

1þ �

�2
r

r
¼ � d�

dr
: ð15Þ

As there are two unknown functions in equations (6) or
(15), �r (r) and �t (r) (or 
[r], or �[r]), one customarily assumes
the shape of the anisotropy profile and then solves the ordi-
nary differential equation for �r(r). The boundary condition is
�r(r ! 1) ¼ 0. Traditional choices for the anisotropy profile
are (1) 
 ¼ constant (with the special case of 
 ¼ 0, or isotropic
stellar orbits), and (2) the Osipkov-Merritt profile (Osipkov
1979; Merritt 1985),


 ¼ 1þ ra=rð Þ2
h i�1

: ð16Þ

In the latter case, the stellar system is isotropic at the center,
reaches
 ¼ 0:5 at r ¼ ra, and becomes purely radially anisotropic
in infinity. Unfortunately, the two above choices are very limited.
We propose instead a much more flexible anisotropy profile,

� ¼ �0 þ (�1 � �0) 1� ��=�0ð Þ1=k
h i

; ð17Þ

which is applicable to systems with a flat core (such as a gen-
eralized Plummer model or King model). Here k is a positive
number of order of unity, and �0 and �1 are asymptotic values of
the anisotropy parameter � for r ! 0 and r ! 1, respectively.
As one can see, the profile in equation (17) does not explicitly

depend on r, like the Osipkov-Merritt profile. Instead, it depends
on the stellar density ��. We believe it is a reasonable approach,
as in many realistic stellar systems the same dynamical processes
shape simultaneously both density and anisotropy profiles. The
examples are the collapse of initially homogeneous warm stellar
sphere (van Albada 1982; Mashchenko & Sills 2005a) and the
expansion of a newly formed stellar system in a spherical galaxy
with a DM halo after removal of the leftover gas by the feedback
mechanisms (Mashchenko et al. 2005). In both cases, the stellar
orbits become increasingly radially anisotropic in the outskirts
of the relaxed system, where the density is steeply declining.
Both 
 ¼ constant and the Osipkov-Merritt profiles can be

considered as special cases of our more general expression in
equation (17). Indeed, fixing �0 ¼ �1 would correspond to the
case of 
 ¼ constant; using the generalized Plummer density
profile from equation (10) and setting k ¼ � /2 produces the
Osipkov-Merritt profile with ra ¼ b/

ffiffiffi
2

p
.

The parameter k in equation (17) controls how sensitive the
anisotropy parameter is to changes in density. To illustrate this
effect, in Figure 2b we show anisotropy profiles for Draco with
�0 ¼ 0:9, �1 ¼ �0:7, and k ¼ 0:5, 1, 3, 5. One can see that by
varying k by a factor of a few a large range of possible an-
isotropy profiles is produced.
We designed a numerical algorithm to find values of the

parameters controlling the shape of the anisotropy function �
(�0, �1, and k) that would 	2-minimize the deviation of the
simulated line-of-sight velocity dispersion profile from the ob-
served one (Fig. 3, circles with error bars; we excluded from
our analysis the last point as an unreliable one) for given �s, rs,
and the halo profile (NFW or Burkert). The procedure consists
of the following six steps:

1. We choose values of log �s and log rs from a grid with
spacings of 0.45 and 0.15 dex, respectively. (The values of the
increments were chosen to lead to a factor of 2 increase in the
halo virial mass.) The reference point of the grid is log �s ¼ 9
and log rs ¼ 0. Only those grid points that lie within the hatched
zones in Figure 1 are considered. In the Burkert case, we also
considered a few points lying outside of the hatched area in
attempt to bracket the point with the best 	2. All these grid
points are shown as circles (either open or filled) in Figure 4.
Overall, we considered 35 different DM halo models.
2. For each of the DM halo models, we consider 1764 dif-

ferent combinations of anisotropy shape parameters �0 ¼ �1;
�0:9; �0:8; : : : ; 1, �1 ¼ �1; �0:9; �0:8; : : : ; 1, and k ¼ 0:5,
1, 3, 5. For each combination, we solve the Jeans equation (15)
numerically with the anisotropy, stellar density, enclosed DM
mass, and enclosed stellar mass profiles given by equations (17),
(9), (7) and (8), and (13), respectively. We adopt � ¼ 7, �0 ¼
1:08 ; 107 M� kpc�3, and b ¼ 0:349 kpc. The solution of the
Jeans equation is the radial velocity dispersion profile �r(r).
3. For each of the above �60,000 models we generate a

spherically symmetric N-body stellar model, with the number of
particles N ¼ 10;000. Stellar particles are distributed randomly,
with the density profile given by equation (9). Each stellar particle
is assigned random values of the radial and two tangential com-
ponents of the velocity vector: Vr, V�, and V�. All three com-
ponents are assumed to have a Gaussian distribution, with the
dispersions �r(r), �t (r), and �t(r), respectively. This is an ap-
proximate method of generating a close-to-equilibrium N-body
system with an arbitrary density and anisotropy profiles. The
accurate method would involve numerically calculating the dis-
tribution function, which is a very computationally expensive
procedure. This would render our approach unfeasible.

2 For the Draco star count of Wilkinson et al. (2004) the best-fitting value of
� is 6.
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4. We calculate the line-of-sight velocity dispersion profile
for the generated N-body stellar models integrated over the same
projected radial bins as in the observed profile of Wilkinson et al.
(2004) (the edges of their bins are 0, 0.12, 0.24, 0.36, 0.48, 0.60,
0.72 kpc; J. Kleyna 2005, private communication). For this we
use the projection method of Mashchenko & Sills (2005a, their
Appendix B), where we explicitly use the spherical symmetry of
our stellar system.

5. We calculate 	2 difference between the observed line-of-
sight velocity dispersion profile (the six reliable points in Fig. 3)
and the modeled one. As the observational error bars are asym-
metric, for calculating 	2 we use the appropriate one-sided value
of the standard deviation depending onwhich side of the observed
point the model point is located.

6. For each DM halo model, we choose one of 1764 models,
with different �0, �1, and k, which produces the lowest value of	2.

For most DM halo models, we could not find a good fit to the
observed line-of-sight velocity dispersion profile (with some
models having	2 > 100): all modeled �los(r) points were either
well above or well below the observed ones. Only a few models
produced 	2 < 9:5 (Fig. 4, filled circles). It is interesting that for
both NFW and Burkert cases the best-fitting models follow very
closely a sequence of isothermal stellar models with the total one-
dimensional stellar velocity dispersion �tot ¼ ½(�2

r þ 2�2
t )/3�

1/2 ¼
9:5 km s�1 (Fig. 4, thin solid lines). We obtained the isothermal
solutions by solving the appropriate Jeans equation,

1

��

d(���
2
r )

dr
þ 3

r
�2
r � �2

tot

� �
¼ � d�

dr
; ð18Þ

with the boundary condition �r(0) ¼ �tot. For isothermal systems
the usual Jeans equation requirement �r(r ! 1) ¼ 0 does not
hold in general case, and at some radius rmax the solution breaks
down when �2

r becomes negative. The isothermal model lines

shown in Figure 4 were obtained by finding the value of rs that
would maximize rmax for given �s. Typically rmax 31 kpc, and
only for the NFW model with �s ¼ 109 M� kpc�3 did it drop
down to 0.6 kpc.

The closeness of our best-fitting models to isothermal models
does not imply that the isothermal models are the best ones. We
calculated 	2 differences between the observed and modeled
line-of-sight velocity dispersion profiles for a few isothermal
models, and they were substantially worse than for our best-
fitting models. We also plotted �tot(r) profiles for the best-fitting
models, and they were not isothermal. The explanation for the
closeness of our best-fitting models to the isothermal ones is in
the virial theorem. Given that the line-of-sight velocity dis-
persion profile and the surface brightness profile are fixed, the
virial theorem implies that all realistic models should stay close
to a certain line in the (�s, rs) plane.

From Figure 4 one can see that the best-fitting models are
well bracketed inside the zones were all the global constrains on
�s and rs from x 2 are satisfied. In other words, we have a good
agreement between the global constraints and the detailed �los(r)
analysis constraints, which were derived in a very different fash-
ion. The exception is the Burkert halos with log �s ¼ 8:1, where
	2 is slightly improving when moving upward into the area with
F < 0:01Mpc�3. This is explained by the fact that at this value of
log �s the isothermal sequence is making a sharp upward turn.

We list the parameters for the best-fitting models in Table 1.
We show only the models with 	2 < 9:5 located within the glob-
ally constrained zones. As for the Burkert halos with log �s ¼
8:55, we have two comparably good models, and we chose the
one that is closer to the isothermal sequence.

Analysis of Table 1 shows that a comparably good �los(r) fit
can be obtained for a very large range in virial masses, from
�7 ; 107 to �5 ; 109 M�, for both NFW and Burkert halos.
Despite very large difference in DM masses and density pro-
files, all the best-fitting stellar models have comparable values

Fig. 4.—Best-fitting stellar models for different Draco DM halo parameters �s and rs. Filled (open) circles correspond to models that have 	2 < 9:5 (	2 > 9:5)
between the modeled and observed line-of-sigh velocity dispersion profiles. Thick solid lines mark the areas where all the global constraints on (�s, rs) are satisfied (see
Fig. 1). Thin solid lines correspond to isothermal stellar models with � ¼ 9:5 km s�1. Short-dashed lines correspond to halos formed at z ¼ 6:5. Long-dashed lines
correspond to halos with the analytical tidal radius equal to 0.85 kpc for the extreme values of the orbital pericentric distance, Rp ¼ 2:5 and 70 kpc (see x 4.1). The circle
with a cross marks the best-fitting Draco model from Mashchenko et al. (2005) for the Draco surface brightness profile of Odenkirchen et al. (2001).

GLOBAL PROPERTIES OF DRACO 257No. 1, 2006



of the anisotropy parameters: k ¼ 1 (in other words, anisotropy
� is a linear function of the stellar density), �0 � 0:8, and �1 � 0
to �1.

In Figure 3 we show the line-of-sight velocity dispersion
profiles for the eight best-fitting models from Table 1 integrated
over the same projected radial bins as the observed profile.
All the models correctly reproduce the observational trend of a
slight increase in �los with radius. However, two models with
the largest virial mass (both NFWand Burkert) produce profiles
that are rising rather steeply at the last measured point. This
could present a problem if the result of Munoz et al. (2005), that
the �los profile in the outskirts of Draco is almost flat, is con-
firmed with a larger sample of stars. For less massive models,
the line-of-sight velocity dispersion profiles are leveling off at
the last measured point, which is more in line with the results of
Munoz et al. (2005).

Assuming that the best-fitting stellar models follow closely the
isothermal sequence, from Figure 4 we can derive new (slightly
better than in the previous section) constraints on Draco’s DM
halo parameters: logmvir ’ 7:9 9:7 (for both NFWand Burkert
halos), z ¼ 1:8 10, rs ¼ 0:21 3:1 kpc, log �s ¼ 7:0 8:8 (for
NFW halos), and z ¼ 6:8 11, rs ¼ 0:18 1:4 kpc, log �s ¼
8:1 9:0 (for Burkert halos). The interesting result is that if
cosmological halos have a Burkert-like flat-cored DM density
profiles, then Draco should have formed before the end of the
reionization of the universe at z � 6:5.

4. EVOLUTION IN THE MILKY WAY POTENTIAL

4.1. Possible Orbits in the Galactic Potential

To carry out tidal stripping simulations for Galactic satellites,
it is of principal importance to know reasonably well the shape of
the gravitational potential of the Milky Way. One popular Milky
Waymodel often used to calculate orbits ofGalactic globular clus-
ters and dwarf spheroidals is that of Johnston et al. (1999). This
model consists of three components: (1) a disk represented by
Miyamoto&Nagai (1975) potential with themass 1:0 ; 1011 M�,
radial scale-length 6.5 kpc, and scale-height 0.26 kpc; (2) a spheri-
cal bulge with a Hernquist (1990) potential, mass 3:4 ; 1010 M�,
and scale-length 0.7 kpc; and (3) an isothermal halo with
� ¼ 128 km s�1 and a flat core of size 12.0 kpc. The model was
designed to reproduce the observed flat Galactic rotation curve
between 1 and 30 kpc.

There are two major disadvantages of the above model for our
work. First, it is axisymmetric, which adds an additional degree of
freedom to our already multidimensional problem. (Orbits in axi-
symmetric potentials depend on all three components of the space

velocity vector of the satellite, whereas in spherical potentials
orbits depend only on the radial, Vr , and tangential, Vt, space
velocity components.) Second, the DM halo of Johnston et al.
(1999) is an isothermal sphere with the rotation curve asymptoti-
cally approaching Vc ¼181 km s�1 as r !1, whereas in the cos-
mological halos the rotation curves are declining in the outskirts.
We decided to use a simple static NFW potential,

� ¼ �4�G%sR
3
s ln (1þ R=Rs)=R; ð19Þ

as the Milky Way model for our project. The scaling radius Rs

and density %s of an NFW halo can be determined from the virial
mass Mvir and concentration C. These quantities are still not
very well known for the Milky Way. Traditionally, one uses
different Galactic objects (stars, gas, globular clusters, dwarf
spheroidals) with known line-of-sight velocity and, in some cases,
proper motion as kinematical tracers of the Galactic potential,
with different authors obtaining quite different results. The fa-
vored model of Klypin et al. (2002), for example, has a virial
mass of 1012 M� and concentration 10–17. Other recent NFW
halo based models haveMvir ¼ (0:7 1:7) ; 1012 M�,C ¼ 5 12
(Cardone & Sereno 2005), and Mvir ¼ (0:6�2:0) ; 1012 M�,
C ¼ 18 (Battaglia et al. 2005). The non-NFW models of
Sakamoto et al. (2003) give larger values for the total mass of the
Milky Way: Mvir ¼ (1:5 3:0) ; 1012 M� if Leo I is gravitation-
ally bound to the Galaxy, andMvir ¼ (1:1 2:2) ; 1012 M� if not.
We adopted an intermediate value for the Galactic virial mass,

Mvir ¼ 1:5 ; 1012 M�. The median concentration of cosmologi-
cal halos with such mass at z ¼ 0 is C ¼ 13:2 (Bullock et al.
2001). The halo scaling parameters are then Rs ¼ 22:6 kpc and
%s ¼ 6:0 ; 106 M� kpc�3, and the virial radius is Rvir ¼ 298 kpc.
The radial tidal acceleration �d 2�/dr2 of our NFW halo is

comparable to that of the composite model of Johnston et al.
(1999). As one can see in Figure 5, the tidal acceleration profile
for the NFW halo is located between the two extreme profiles
for the Johnston et al. (1999) model (in the Galactic plane and
along the polar axis) down to a radius of �10 kpc.
We obtained the pericentric and apocentric distances, Rp and

Ra , for closed Draco’s orbits in the potential given by equation
(19) by solving numerically the following nonlinear equation
(Binney & Tremaine 1987):

1

R2
þ 2½�(R)� �(R0)� � V 2

r � V 2
t

R2
0V

2
t

¼ 0; ð20Þ

where R0, Vr, and Vt are the Draco’s current distance from the Ga-
lactic center, radial velocity, and tangential velocity, respectively.

TABLE 1

Best-Fitting Stellar Models

Input Parameters Derived Parameters

Model Halo

log �s
(M� kpc�3)

log rs
( kpc) NDM

"DM
(pc) k �0 �1 	2

mvir

(M�) z c

rvir
( kpc) �c

log F

(Mpc�3)

N1................... NFW 7.20 0.45 106 60 1 0.9 �0.7 5.4 4.6 ; 109 2.46 5.55 15.6 �0.68 �1.09

N2................... NFW 7.65 0.00 3.16 ; 105 28 1 0.7 �0.8 6.6 5.2 ; 108 4.50 4.80 4.80 �0.23 �0.15

N3................... NFW 8.10 �0.30 105 36 1 0.8 �0.9 6.1 1.8 ; 108 7.10 4.55 2.28 0.54 0.08

N4................... NFW 8.55 �0.60 105 20 1 0.6 �1.0 8.9 6.9 ; 107 9.45 5.14 1.29 1.47 �0.11

N5................... NFW 9.00 �0.75 105 19 1 1.0 �1.0 8.6 8.4 ; 107 10.7 6.92 1.23 2.80 �1.62

B1................... Burkert 8.10 0.15 106 37 1 0.7 0.0 6.6 4.5 ; 109 6.74 4.98 7.03 1.48 �1.93

B2................... Burkert 8.55 �0.45 3.16 ; 105 30 1 0.7 �0.6 6.5 2.1 ; 108 9.64 5.17 1.84 1.82 �0.97

B3................... Burkert 9.00 �0.75 105 19 1 0.8 �0.9 6.2 9.1 ; 107 11.0 6.91 1.23 2.90 �1.83

Note.—Here NDM and "DM are the number of the DM particles and the gravitational softening length for DM particles in N-body simulations (see x 4.2).
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If proper motion is known, the two space velocity vector com-
ponents Vr and Vt can be calculated using the procedure outlined
in the Appendix. The radial orbital period is obtained by solving
numerically the following integral (Binney & Tremaine 1987):

P ¼ 2

Z Ra

Rp

dRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V 2
r þ V 2

t � 2½�(R)� �(R0)� � R2
0V

2
t =R

2
p : ð21Þ

Scholz & Irwin (1994) published the only available measure-
ment of the proper motion of Draco: � cos � ¼ 0:6 � 0:5 mas
yr�1, and � ¼1:1� 0:5 mas yr�1. (We adopted the larger value
for the uncertainty from the text of their paper.) When we started
this project, we hoped that the measurements of Scholz & Irwin
(1994) could be used to place useful constraints on possible
Draco’s orbits in the Milky Way potential. Unfortunately, this is
not the case. This can be seen from Figure 6a, which shows the
proper motion measurements of Scholz & Irwin (1994) and the
locus of the possible proper motion vectors resulting in a closed
orbit in the Milky Way potential given by equation (19). (We
assumed that the halo density drops to zero beyond the virial
radius rvir, and took into account the uncertainties in the dis-
tance to Draco, d ¼ 82 � 6 kpc, and its line-of-sight velocity,
Vlos ¼ �293 � 2 km s�1, which were taken from Mateo 1998.)
One can see that the observational results are virtually in-
consistent with Draco moving along a bound orbit around the
Milky Way. More quantitatively, the chance for a bound orbit
with the radial period P < 8 Gyr is only 5.5% (or 7.4% for any
period, which includes periods much longer than the Hubble
time). This is not surprising, as the proper motion measure-
ments of Scholz & Irwin (1994) imply that Draco moves in the
Galactic halo with a staggering speed of 610 � 190 km s�1

(1 � error bars), with no realistic Milky Way model being able
to keep it gravitationally bound.

Given that Draco appears to be a pretty normal dwarf sphe-
roidal galaxy and that the dwarf spheroidals strongly concentrate
toward the two large spirals in the Local Group (Mashchenko
et al. 2004), the Milky Way and the M31 galaxy, it seems to be
very unlikely that this dwarf moves along an unbound orbit
around our Galaxy, and just by chance happened to be at the
present small distance from the Galactic center. We assume
instead that Draco moves on a bound orbit, with P P 8 Gyr, and
that the proper motion measurements of Scholz & Irwin (1994)

Fig. 5.—Radial tidal acceleration profiles for the Milky Way models. The solid
line corresponds to our NFWmodel. The compositemodel of Johnston et al. (1999)
is shown as dashed (in the Galactic plane) and dotted (in the polar direction) lines.

Fig. 6.—(a) Proper motion vectors for Draco. The observational result of Scholz & Irwin (1994) is shown as a cross with the circle representing a 0.5 mas yr�1 1 �
error bar. Dots correspond to proper motion vectors that result in a bound orbit with the period P < 8 Gyr in the Milky Way potential. (b) Draco’s bound orbits
with P < 8Gyr in the (Rp, 7000/Ra) coordinates (dots). In these coordinates, the orbits followwell a circle with a radius 76 kpc (thick solid line). The cutoff at 7000/Ra �
20 kpc is due to the imposed cutoff in the orbital period P < 8 Gyr. For six different values of the polar angle � (numbered radially divergent straight lines) we plot the
averaged distances of the points from the reference point (circles with crosses). As one can see, all the averaged distances are very close to 76 kpc.
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are wrong. Proper motion measurements of the outer Galactic
halo objects based on heterogeneous collection of photographic
plates spanning a few decades, such as those of Scholz & Irwin
(1994), are notoriously difficult to correct for all possible sources
of systematic errors. As another example, the proper motion
measurement of the same authors (Scholz & Irwin 1994) for Ursa
Minor is more than 1 � away from each of the three more recent
results, including two derived with the help of theHubble Space
Telescope (Piatek et al. 2005, their Fig. 16).

Fortunately, even in the case when the proper motion is not
known, some constraints can be placed on the orbital elements
of Draco. We noticed that pericentric and apocentric distances
for all the bound orbits from Figure 6a are not completely in-
dependent, and follow closely the solution of the equation

R2
p þ (7000=Ra)

2
h i1=2

¼ 76 kpc; ð22Þ

which is a circle with a radius of 76 kpc in the coordinates
x ¼ Rp, y ¼ 7000/Ra (see Fig. 6b). (Here Rp and Ra are in kpc.)
As one can see in Figure 6b, despite the observational un-

certainties in d and Vlos and the fact that the proper motion is
not known, Draco’s bound orbits stay in a relatively narrow
zone near the solution of equation (22). Neglecting the spread
of the points around the circle, one can assume then that Draco’s
bound orbits form a one-dimensional family of models, with
both Rp and Ra depending only on the polar angle �, with
tan � ¼ y/x ¼ 7000/(RpRa).
We chose six different values of the polar angle � (shown as

radially divergent lines in Fig. 6b, and listed in Table 2) to ob-
tain a sequence of Draco’s bound orbits. We used plots shown
in Figure 7 to estimate the typical values of Rp and Ra corre-
sponding to the particular values of the angle �. In Table 2 we
list the parameters of the derived Draco’s orbits. The range of
covered orbital periods is �1–5 Gyr. All the orbits except for
the last one have a pericenter at the distances where the tidal
disruption properties of our NFW halo are comparable to those
of the composite Milky Way model of Johnston et al. (1999)
(see Fig. 5). Orbit 6 was designed to explore the extreme case of
a virtually radial orbit. The apocenter of the orbit with the
longest period is at 260 kpc, which is at the very edge of the
virialized Galactic halo. As one can see from Table 2, the de-
rived sequence of orbits is not trivial, with the orbits being more
eccentric for the longest and shortest periods, and becoming
rounder for intermediate periods of �2 Gyr.
It is interesting to note that six out of eight, or 75%, of the

‘‘classical’’ Galactic dwarf spheroidals (we exclude Sagittarius
as being currently tidally disrupted) are located in a rather
narrow interval of Galactocentric distances R ¼ 70 140 kpc
(Mateo 1998). This includes Draco and excludes Leo I and II.
In Table 2 we list for each orbit the fraction of time fP Draco
spends in this interval of Galactocentric distances. Statistically
speaking, if Draco is a ‘‘normal’’ dwarf spheroidal, fP should be
around 0.75. Our orbit 3 is in this sense the likeliest orbit for
Draco, and orbit 1 (and probably 2) is rather unlikely.
In Figure 4 we show as long-dashed lines the halos with the

analytical tidal radius rtid equal to 0.85 kpc, which is the radius
where the density of Draco stars on the map of Odenkirchen

TABLE 2

Draco’s Orbits

Orbit

�

(rad)

Rp

( kpc)

Ra

( kpc) Ra /Rp

P

(Gyr)

Vt,a

(km s�1) fP

1................. 0.37 70.1 260 3.7 4.86 78.3 0.25

2................. 0.61 62.4 162 2.6 2.99 103.9 0.47

3................. 0.85 51.1 122 2.4 2.19 112.1 0.76

4................. 1.09 35.7 104 2.9 1.71 99.9 0.64

5................. 1.33 18.5 96.9 5.2 1.42 65.5 0.57

6................. 1.54 2.47 92.1 37 1.23 11.5 0.54

Note.—Here Vt,a is the tangential velocity at R ¼ Ra and fP is the fraction of
the time Draco spends at the distances R ¼ 70 140 kpc from the Galactic
center, where 75% of Galactic dwarf spheroidals are currently located.

Fig. 7.—Our choices for Draco’s orbits. Dots show bound orbits with P < 8Gyr. Vertical lines correspond to the six different values of the polar angle � from Fig. 6b.
Circles with crosses mark the averaged orbital parameter (either pericentric distance Rp [ panel a] or apocentric distance Ra [ panel b]) values for different angles �.
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et al. (2001) is 2 � above the noise level. We calculated rtid
from

m(rtid)

r 3tid
¼ 2� R

M (R)

@M

@R

	 

M (R)

R3
ð23Þ

(Hayashi et al. 2003), where M(R) and m(r) are the enclosed
mass for the Milky Way and the satellite, respectively. Even at
this large distance from Draco’s center, Odenkirchen et al. (2001)
did not see any sign of Draco being tidally distorted by the Milky
Way tidal field. From Figure 4 one can see that all our best-fitting
models (solid circles) have tidal radii larger than 0.85 kpc (even
for the worst orbit with Rp ¼ 2:5 kpc). One would naively con-
clude that the tidal forces are not important for our Draco models.
But the reality is more complicated than that. Numerical N-body
simulations of the evolution of subhalos orbiting in the host halo
showed that removal of DM from the outskirts of the satellite
results in the expansion of the satellite, which reduces its av-
erage density and exposes more DM to the action of the tidal
field (Hayashi et al. 2003; Kazantzidis et al. 2004). Burkert halos
have lower average density than NFW halos, and as a result are
even easier to disrupt tidally (Mashchenko & Sills 2005b). More-
over, even well inside the tidal radius, distribution of bound
stars can be noticeably distorted by the tidal filed of the Milky
Way, which would be at odds with the Draco observations of
Odenkirchen et al. (2001). To correctly describe the above effects,
we had to resort to high-resolution N-body simulations of the
tidal disruption of our best-fitting composite (DM + stars)
models from Table 1 in the static potential of the Milky Way.
This is described in the following sections.

4.2. Isolated Models

To run the N-body simulations of the tidal stripping of Draco
in the static gravitational potential of the Milky Way, we used
the parallel tree-code Gadget-1.1 (Springel et al. 2001). We gen-
erated equilibrium DM halos for our eight models (see Table 1)
using the prescription in Mashchenko & Sills (2005a). The es-
sence of this approach is to use explicitly the distribution function
(DF) to set up the initial distribution of velocity vectors of DM
particles (isotropy was assumed). It was argued (Kazantzidis et al.
2004) that using DFs explicitly is far superior to traditional local
Maxwellian approximation for cuspy models such as NFW. To
reduce the boundary effects, we truncate DM halos at a distance
of two virial radii rvir from the center. This results in virtually no
evolution for isolated models within the virial extent of the halos
after 10 Gyr. We chose the gravitational softening lengths (sepa-
rately for DM and stars) to be commensurable with the average
interparticle distance: " ¼ 0:77rhN

�1/3 (Hayashi et al. 2003).
Here rh is the half-mass radius of the system. For stellar particles,
"� ¼ 8:6 pc. For DM particles, "DM values are listed in Table 1.

To set up the initial distribution of stars inside the DM halo,
we use the same pseudo-Maxwellian approximation we used to
measure the projected line-of-sight velocity dispersion profiles
in x 3 (step 3). The only difference is that now we use a larger
number of stellar particles, N� ¼ 30;000, to reduce the Poisson
noise in the observable properties of the models.

Our baseline number of DM particles is NDM ¼ 105. Test
runs showed that in the most massive models (N1 and N2, and
B1 and B2) a much larger number of DM particles is required to
prevent the artificial evolution of the stellar cluster at the center
of the halo. We observed the central stellar density being sig-
nificantly reduced (by more than an order of magnitude in the
worst cases) in the low-resolution models. This effect does not

depend on the number of stellar particles and becomes less
severe for larger NDM and/or "DM. As stars are only a trace
population in our models, the most obvious explanation for the
above artifact is that stars get scattered from the imperfections
of the granulated gravitational potential of the DM halo. Setting
NDM ¼ 106 for models N1 and B1, and NDM ¼ 3:16 ; 105 for
models N2 and B2 resulted in acceptable level of the artificial
evolution of the surface brightness profile �(r) of the stellar
cluster. In all our isolated models, the change in the central
surface brightness was negligible after 10 Gyr of evolution
(with the only exception of model B1, where the change was
�0.4 dex). The radius corresponding to the outmost reliable
Draco isodensity contour of Odenkirchen et al. (2001) with
� ¼ 12;060 M� kpc�2 (r ¼ 0:85 kpc initially) increased by
mere 0.03–0.05 dex.

Unfortunately, we observed significant evolution in the ve-
locity anisotropy profiles �(r) in our isolated models, especially
at the center of the halo. All our best-fitting stellar models have
a strong radial anisotropy at the center (see Table 1). In our
N-body simulations with live DM halos the stellar core becomes
close to isotropic within the first gigayear, suggesting that the
particle-particle interactions are not the main culprit, as such
effects would take gigayears to manifest themselves. This be-
came more apparent after we ran simulations for all our models
from Table 1 with N� ¼ 30;000 stellar particles and static DM
potential. In this setup, close encounters between particles are
extremely rare due to very low stellar density. In the static
models we see the same effect (of slightly smaller magnitude) as
in the runs with live DM halos: central radial anisotropy reduces
almost to zero after a few crossing times. We do not know the
exact reason for the above effect. The possible explanations are
(1) the (unknown) DF corresponding to our choice of anisot-
ropy, stellar density, and gravitational potential profiles is okay
(positive everywhere), but the pseudo-Maxwellian approxi-
mation we use to set up the stellar velocities is not good for
systems with strong radial anisotropy at the center, and/or
(2) the DF is not physical (i.e., is negative) at the center. We also
want to point out that a real stellar system cannot have a radial
anisotropy all the way to its center, as the radial velocity dis-
persion diverges in such cases when r ! 0. To demonstrate
this, we write down the solution of the Jeans equation (15) in the
case of constant anisotropy (xokas 2001),

�2
r ¼ 1

r���

Z 1

r

r 0���
d�

dr
dr 0; ð24Þ

where the constant � � 2
 ¼ 4� /(1þ �) is positive for the case
of radial anisotropy. The integral in equation (24) is nonzero for
r ¼ 0, resulting in divergent �r at the center of the system.
Obviously, in a real object, radial anisotropy should break down
at some radius, changing into isotropy or tangential anisotropy.
It is also hard to expect radially divergent velocity dispersion in
a stellar system with a flat core, especially in the case of a flat-
cored (Burkert) DM halo.

We want to emphasize that even though we cannot guarantee
that the stellar models in Table 1 are physical (especially at the
center), in our simulations they quickly relax to a stable configu-
ration, with the surface brightness profile virtually identical to the
observed one, and the line-of-sight velocity dispersion profile
�los(r) still consistent with the observations. In Figure 8 we plot
�los(r) profiles for our stellar models in a static DM potential
after 10 Gyr of evolution integrated over the same six radial
bins as the observational data of Wilkinson et al. (2004). As one
can see, the profiles for evolved stellar clusters are a reasonably
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good match to the observations. (The 	2 measure becomes a
factor of 2 larger in the evolved models.)

We also used the isolated runs to estimate the accumulated
total energy errors in our models. In the case of live DM halos,
the total energy for DM + stars is conserved to better than�0.1%
(typically �0.05%) after 10 Gyr of evolution. To estimate the
total energy errors for stars only, we measured the difference in
stellar total energy at t � 3 Gyr (when the cluster has reached a
steady state configuration) and at t ¼ 10Gyr in our staticDMhalo
simulations. The difference was again P0.1%.

4.3. Tidal Stripping Simulations

We simulated evolution of the eight stars + DM models of
Draco from Table 1 orbiting for 10 Gyr in the static spherically
symmetric potential of the Milky Way given by equation (19).
To run the simulations, we used the parallel version of the multi-
stepping tree code Gadget (Springel et al. 2001). The number of
stellar and DM particles and the corresponding gravitational
softening lengths were the same as in the isolated models de-
scribed in x 4.2. Each Draco model was simulated for six different
orbits from Table 2. Initially, Draco was located at the apocenter
of its orbit. Altogether we made 48 tidal stripping simulations.
We refer to the models by both the model number from Table 1
and the orbit number from Table 2, e.g., model N1-5. Most
of the results we give below are for the latest moment of time
when the dwarf was located at the current distance of Draco
from the Galactic center of�82 kpc (we do not make distinction
between the dwarf moving inward or outward), which took place
7.4–10 Gyr from the beginning of the simulations (9.4–10 Gyr
for orbits 3–6).

All our models experienced tidal stripping of different degree.
As Figure 9a shows, the DM mass of the gravitationally bound
remnant is between 90% (model N5-1) and 0.1% (model N1-6)
of the original mass at the end of the simulations. Three of
our models became completely gravitationally unbound within
10 Gyr: B1-6 (after 3.2 Gyr and three pericenter passages), B2-6

(after 7.8 Gyr and six pericenter passages), and B1-5 (after
9.4 Gyr and seven pericenter passages). In the latter case, the
dwarf is still bound when it is located at �82 kpc at the end of
the simulations (when we compare the results of the simula-
tions with the observed properties of Draco)—but only barely
so. It is not surprising that all the unbound models have Burkert
halos. Indeed, for given mass and scaling radius, these halos
have lower averaged density than NFW halos in the central area.
If truncated instantaneously at a certain radius, the total energy
of the remnant becomes positive for Burkert halos at a radius
�2.1 times larger than for NFW halos (Mashchenko & Sills
2005b).
Another result that can be explained is that the most massive

halos are easier to strip and disrupt tidally than the less massive
ones. All our models (both massive and of lower mass) have a
comparable DM density within the observed extent of Draco
(because of the virial theorem), so in the point mass approxi-
mation they should be equally susceptible to tidal forces. How-
ever, the point mass approximation (used to derive equation [23])
breaks down for our most massive halos, as their size becomes
comparable to the pericentric distance, so the strongly nonlinear
components of the tidal force become important. Not surprisingly,
our most massive halos on orbit 6 were either totally disrupted
(model B1-6) or lost 99.9% of its original mass (model N1-6)
after 10 Gyr of evolution.
In all of our models a fraction of stars has been tidally stripped

by the end of the simulations—even for orbit 1. In two cases
(models B1-6 and B2-6), stars have become completely unbound
by the time the dwarf was passing at the distance of�82 kpc from
the Galactic center for the last time. In other cases, the fraction
of escaped stars was between �10�4 for models B1-2, B1-3,
and B1-4, and 96.6% for model N1-6 (see Fig. 9b).
When analyzing the global properties of the stellar cluster at

the end of the simulations, the most obvious result is the fact that
the more disruptive the orbit is, the more the system is affected
by the tidal shocks experienced near the pericenter of the orbit.
(Orbits with a larger number from Table 2 are more disruptive
for two reasons: they have smaller pericentric distance, and they
have shorter orbital period, so the number of pericentric pas-
sages in 10 Gyr is larger.) Dwarfs are puffed up by the tidal
shocks, with the central line-of-sight velocity dispersion �0 be-
coming smaller (Fig. 9c), central surface brightness decreasing
(not shown, but is qualitatively similar to �0 behavior), and the
projected half-light radius becoming larger (except for the ex-
treme case of orbit 6, when both tidal shocking and tidal
stripping are important; see Fig. 9d ).
Our models are highly idealized when it comes to long-term

evolution of stellar tidal streams. On our most disruptive orbits,
5 and 6, a significant fraction of stars become unbound over the
course of the tidal evolution, with the most of the tidally
stripped stars following very closely the almost radial orbit of
the dwarf. From the Sun location, many of these stars project on
a rather small area in the sky inside or around the apparent
location of the dwarf. This can be quite unphysical, as such cold
tidal streams are not expected to survive for many gigayears in
the Milky Way halo due to its triaxiality and clumpiness (as
predicted by cosmology) and due to interaction with baryonic
structures in the Galaxy (stellar disk with spiral arms, stellar bar,
giant molecular clouds). To circumvent this difficulty, in this
section we discuss all the observable model properties for two
extreme cases: (1) all stars are taken into account, and (2) only
the stars (both bound and unbound) located within the spatial
distance of 5 kpc from the center of the dwarf are considered. In
the latter case, the spatial truncation of the tidal stream ensures

Fig. 8.—Line-of-sight stellar velocity dispersion profiles for Draco for the
models evolved in a static DM halo potential. The notations are the same as in
Fig. 3.
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that only themost recently stripped stars are used for calculating
the observable properties of the models.

On a more detailed level, the impact of both tidal shocks and
tidal stripping and heating can be seen in Figure 10. Here we
show the surface brightness profiles (Fig. 10a) and line-of-sight
velocity dispersion profiles (Fig. 10b) for models N1-1, N1-4,
N1-5, and N1-6. The most obvious effect in Figure 10 is the
global decrease of �los for orbits with smaller pericentric dis-
tance (excluding orbit 6), accompanied by a small decrease in the
central surface brightness and a slight radial expansion of the
system. No obvious tidal truncation and tidal heating is ob-
served in the outskirts in the cluster. These results were obtained
for the stars located within the spatial distance of 5 kpc from the

center of the dwarf, but in the case when all stars are included
the profiles are practically the same. Orbit 6 is a completely
different case: one can see the �los being dramatically inflated in
the outskirts of the dwarf due to superposition of tidally removed
stars on the dwarf (Fig. 10b). This effect becomes even more
dramatic when we include all the stars, with the line-of-sight
velocity dispersion reaching 50–70 km s�1 in the outermost ob-
served bin. As we discussed in the previous paragraph, it is quite
unlikely that old tidal streams can stay sowell collimated formany
gigayears to produce the above effect. But even for the conser-
vative case of considering only freshly stripped stars, the steeply
growing �los profile for model N1-6 is grossly inconsistent with
the observed profiles of Draco and other dwarf spheroidals,

Fig. 9.—Draco models’ parameters near the end of the simulations (when the dwarf was�82 kpc away from the Galactic center) as a function of orbit. Solid /dashed
lines correspond to models with NFW/Burkert DM halo profiles, respectively. Thick lines correspond to the most massive halos (models N1 and B1). (a) Gravitationally
bound DM mass MDM. (b) Fraction of stars having become unbound f�. (c) Central line-of-sight stellar velocity dispersion �0. (d ) Projected half-light radius for the
bound stellar cluster rh . To facilitate the comparison of different models, both �0 and rh are normalized to the same value for orbit 0 (corresponding to isolated models).
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where �los is either not changing or decreasing at large distances
from the center.

The change in the surface brightness profile for model N1-6
is also quite dramatic (Fig. 10a, long-dashed line). The outer
�(r) slope becomes very shallow, which is inconsistent with the
observed profiles for Galactic dSphs. The slope becomes even
more shallow when we include stars beyond the spatial distance
of 5 kpc from the center of the dwarf. Similar behavior (in terms
of shallow outer � profiles and inflated �los in the outskirts of
the dwarf ) is also observed in other models with orbit 6 (both
bound and unbound). The possible exceptions are models N4-6
and N5-6, which are consistent with the observations of Draco
when we consider only freshly stripped stars. We conclude that
it is unlikely that Draco and other Galactic dSphs have expe-
rienced tidal interactions as dramatic as our models on orbit 6.

To facilitate the comparison of our models with the observed
stellar isodensity contours of Draco of Odenkirchen et al. (2001),
we designed the following projection algorithm. (1) The frame
of reference is rotated to place the center of the dwarf on the
negative side of axis Z, with axis X located in the orbital plane
of the dwarf and pointing in the direction of the orbital motion.
(2) As the direction of the proper motion of Draco is not known
(see discussion in x 4.1) and the current angle between the vector
connecting Draco with the center of the Galaxy and the vector
connecting Draco with Sun is ’ ¼ 5N7, we consider three ex-
treme cases of the possible vantage point location that should
encompass the whole range of projected model appearances: the
view from the Galactic center (’ ¼ 0�), the view from a point in
the orbital plane of Draco located at 82 kpc from the dwarf with
’ ¼ 5N7, and the view from a point in the plane that is perpen-
dicular to the orbital plane of Draco at 82 kpc and with ’ ¼ 5N7.
We found that due to the fact that for Draco the angle ’ is small
(which is also the case for other Galactic dSphs, with the ex-
ception of Sagittarius), the observable properties of our models
(� and �los profiles and surface brightness maps) do not depend

noticeably on the vantage point we choose—especially for the
case when we only include freshly stripped stars. (3) We exclude
stars with z > �8:5 kpc to avoid contamination of our maps
with local tidal stream overdensities that would be discarded by
observers as local Galactic stars. (4) We perform prospective
projection of the stellar particles smoothed with a Gaussian
beam that has a fixed physical size (either 0.15 or 0.5 kpc) and
brightness inversely proportional to the square of the distance
of the particle from the observer. This procedure makes the
‘‘surface brightness’’ of individual particles invariant of the
distance from the observer, which is appropriate for spatially
resolved clumps of the tidal stream.
The most interesting result obtained from the analysis of the

surface brightness maps is the lack of the classical S-shaped
tidal tails in our models. In the case of significant tidal stripping
(Fig. 11, two different vantage points are shown) the stellar
isodensity contours change from being spherical near the center
of the dwarf to being increasingly more elliptical and often off-
centered at larger distances. In the cases with less severe stripping,
outer contour boxiness is observed in some of the models. For
orbits 1–3 the surface density of the tidally removed stars is so
low that it is hard to draw any conclusion as to the shape of the
tidally distorted isodensity contours (except for the fact that the
galaxy is observed against the background and/or foreground
of a few degrees wide belt of tidally stripped stars). The expla-
nation for the above effect is in the facts that the tidal stripping is
significant only for very eccentric (almost radial) Draco orbits
with Rp P 20 kpc, and that currently Draco is located k10 kpc
away from the apocenter of its orbit (see Table 2). Under these
circumstances, the line of sight practically coincides with the
direction of the tidal elongation of Draco, with both tidal tails
seen edge-on. This is an interesting result, as it suggests that
the lack of S-shaped isodensity contours in the outskirts of the
Galactic dSphs cannot be used to support a claim that the dwarf
has not experienced significant tidal stripping in the gravitational

Fig. 10.—Observable properties of model N1 for a few different orbits near the end of the simulations (when the dwarf was�82 kpc away from the Galactic center).
Only stars (both bound and unbound) located within the spatial distance of 5 kpc from the dwarf’s center are considered. Solid, dotted, short-dashed, and long-dashed
lines correspond to orbits 1, 4, 5, and 6, respectively. The observer is assumed to be located at the Galactic center. (a) Surface brightness profile �(r). We also show the
observed Draco profile of Odenkirchen et al. (2001, their sample S2). (b) Stellar line-of-sight velocity dispersion profile �los(r). We also show the observed Draco
velocities of Wilkinson et al. (2004).
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potential of the Milky Way. It appears that the presence (absence)
of tidally heated stars in the outskirts of dSphs is much more sen-
sitive indicator of tidal stripping being significant (not significant).

Wemeasured for all our models the critical surface brightness
�c when the outer isodensity contours become noticeably dis-
torted due to tidal effects. The two models that became gravita-
tionally unbound by the end of the simulations (B1-6 and B2-6)
show very distorted contours all the way to the center of the dwarf
(see Fig. 12). They also have dramatically inflated line-of-sight
stellar velocity dispersion profiles (up to 50–100 km s�1) and
very shallow outer surface brightness slopes. All of the above
makes these two models (and most probably any other unbound
model for a dSph) completely inconsistent with the observed
properties of the Galactic dSphs. Among the bound models, the
one that has experienced the most dramatic tidal stripping
(model N1-6) is also the one that has the largest value for �c :
�4 ; 104 M� deg�2, which would correspond to �3 � iso-
density contour of Odenkirchen et al. (2001). In all other cases,
the value of �c is significantly lower: (7:4 17) ; 103 M� deg�2

for the models of orbit 6, and less than 103 M� deg�2 for other
orbits. For orbits 1, 2, and 3, �c was too small to be measured.
These values of �c are significantly lower (by a factor of k1.5)
than the 2 � detection limit of Odenkirchen et al. (2001). The
angular radius of the smallest distorted isodensity contour is
�1� for orbit 6 (with the exception of models B1, B2, and N1)
and k1N8 for other orbits.

One very interesting special case is that of model B1. This
model has a halo with a flat DM core of size rs � 1:4 kpc (see
Table 1), so all the observed extent of Draco is within this large
harmonic core. In Figure 13 we show the inner (corresponding
to the observed part of Draco) isodensity contours for models
B1-4 and B1-1. Unlike all other models (both NFWand Burkert),
here one can see a relatively strong tidal distortion of the con-
tours at distances P0N5 from the center of the dwarf. The dis-
tortions are substantial even for orbit 1 (Fig. 13b), which has the
largest pericentric distance of 70 kpc. The distorted contours are

both elliptical and nonconcentric. Interestingly, the effect is min-
imal for the two orbits that have the smallest eccentricity—orbits 2
and 3 with Ra /RpF 2:6. The distortions are strong for the more
eccentric orbits 1, 4, and 5. It appears that it is the variability of
the tidal force rather than its strength that is the primary governing
factor for the above effect. As the observed stellar isodensity
contours of Draco are very regular and concentric (Odenkirchen
et al. 2001), results of our simulations suggest that it is unlikely
that Draco resides in a large DM harmonic core—unless it hap-
pened to move on a close to circular orbit with Rp� 45 65 kpc
and Ra /Rp P 2:6.

5. DISCUSSION

In this paper we presented a sequence of composite (stars +
DM) models for Draco, listed in Table 1, which satisfy all the
available observational and cosmological constraints.We showed
that for the most of physically plausible orbits of Draco in the
Galactic potential the tidal forces could not modify the observable
properties of our models appreciably after 10 Gyr of evolution.
Both ‘‘standard’’ cuspy NFW DM halos and Burkert halos
with a flat core provide a reasonably good description of Draco.
The properties of a Burkert halo are better constrained by our
analysis. Most importantly, if Draco has a flat core, it should
have formed at or before the end of the reionization of the
universe: z k 6:5. Tidal stripping simulations put even stronger
constraints on the flat-core case: we showed in the previous
section that our most massive Burkert model, B1, would be
consistent with the observations only for a very limited range of
possible Draco orbits: orbit 6 is ruled out as the model becomes
completely unbound with dramatically inflated �los and very
shallow� profiles, whereas for orbits 1, 4, and 5 (and also 6) we
observe significant distortion of inner stellar isodensity con-
tours that is most definitely not consistent with the regular
isodensity contour shape observed in Draco by Odenkirchen
et al. (2001). Only the lowest eccentricity orbits, 2 and 3, are not
ruled out by our analysis.

Fig. 11.—Stellar surface brightness maps for model N2-6 near the end of the simulations (when the dwarf was�82 kpc away from the Galactic center). The contour
levels are (8; 16; 32; : : :; 512) ; 103 M� deg2 (calculated for the nominal distance of Draco of 82 kpc). A cross marks the center of the dwarf. The thin-line circle has
a radius of 0.85 kpc—the radius of the Draco 2 � surface brightness contour of Odenkirchen et al. (2001). In the top left corner we show the size of the Gaussian beam
used to make the maps. (a) The observer is in the plane of the Draco’s orbit. (b) The observer is in the plane perpendicular to the Draco’s orbit.
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An NFW halo is less constrained by the available observations
of Draco: the halo formation redshift z is anywhere between �2
and �10, whereas the initial virial mass could be between �108

and�5 ; 109 M�. In the smallermass (and larger z) limit the halos
are so sturdy that even for our most disruptive orbit 6 the ob-
servable parameters of the model can still be consistent with the
Draco observations after 10 Gyr of tidal evolution. If Draco was
accreted by the Milky Way more recently than 10 Gyr ago, the
impact of the tidal forces would be even smaller. For more
massive NFW halos and for all Burkert models orbit 6 can be
ruled out as the model predicts inflated line-of-sight velocity

dispersion in the outskirts of the dwarf, which would be at odds
with observations.
How strong is our case against Draco (and other dSphs) being

a ‘‘tidal dwarf’’—remnants of a dwarf galaxy that are not gravi-
tationally bound at the present time? In the previous section we
suggested that the fact that the line-of-sight velocity dispersion
is dramatically (by up to an order of magnitude) inflated in our
two ‘‘tidal dwarf ’’ candidates, models B1-6 andB2-6, can be used
to rule out the ‘‘tidal dwarf ’’ explanation for Draco. Here wewant
to caution that a more detailed comparison between the model
and observations is required to critically assess our conclusion.

Fig. 13.—Stellar surface brightness maps for the B1 models near the end of the simulations (when the dwarf was �82 kpc away from the Galactic center). A cross
marks the center of the dwarf. In the top left corner we show the size of the Gaussian beam used to make the maps. (a) Model B1-4. (b) Model B1-1.

Fig. 12.—Surface brightness maps for the two unbound models at the end of the simulations (when the dwarf is located at R � 82 kpc). Only freshly stripped stars
(within a radius of 5 kpc from the dwarf ) are included. The observer is located at the center of the Galaxy. A cross marks the center of the dwarf. In the top left corner we
show the size of the Gaussian beam used to make the maps. (a) Model B1-6. Contours are (4 19) ; 103 M� deg�2. (b) Model B2-6. Contours are (1 8:6) ; 103 M� deg�2.
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Our large estimates of �los were derived for stars with any line-
of-sight velocity projected onto the dwarf disk and optionally
restricted to lie within the spatial distance of 5 kpc from the
dwarf’s center. Many of the high-velocity tidal tail stars respon-
sible for inflating �los would be discarded by observers as ‘‘not
belonging to the galaxy.’’ In Figure 14 we show the distribution
of line-of-sight velocitiesVlos formodels B1-6 andB2-6.We show
separately histograms for freshly stripped stars (solid lines) and for
all stars projected on the disk of the dwarf (dashed lines). As
one can see, the situation depends strongly on how recently the
dwarf became unbound, and on the longevity of the cold tidal
streams in the Galactic halo. Model B1-6 became unbound many
orbits (almost 7 Gyr) ago and has a very wide distribution of
Vlos—even for freshly stripped stars. Model B2-6, on the other
hand, became unbound only�2 Gyr ago, and has more complex
distribution of Vlos. In this model, the freshly removed stars are
virtually all concentrated within a relatively narrow interval,
with �los being inflated mainly due to the presence of one high-
velocity stellar particle with Vlos ’ 160 km s�1. Such stars will
definitely be discarded by observers.When we consider all stars
(Fig. 14b, dashed line), the distribution of Vlos is much wider
than in Galactic dSphs. In the case of model B2-6, the situation
thus sensitively depends on how long the tidal stream can stay
collimated in the Milky Way potential.

Another important evidence against Draco being an unbound
stream of stars is presented in Figure 12. Here we show surface
brightness maps for our two unbound models, B1-6 and B2-6.
One can see that the contours are irregular and not concentric—
even near the center of the dwarf. This is in sharp contrast with
the regular appearance of the observed isodensity contours in
Draco (Odenkirchen et al. 2001).

Pending the arrival of accurate proper motion measurements
for Draco, let us be slightly more definitive in trying to determine
the nature and cosmological significance of Draco by assuming
that it is moving on orbit 3, which is the most probable one (see
x 4.1). From Figure 9 one can then infer that if Draco is a cos-
mological halo, its current DM mass is between 7 ; 107 and
3 ; 109 M�, the fraction of the tidally stripped stars is<3%, and

the central line-of-sight velocity dispersion �0, central surface
brightness�0, and the half-light radius rh have changed due to tidal
shocks by nomore than�0.07,�0.04, and 0.03 dex, respectively,
in the last 10 Gyr. This orbit has Rp ¼ 51:1 kpc, placing it well
outside of the Galactic disk. Stellar tidal tails produced by our
models on this orbit are extremely weak, with the surface bright-
ness sensitivity required to see the isodensity contours distorted
due to tidal forces being better than�200M� deg�2, or more that
2 orders of magnitude better that the observations of Odenkirchen
et al. (2001). The DM halo could be either NFWor Burkert, and
was formed after z � 11. Our results then support either of the
two recently proposed solutions to the ‘‘missing satellites’’ prob-
lem (Klypin et al. 1999; Moore et al. 1999): that the Galactic
dSphs are the most massive subhalos predicted by cosmological
simulations to orbit in the halo of a Milky Way–sized galaxy
(Stoehr et al. 2002; Hayashi et al. 2003), or that the Galactic
dSphs are the halos that managed to form stars before the re-
ionization of the universewas completed around z � 6:5 (Bullock
et al. 2000). Our analysis suggests that unfortunately there are
not enough observational data yet to discriminate between the
two above scenarios. Much better quality line-of-sight velocity
dispersion profiles, deeper surface brightness maps, and ideally
accurate proper motion measurements are required to produce
further progress in this direction.

We would like to mention a few most important deficiencies
of our tidal stripping model. The first one is due to our use of a
spherically symmetric potential for the Milky Way. As a result,
we ignore disk shocking, which can be very important for the
orbits with Rp P 20 kpc. We tried to partly circumvent this
deficiency by considering an orbit with extremely small peri-
centric distance: orbit 6, with Rp ’ 2:5 kpc. Ideally, we would
prefer to include the disk in our simulations, but this would
result in significant increase in number of required models,
which would make our project not feasible with the current
level of computing power.

The second problem is generic to existing tidal stripping
simulations of Galactic satellites (dSphs and globular clusters),
and is caused by our use of a static potential for the Milky Way

Fig. 14.—Distribution of line-of-sight velocities Vlos for the models that became unbound by the end of the simulations. The observer is located at the center of the
Galaxy. The dwarf is located�82 kpc away from the center of the Galaxy. Solid and dashed lines correspond to the stars within the spatial distance of 5 and 30 kpc from
the densest part of the unbound dwarf, respectively. Only stars located within 0N5 from the densest part of the galaxy are taken into account. (a) Model B1-6. (b) Model B2-6.
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halo. In a realistic ( live) Galactic halo very massive satellites
should experience dynamical friction, which would gradually
bring them closer to the center of the Galaxy. Unfortunately, we
could not use a simple analytical formula to estimate the impact
of the dynamical friction on our results. The dynamical friction
would be strongest for orbits 6 and 5, which have the smallest
pericentric distances. Our subhalos on these orbits experience
dramatic mass loss (up to 90% and 70%, respectively) during the
first pericentric passage, rendering the constant satellite mass for-
mula of Binney&Tremaine (1987) not applicable. The dynamical
friction equation of Colpi et al. (1999) does not have this limitation,
but it was derived for the special case of a subhalowith a truncated
isothermal DM density profile with a core that is very different
from both the NFWand Burkert profiles of our subhalos.Wewant
to emphasize that the inclusion of dynamical friction in our model
would make our conclusion, that the observable properties of the
most of our dwarfs were not affected noticeably by tidal forces,
even stronger, as the dwarfs would start off at larger distance from
the Milky Way center where the tidal forces are weaker.

In addition, the use of static potential ignores the impact of
the gravitational field of the satellite on the Milky Way halo.
This effect can be very important for massive dwarfs on almost
radial orbits, with the potential of both the satellite and the Milky
Way center violently fluctuating during the pericentric passage,
leading to an exchange of energy between the dwarf and the
Galactic halo (similar to the mechanism of violent relaxation).
The above effect would probably be important only for orbit 6,
which we were able to rule out for most of our Draco models.

It is important to mention that our models do not cover all
possible initial configurations of Draco. In a more general case,
one would have to start with arbitrary initial stellar and DM
density profiles (with the initial stellar velocity dispersion profile
following from eq. [6]). After 10 Gyr of evolution in the Galactic
tidal field both profiles could become substantially different, with
the line-of-sight velocity dispersion either increasing (due to the
projection of unbound stars) or decreasing (due to tidal shocks;
see Fig. 10). Themore general case would require a dramatic in-
crease in supercomputing time, which would make our approach
infeasible. We want to emphasize that despite the fact that our

models probably do not include all possible initial Draco con-
figurations, they do constitute a family of fully self-consistent
models that match well all the available observations of Draco.
A potentially important evolutionary factor not included in

our model is an interaction between Draco and dark subhalos,
predicted to be present in the Milky Way halo in large numbers
by�CDMcosmological models. This effect was studied on larger
scales by Moore et al. (1998), who showed that in a cluster en-
vironment the galaxy-galaxy harassment can be substantial. It
is not clear whether the harassment on a smaller, galactic scale
would be of the same order: unlike the cluster scale, where the
numbers of modeled and observed galaxies are in good agree-
ment, there is a ‘‘missing satellites’’ issue on galactic scales.

6. CONCLUSIONS

We presented two one-parameter families (separately for NFW
and Burkert DM density profiles) of composite (stars + DM)
models for Draco that satisfy all the available observational and
cosmological constraints. We showed that these models can
survive tidal shocks and stripping on most realistic Draco orbits
in the Galactic potential for 10 Gyr, with no appreciable impact
on their observable properties. Both NFWand Burkert DM halo
profiles are found to be equally plausible for Draco. TheDMhalos
are either massive (up to �5 ; 109 M�) and recently formed
(z � 2 7), or less massive (down to �7 ; 107 M�) and older
(z � 7 11). Consequently, our results can be used to support
either of the two popular solutions of the missing satellites
problem—‘‘very massive dwarfs’’ and ‘‘very old dwarfs.’’
Higher quality observations (line-of-sight velocity dispersion pro-
files, surface brightness maps, proper motion measurements) are
required to further constrain the properties of Galactic dSphs
and to place them in the right cosmological context.

We would like to thank Jan Kleyna for providing the observed
line-of-sight velocity dispersion profile for Draco. The simu-
lations reported in this paper were carried out on McKenzie
cluster at the Canadian Institute for Theoretical Astrophysics.

APPENDIX

DERIVATION OF SPACE VELOCITY VECTOR COMPONENTS FOR GALACTIC SATELLITES

In this section we derive the components of the space velocity vector of an object with known distance from the SunD, heliocentric
line-of-sight velocity Vlos, and two proper motion components � cos � and �. We work with the frame of reference where the center
is at the Sun, axis X is directed toward the Galactic center, axis Y is pointing at (l ¼ 90�, b ¼ 0), and axis Z is directed toward the north
Galactic pole (b ¼ 90�). Here (l, b) are the Galactic coordinates. The frame of reference is at rest relative to the Galactic center. The
solar velocity vector in this frame of reference is V� ¼ f10:0; 225:25; 7:17g km s�1 (Dehnen & Binney 1998). We assume that the
Sun is located at the distance R� ¼ 8:5 kpc from the Galactic center.

To convert the proper motion vector components from equatorial to Galactic frame of reference, one can use

l cos b ¼ (� cos � ) cos ’� � sin ’; ðA1Þ
b ¼ (� cos � ) sin ’þ � cos ’; ðA2Þ

where the angle ’ is obtained from

cos ’ ¼ (sin �NGP � sin � sin b)=(cos � cos b); ðA3Þ
sin ’ ¼�sin (� � �NGP) cos �NGP=cos b: ðA4Þ

Here (�, �) and (l, b) are the equatorial and Galactic coordinates of the object, respectively, and (�NGP, �NGP) are the equatorial
coordinates of the north Galactic pole (for the J2000.0 equinox, �NGP ¼ 192N859 and �NGP ¼ 27N128).
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One can show that the three components of the space velocity vector of the object in the frame of reference moving with the Sun are

Uz ¼ zVlos þ Db(x
2 þ y2)1=2; ðA5Þ

Ux ¼ ½x(Vlos � zUz)� D(l cos b)y(x
2 þ y2)1=2�=(x2 þ y2); ðA6Þ

Uy ¼ ½D(l cos b)(x
2 þ y2)1=2 þ yUx�=x; ðA7Þ

where x ¼ cos l cos b, y ¼ sin l cos b, and z ¼ sin b are the components of a unit vector directed from the Sun toward the object, and
the units for D, U, and the two proper motion components (lcosb, b) are km, km s�1, and rad s�1, respectively.

In the frame of reference that is at rest relative to the Galactic center, the space velocity vector of the object is V ¼ U þ V�. In the
cylindrical Galactic frame of reference, the three components of the space velocity vector of the object are

� ¼ (SxVx þ SyVy)=(S
2
x þ S2y )

1=2; � ¼ (SyVx � SxVy)=(S
2
x þ S2y )

1=2; W ¼ Vz; ðA8Þ

where � is directed outward from the Galactic center in the plane of the Galaxy, � is the circular rotation speed in the plane of the
Galaxy (positive for the Sun),W is directed toward the north Galactic pole, and S ¼ fxD� R�; yD; zDg is the vector connecting the
Galactic center with the object. In the spherical Galactic frame of reference, the radial and tangential velocities of the object are

Vr ¼ (V =S)=jSj; Vt ¼ (jVj2 � V 2
r )

1=2: ðA9Þ
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