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ABSTRACT

This paper provides two families of flexible and simple galaxy models. Many representatives of these families
possess important cosmological cusps, with the density behaving like r�1, r�4=3, or r�3=2 at small radii. The density
falls off between r�3 and r�5 at large radii. We provide analytic and anisotropic distribution functions for all the
models. Unlike many existing methods, our algorithm can yield tangentially anisotropic velocity dispersions in the
outer parts, and so is useful for modeling populations of satellite galaxies and substructure in host galaxy halos. As an
application, we demonstrate the degeneracy between mass and anisotropy for the satellite galaxy population of the
Milky Way. This can introduce a factor of �3 uncertainty in the mass of the Milky Way as inferred from the
kinematics of the satellite population.

Key words: galaxies: kinematics and dynamics — methods: analytical — stellar dynamics

1. INTRODUCTION

One of Eddington’s famous discoveries is that the isotropic dis-
tribution function (DF) of a spherical stellar system can be cal-
culated from the density using an Abel transform pair (Eddington
1916; Binney & Tremaine 1987, p. 237):
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Here, E ¼  � v2 /2 is the binding energy per unit mass, and  
is the relative potential.

However, galaxy halos produced in cosmological simula-
tions are held up by anisotropic velocity dispersions (Hansen &
Moore 2006). The recovery of an anisotropic DF for a spherical
system is a more difficult problem (Hunter & Qian 1993). Now,
the steady state DF can depend not only onE but also on themag-
nitude of the specific angular momentum L ¼ rvT through Jeans’
theorem. Here vT is the two-dimensional velocity component
projected on the tangential plane.

At least in the comparison of observational data with models
(e.g., van der Marel et al. 2000; Wilkinson et al. 2004; Treu &
Koopmans 2004), a widely used Ansatz for the form of DF is

f (E; L) ¼ L�2�fE(E ); ð2Þ

where fE(E ) is a function of the binding energy alone. It is easy
to show that the models generated by this DF exhibit the prop-
erty that

� ¼ 1� hv 2T i
2hv2r i

: ð3Þ

Here, hv2r i and hv2T i are the radial and the tangential velocity sec-
ond moments. The general formula for inversion for the un-
known function fE(E ) (see also the Appendix; Cuddeford 1991;
Kochanek 1996; Wilkinson & Evans 1999) is no more difficult
than Eddington’s formula (eq. [1]).

We note that it is common practice to characterize the veloc-
ity anisotropy of a spherically symmetric stellar system by the
parameter � defined in equation (3), which is sometimes referred
to as the anisotropy parameter (Binney & Tremaine 1987). If
0 < � � 1, the velocity dispersion ellipsoid is a prolate spheroid
with the major axis along the radial direction (radially aniso-
tropic), while it is an oblate spheroid with the tangential plane
being the plane of symmetry (tangentially anisotropic) if � < 0.
In particular, � ¼ 1 and � ¼ �1 indicate that every star is in a
radial or circular orbit, respectively. On the other hand, systems
with isotropic velocity dispersions have � ¼ 0. In general, the
anisotropy parameter varies radially, but for the system with a
DF of the form of equation (2), it is constant everywhere.
Despite the attractiveness of a simple inversion of the DF in

equation (2), the assumption of uniform anisotropy is not always
desirable. For example, it is useful to be able to build models that
are isotropic in the center and radially anisotropic in the outer
parts, as seems to be the case for dark matter halos (Hansen &
Moore 2006). DFs that are tangentially anisotropic in the outer
parts are helpful for understanding the substructure and the sat-
ellite galaxy populations in dark matter halos.
In this paper we study algorithms for building galaxies with

varying anisotropy, using sums ofDFs of the form of equation (2).
Section 2 introduces a new family of cusped halo models, the
generalized isochrones, and x 3 examines the generalizedPlummer
models. Everymember of the family has analytic potential-density
pairs, velocity dispersions, and DFs. Specific examples are pro-
vided with the cosmologically important r�1, r�3=2, and r�4=3

density cusps. Section 4 discusses a specific application of our
theoretical models to the problem of estimating the mass of a
host galaxy from the motion of its satellites. Finally, x 5 con-
cludes with a brief comparison between our methods of pro-
ducing varying-anisotropy DFs and other suggestions in the
literature (e.g., Osipkov 1979; Merritt 1985; Cuddeford 1991;
Gerhard 1991).

2. THE GENERALIZED ISOCHRONE SPHERES

The isochrone sphere has the potential-density pair (Hénon
1959; Eggen et al. 1962; Evans et al. 1990)

 ¼ GM

bþ s
; � ¼ M

4�

(2sþ b)b

s3(bþ s) 2
; ð4Þ
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whereM is the total mass of the system, s ¼ b2 þ r 2ð Þ1=2, and b
is a constant defining the scale length. Like the Plummer (1911)
model, the density is finite and well behaved at the center. Unlike
the Plummer model, the density falls off as r�4 at large radii,
which is a better fit to elliptical galaxies than the r�5 fall-off of
the Plummer model. There are many available studies regarding
its DFs (e.g., Gerhard 1991; Bertin et al. 1997), some of which
are essentially numerical in nature.

Inspired by this, let us consider the potential-density pair

 ¼ GM

bþ s
; � ¼ M

4�

2br p þ bp(1þ p)(bþ s)

r 2�ps2p�1(bþ s)3
; ð5Þ

where

s ¼ bp þ r pð Þ1=p: ð6Þ

Here p > 0 is a new parameter used for the generalization of the
isochrone sphere (eq. [4]). The condition that the density de-
creases monotonically with increasing radius restricts p � 2,
with the limit ( p ¼ 2) being the cored classical isochrone sphere.
In fact, all the halo models with 0 < p < 2 are cusped. In par-
ticular, the density behaves as � � r�(2�p) as r ! 0. On the other
hand, we find that � � r�q, where q ¼ min(4; pþ 3) as r ! 1.
The density profiles of somemembers of this family are shown in
Figure 1.Wenote that the casep ¼ 1, forwhich ¼ GM /(2bþ r),
is actually recognized as the Hernquist (1990) model, albeit with
a slightly unusual identification for the scale length (a ¼ 2b).
Models with p ¼ 1/2 and 2/3 possess the cosmological cusps
suggested by Moore et al. (1998) and Evans & Collett (1997).

The enclosed mass and the circular speed are found to be

Mr ¼ � r 2

G
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;
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GMr

r
¼ GMrp

sp�1(bþ s)2
: ð7Þ

The potential  (r) of the generalized isochrone sphere is simple
enough that the inverse, r ( ), can be easily found (with G ¼
M ¼ b ¼ 1 without any loss of generality):

r( ) ¼ (1�  )p �  p½ �1=p

 
: ð8Þ

Using this, in principle, one can construct infinitely many dif-
ferent expressions for � ( ; r), each of which can be inverted to
yield the DF by means of integral transforms (Lynden-Bell
1962). However, for most cases this procedure is analytically in-
tractable. Rather, it is often more productive to look for a specific
form of � ( ; r) that is associated with a plausible Ansatz for the
DF, whose inversion reduces to elementary integrals.

2.1. Two-Component Distribution Functions

One such possible (r,  )-splitting with an analytically tracta-
ble inversion is given by

� ¼ pþ 1

4�
r p�2 2pþ1(1�  )1�2p

þ 1

2�
r 2p�2 2pþ2(1�  )1�2p: ð9Þ

We note that a DF of the form of equation (2) can be inverted
from an (r,  )-splitting that is a monomial of r, with its power
index linearly related to �. By having the (r,  )-splitting given
by a linear combination of two monomials of r, the inversion of
equation (9) can be achieved by simply extending the known
procedure, while the system is no longer restricted to have uni-
form velocity anisotropy. Inspired by this, let us suppose that the
DF is of the form

f (E; L) ¼ Lp�2f1(E )þ L2p�2f2(E ); ð10Þ

where f1(E ) and f2(E ) are functions ofE to be determined. Then,
the density is found to be

� ¼ r p�2 2p=2þ1=2�3=2�( p=2)

�( p=2þ 1=2)

Z  

0

dE ( � E ) p=2�1=2f1(E )

þ r 2p�2 2pþ1=2�3=2�( p)

�( pþ 1=2)

Z  

0

dE ( � E ) p�1=2f2(E ); ð11Þ

where �(x) is the gamma function. By comparing this to equa-
tion (9), a possible DF may be found by inverting the integral
equations

Z  

0

dE ( � E ) p=2�1=2f1(E )

¼ ( pþ 1)�( p=2þ 1=2)

2p=2þ5=2�5=2�( p=2)
 2pþ1(1�  )1�2p;

Z  

0

dE ( � E ) p�1=2f2(E )

¼ �( pþ 1=2)

2pþ3=2�5=2�( p)
 2pþ2(1�  )1�2p: ð12Þ

Fig. 1.—Density profile of the generalized isochrone models. The classi-
cal isochrone ( p ¼ 2) is cored, whereas all other models are cusped with
� � r�( p�2) at small radii. The small arrows indicate the half-mass radius.
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The inversion procedure is essentially identical to the one that
leads to equations (A2) and (A3). After this inversion, we find
that f1(E ) and f2(E ) are

f1(E ) ¼
�(2pþ 3)

2p=2þ7=2�5=2�( p=2)�(3p=2þ 3=2)

; E (3pþ1)=2
2F1(2p� 1; 2pþ 2;

3pþ 3

2
;EÞ;

f2(E ) ¼
�(2pþ 3)

2pþ3=2�5=2�( p)�( pþ 5=2)

; Epþ3=2
2F1(2p� 1; 2pþ 3; pþ 5

2
;EÞ; ð13Þ

both of which are always nonnegative for all accessible E-values
(0 � E �  � 1

2
).Whilewe have given the result in complete gen-

erality in terms of hypergeometric functions 2F1 a; b; c; xð Þ,
the DFs reduce to entirely elementary and analytic functions if
p ¼ 1

2
, 1, or 2. In fact, if p ¼ 1

2
, both hypergeometric functions are

just unity, whereas if p is an integer, both reduce to elementary
functions. If p is a half integer other than 1

2
, only f2 reduces to an

elementary function.
Of particular interest is the case in which p ¼ 1

2
, for which the

model possesses a central cusp like � � r�3=2, as found by cos-
mological simulations (Moore et al. 1998). The corresponding
DF is very simple, namely,

f (E; L) ¼ 3

4�3

E 2

L
þ 25=4 ; 3

5�5=2�(1=4)2
E 5=4

L3=2
: ð14Þ

If p ¼ 1 (the Hernquist model with a rescaled scale length),

f (E; L) ¼ 1

27=2�3(1� E )2

�
3 arcsin

ffiffiffiffi
E

pffiffiffiffiffiffiffiffiffiffiffi
1� E

p

� 1� 2Eð Þ 3þ8E�8E2
� � ffiffiffiffi

E
p �

þ 1

4�3L

E2(3�2E )

(1� E )2
;

ð15Þ

or, if p ¼ 2 (the classical isochrone sphere),

f (E; L)¼ 3L2

217=2�3(1� E )5

"
(40E2 � 24E þ 5)

15 arcsin
ffiffiffiffi
E

pffiffiffiffiffiffiffiffiffiffiffiffi
1� E

p

� 75�310Eþ400E2�928E3þ576E4�128E5
� � ffiffiffiffi

E
p
#

þ 3

215=2�3(1� E )4

"
(16E2 � 12E þ 3)

15 arcsin
ffiffiffiffi
E

pffiffiffiffiffiffiffiffiffiffiffiffi
1� E

p

� 45� 150E þ 144E 2 � 208E3 þ 64E 4
� � ffiffiffiffi

E
p
#
:

ð16Þ

Both of these DFs are nomore complicated than the isotropic DFs
deduced by Hernquist (1990) and Hénon (1960), respectively.

2.1.1. Kinematics

To find the velocity dispersion of these models, we exploit the
splitting � ¼ �1 þ �2, where

�1¼
Z

Lp�2f1(E ) d
3v ¼ ( pþ 1)r p�2 2pþ1(1�  )1�2p

4�
;

�2¼
Z

L2p�2f2(E ) d
3v ¼ r 2p�2 2pþ2(1�  )1�2p

2�
: ð17Þ

Then,

�hv2r i ¼
�1 

2( pþ 1)
V1þ

�2 

2pþ 3
V2;

�hv2T i ¼
p�1 

2( pþ 1)
V1þ

2p�2 

2pþ 3
V2; ð18Þ

where

Vi ¼ (1�  )2F1 3þ i; 1; 2pþ 2þ i;  ð Þ

¼ 2F1 2p� 1; 1; 2pþ 2þ i; �  

1�  

� �
: ð19Þ

The anisotropy parameter

� ¼ 1� p

2

(2pþ 3)V1 þ 8r p V2

(2pþ 3)V1 þ 4r p V2

� �
ð20Þ

is now no longer constant. Figure 2 shows the behavior of �
for some of these models. The curves can be understood on

Fig. 2.—Behavior of the anisotropy parameter generated by the DFs (eq. [10])
for the generalized isochrone spheres. From top to bottom, the parameter p varies
from 1

4
to 2 with increments of 1

4
.
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examination of equation (20). This reveals that whereas � ¼
1� ( p/2) at r ¼ 0 for any p, limr!1� ¼ 1� p if p > 1, or
limr!1� ¼ 1� ( p/2) if p < 1. At the critical value p ¼ 1, we
find that the anisotropy parameter monotonically decreases from
� ¼ 1/2 at r ¼ 0 to � ! 5/18 as r ! 1. Hence, the DFs dis-
cussed in this section build the generalized isochrone spheres
with either decreasing � in the inner region and increasing � in
the outer region ( p < 1), or decreasing � throughout ( p � 1).
The particular case of the latter also includes the Hernquist model
( p ¼ 1) and the classical isochrone sphere ( p ¼ 2).

The simplest case is again p ¼ 1
2
, which leads to

hv2r i ¼
4�1 þ 3�2
�1 þ �2

 

12
¼ 2þ 3r1=2 þ r

6þ 10r1=2 þ 3r
 ;

hv2T i ¼
2�1 þ 3�2
�1 þ �2

 

12
¼ 2þ 4r1=2 þ r

6þ 10r1=2 þ 3r

 

2
: ð21Þ

Then we find that the virial theorem holds locally for this case:

hv2r iþhv2T i ¼
6�1 þ 6�2
�1 þ �2

 

12
¼  

2
; ð22Þ

and the anisotropy parameter

� ¼ 1

4

6þ 8r1=2 þ 3r

2þ 3r1=2 þ r
¼ 3(r � 2)2 � r1=2(r þ 2)

4(r � 4)(r � 1)
ð23Þ

varies from � ¼ 3/4 at r ¼ 0, to � ¼ 1/
ffiffiffi
2

p
at r ¼ 2, and back to

� ! 3/4 as r ! 1. This model in fact corresponds to one of the
generalized hypervirial models studied by An & Evans (2005).

If 4p is an integer, both V1 and V2 reduce to elementary func-
tions of  , and so do the velocity second moments. In particular,
if p ¼ 1 [for which  ¼ (2þ r)�1],

hv2r i ¼
1

2
(1þ r)(2þ r)3 ln

2þ r

1þ r

� �

� 128þ 303r þ 250r 2 þ 90r 3 þ 12r 4

24(2þ r)
; ð24Þ

hv 2T i ¼
1

2
(1þ 2r)(2þ r)3 ln

2þ r

1þ r

� �

� 64þ 217r þ 211r 2 þ 84r 3 þ 12r 4

12(2þ r)
: ð25Þ

3. GENERALIZED PLUMMER MODELS

Next, let us consider the one-parameter family of potential-
density pairs,

 ¼ GM

(ap þ r p)1=p
;

� ¼ ( pþ 1)M

4�

a p

r 2�p(ap þ r p)2þ1=p
; ð26Þ

which was originally introduced by Veltmann (1979). This in-
cludes the Hernquist (1990) model ( p ¼ 1) and the Plummer
(1911) model ( p ¼ 2) as particular cases. Evans & An (2005)
recently found that this family can be constructed from power-
law DFs of the form of f (E; L) / Lp�2E (3pþ1)=2. Here we con-
struct slightly more complicated DFs that build this family of
models. We first find every DF of the form of equation (2), and

then use them to build models with a more general variation of
anisotropy.

3.1. Distribution Functions with Constant
Anisotropy Parameter

With G ¼ M ¼ a ¼ 1, we find that

r 2�� ¼ pþ 1

4�
 pþ3�2�(1�  p)1�2(1�� )=p; ð27Þ

and that

dm

d m
r 2��
� ������

 ¼0

¼ 0 ð28Þ

for m < p þ 3� 2�. Then, equation (A2) reduces to

f (E; L) ¼ 2��1

(2�)5=2
pþ 1

�(n� � � 1=2)�(1� � )

;
1

L2�
d nþ1

dEnþ1

Z E

0

 pþ3�2�

(1�  p)k
d 

(E �  )3=2���n
ð29Þ

where n ¼ b3/2� �c is the integer floor of 3/2� �, and kþ1¼
2(1� � )/p. If k � 0, it is at least formally possible to derive the
series expression of the DF for arbitrary p and � from the integral
form, namely,

f (E; L) ¼ 2��1

(2�)5=2
pþ 1

�(1� � )

Epþ3=2��

L2�

;
X1
k¼0

�( pk þ pþ 4� 2� )

�( pk þ pþ 5=2� � )

�(k þ k)
�(k)

Epk

k!
; ð30Þ

which becomes the generalized hypergeometric series if p is a
rational number. On the other hand, if �1 < k < 0, we find that
limE!1� f (E; L) < 0, so that the corresponding DF is unphys-
ical. Hence, for the potential-density pair of equation (26), the
constant anisotropy DF is physical only if p � 2(1� � ). This
means that the hypervirial models of Evans & An (2005), which
have an anisotropy parameter� ¼ 1� ( p/2), have themaximally
radially biased velocity dispersions for a given p and a constant �.
Although there exist models with � locally exceeding 1� ( p/2)
for the generalized Plummer sphere of given p (see, e.g., Baes &
Dejonghe 2002), � at the center cannot be greater than 1� ( p/2)
for physically validDFs. This is in agreementwith the cusp slope–
central anisotropy theorem derived by An & Evans (2005b).

For particular values of p or �, the DF of equation (29) (or
equivalently, eq. [30]) reduces to a simpler form. For example, if
� ¼ 1

2
, the DF is (see eq. [A3])

f (E; L) ¼ pþ 1

(2�)3L

Epþ1

(1� Ep)1=p
( pþ 2)� (2pþ 1)Ep½ �; ð31Þ

where the positive definiteness of the DF implies that 0 < p � 1.
Similarly, for � ¼ �1

2
, the DF is

f (E; L) ¼ ( pþ 1)L

(2�)3
Epþ2

(1� Ep)1þ3=p

h
( pþ 3)( pþ 4)

� (5p2 þ 12pþ 3)Ep þ 2p(2pþ 1)E 2p
i
; ð32Þ
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which is nonnegative for 0 � E � 1 if 0 < p � 3. On the other
hand, the DF of the Hernquist model with constant � reduces
to the hypergeometric function (see e.g., Baes & Dejonghe
2002)

f (E; L)¼ 2��(5� 2� )

(2�)5=2�(7=2� � )�(1� � )

;
E 5=2��

L2�
2 F1 1� 2�; 5� 2�;

7

2
� �; E

� �
; ð33Þ

which is nonnegative everywhere if � � 1
2
, whereas that for the

constant-� Plummer model reduces to

f (E; L) ¼
3 2��1�(6� 2� )
	 


(2�)5=2�(9=2� � )�(1� � )

E7=2��

L2�

; 3F2 ��; 3� �;
7

2
� �;

9� 2�

4
;
11� 2�

4
; E 2

� �
;

ð34Þ

which is physical if � � 0.

3.2. Distribution Functions with Outwardly Decreasing
Anisotropy Parameter

Since equation (27) is valid for any constant � with common
�, it is, in general, also possible to express the density profile of
the generalized Plummer model by

� ¼ pþ 1

4�

X
i

�ir
�2�i pþ3�2�i (1�  p)1�2(1��i)=p;

X
i

�i ¼ 1; ð35Þ

where the �i > 0 terms are normalized weights. Consequently,
the superposition of the constant anisotropy DFs, f (E; L) ¼P

i �i fi(E; L), still builds the generalized Plummer sphere. Here
each fi(E; L) is given by equation (29) (or equivalently, eq. [30])
in which � is replaced by �i . The velocity second moments for
these models are found to be

�hv2r i ¼ � 
X
i

�i S(r; p; �i)

pþ 4� 2�i
;

�hv2T i ¼ � 
X
i

2�i(1� �i)S(r; p; �i)

pþ 4� 2�i
; ð36Þ

where

S(r; p; � ) ¼ 2F1

2� 2�

p
� 1; 1;

4� 2�

p
þ 2; � 1

r p

� �

¼ r ð Þp 2F1

2

p
þ 3; 1;

4� 2�

p
þ 2;  p

� �
;

ð37Þ

and therefore the anisotropy parameter � is no longer constant.

For the particular case in which the sum only contains two
terms (such that �1 ¼ �, �2 ¼ 1� �, and �i ¼ 0 for all other i
values), the anisotropy parameter is

� ¼
	
�1�( pþ 4� 2�2) S(r; p; �1)

þ �2(1� �)( pþ 4� 2�1) S(r; p; �2)



;
	
�( pþ 4� 2�2) S(r; p; �1)

þ (1� �)( pþ 4� 2�1) S(r; p; �2)

�1

; ð38Þ

which is a decreasing function of r, provided that 0 < � < 1 and
�1 6¼ �2. If we assume �2 < �1 � 1� ( p/2) and 0 < � < 1, the
limiting values are found to be

lim
r!1

� ¼ �1�( pþ 4� 2�2)þ �2(1� �)( pþ 4� 2�1)

�( pþ 4� 2�2)þ (1� �)( pþ 4� 2�1)
; ð39Þ

�(r ¼ 0) ¼ �1 if �1 � 1� p; ð40Þ

or

�(r ¼ 0) ¼ �1�(1� p� �2)þ �2(1� �)(1� p� �1)

�(1� p� �2)þ (1� �)(1� p� �1)
;

if �1 � 1� p: ð41Þ

The simplest example of the DFs of this kind is obtained when
we choose �1 ¼ 1

2
and �2 ¼ �1

2
:

f (E; L) ¼ pþ 1

(2�)3
�
Epþ1

L

( pþ 2)� (2pþ 1)Ep

(1� Ep)1=p

�

þ (1� �)LEpþ2

;
( pþ 3)( pþ 4)� (5p2 þ 12pþ 3)Ep þ 2p(2pþ 1)E2p

(1� Ep)1þ3=p

#
;

ð42Þ

which is physical if p � 1. The behavior of the anisotropy pa-
rameter � for the model given by DFs of equation (42) is shown
in Figure 3. Note that, for this case, if 2p is an integer, then the
hypergeometric function in equation (37) reduces to an expres-
sion involving only elementary functions of  [e.g., ln (1�  )],
as do � and the velocity second moments.

4. AN APPLICATION: THE MASS OF THE MILKY WAY

As an application of the preceding theory, let us consider the
problem of estimating the mass of the MilkyWay from the radial
velocities of its satellites. There are 27 distant globular clusters
and dwarf galaxies at Galactocentric distance r greater than 20 kpc
(see e.g., Tables 2 and 3 ofWilkinson&Evans 1999). These range
from Arp 2 at r ¼ 20 kpc out to Leo I at r ¼ 254 kpc. The me-
dian distance of the satellite population is rmed � 38 kpc . The
number density of the satellites falls off roughly like r�3:5. This
data set is often used to estimate the mass of the Milky Way
(Kochanek 1996; Wilkinson & Evans 1999), as the H i rotation
curve cannot be traced beyond�20 kpc. The satellites are there-
fore the only available probe of the gravitational field of the dis-
tant halo.
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All the satellites have accurate radial velocities, but proper
motions are available only for a handful of the closest objects. Of
course, the heliocentric radial velocity and the Galactocentric
radial velocity are basically the same (once the motion of the Sun
has been taken out), as the Galactocentric distance of the Sun
is much smaller than those of the satellites. The kinematic data
therefore constrain themean kinetic energy in the radial direction
Trr ¼ hv2r i. Again using the data in Tables 2 and 3 of Wilkinson
& Evans (1999), we find that Trr � (129 km s�1)2.

To model the Milky Way halo, we assume that its potential
and density take the form of either the generalized isochrone or
the generalized Plummer models. Furthermore, we assume that
the number density of satellites shadows the total density (e.g.,
Kochanek 1996; Wilkinson & Evans 1999). This means that
the satellites are drawn from DFs of the form given by either
equation (10) or equation (42). We set the scale length so that the
half-mass radius of the assumed density profile corresponds to
the observed median radius of the population. The mass of the
Milky Way M enters into the potential and the DF. It can there-
fore be constrained by requiring that the mean kinetic energy in
the radial direction be consistent with the data, viz.

Trr ¼
R
�hv 2r i d 3rR
� d 3r

� 16;640 km2 s�2: ð43Þ

The parameter p in the DFs controls the variation of the veloc-
ity anisotropy with radius. Hence, equation (43) defines a line in
the plane (M ; p), which is the mass-anisotropy degeneracy
curve for the model. Figure 4, inferred from numerical inte-
grations, shows such curves computed for a number of the gen-
eralized isochrones and Plummer models.

In this problem, the mean kinetic energy in the radial direc-
tion is fixed. Models with tangential anisotropy at large radii
therefore lead to a higher inferred mass for the Milky Way. The
relative location of the curves in Figure 4 can be understood
by examining the behavior of the anisotropy parameter for the
models. More importantly, as the velocity anisotropy changes,
the inferred mass of the Milky Way ranges from 0:8 ; 1012 to
2:5 ; 1012 M�. Now, the velocity anisotropy of the satellite gal-
axy population is unknown, so the mass-anisotropy degeneracy
by itself enforces a factor of �3 uncertainty in the mass of the
Milky Way. This fundamental limitation can only be overcome
by proper-motion data.

Of course, there are other uncertainties; for example, the half-
mass radius of the satellite population used to set the scale length
in these calculations is also not well known and has an uncer-
tainty of �20%. This carries over into an additional �20% un-
certainty in the inferred mass. This is small in comparison with
the mass-anisotropy degeneracy, but not insignificantly so.

5. CONCLUSIONS

This paper provides a number of flexible and simple galaxy
models extended from two classical cored profiles; the isochrone
sphere and Plummer model. We also derive analytic distribu-
tion functions (DFs) with varying velocity anisotropy for all the
models, including new DFs for the classical isochrone sphere
and the Hernquist model.

DFs of the form f (E; L) ¼ L�2�fE(E ) build a spherical system
with a constant anisotropy parameter �, where E is the binding
energy and L is the specific angular momentum. The assumption
of constant anisotropy is not enough to provide realisticmodels, as
both observational data and numerical simulations suggest that
dark halos and their constituents (such as satellites) have velocity
anisotropies that varywith radius (e.g.,White 1985; van derMarel
1994; Hansen & Moore 2006).

Fig. 4.—Curves illustrating the degeneracy between mass and anisotropy.
All the models have the same half-mass radius and reproduce the same mean
kinetic energy hTrri of the satellite population of the Milky Way. The inferred
mass of the Milky Way (in units of 1012 M�) is plotted against the parameter p,
which controls the velocity anisotropy.

Fig. 3.—Behavior of the anisotropy parameter generated by the DFs (eq. [42])
for the generalized Plummer models. Solid lines, p ¼ 1 (Hernquist model ); dot-
ted lines, p ¼ 3

4
; short-dashed lines, p ¼ 1

2
; long-dashed lines, p ¼ 1

4
.
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Here we have explored models whose DFs are superpositions
of two or more such terms, namely,

f (E; L) ¼
X
i

L�2�i fi(E ): ð44Þ

This can be done in two ways. First, as illustrated by the gen-
eralized isochrones in x 2, we can sometimes find a splitting of
the density in the form

� (r) ¼
X
i

r�2�igi( (r)): ð45Þ

and apply the inversion separately to each component. For the
generalized isochrones, this provides models with either de-
creasing anisotropy parameter � in the inner region and increas-
ing � in the outer parts, or decreasing � throughout. Second, as
illustrated by the generalized Plummer models in x 3, we can al-
ways add together weighted sums of constant anisotropy DFs,
each of which individually reproduces the required density. This
appears to provide models with decreasing anisotropy parameter
� throughout. At large radii, the DF is dominated by the compo-
nent of smallest �, and the models can be either radially or tan-
gentially anisotropic in the outer parts, according to choice. For
both cases, it appears that the anisotropy parameter always de-
creases on beginning to move outward from the very center.

There have been a number of previous algorithms suggested
for building anisotropic DFs with varying anisotropy. For exam-
ple, the Osipkov-Merritt algorithm (e.g., Osipkov 1979; Merritt
1985) builds models that are isotropic in the inner parts and tend
to extreme radial anisotropy (� ! 1) in the outer parts. Gerhard
(1991) provided a clever algorithm for building separable DFs of
the form

f ¼ g (E )h(L=Lc(E )); ð46Þ

where Lc is the angular momentum of a circular orbit with en-
ergy E. The analytic examples provided by Gerhard (1991) all
have increasing radial anisotropy in the outer parts. His method
can be used to generate tangentially anisotropic models, but usu-
ally at the cost of a numerical inversion. The methods developed
in this paper therefore provide a complement to the existing
inversions.

Tangential anisotropy often arises in accreted populations, such
as satellite galaxies. As an application of our models, we have
shown that the mass-anisotropy degeneracy by itself provides a
factor �3 uncertainty in the mass of the Milky Way as deduced
from the kinematics of its satellites.

The density profiles of models studied in this paper typically
fall off faster than � � r�3 and slower than � � r�5 at large radii,
which are in good agreement with both observations of spheroi-
dal components of galaxies and results from numerical simula-
tions. At small radii, they are typically cusped, with cusp indices
in the range suggested by numerical simulations. In particular,
there are members with density cusps like � � r�1, � r�4/3, and
� r�3/2, which have been suggested as important on cosmogonic
grounds (Navarro et al. 1995; Evans&Collett 1997;Moore et al.
1998), although observational evidence seems to favor the pres-
ence of a constant-density core (Tyson et al. 1998; Palunas &
Williams 2000; de Blok et al. 2001; Kleyna et al. 2003; Donato
et al. 2004). However, even if real galaxies are cored, the core
would be such a small fraction of the halo that it is not practically
important for studies of the whole. Our families of new models
therefore should find widespread application in the modeling of
galaxies and dark halos.

We thank C. Hunter, who made a number of interesting com-
ments on the various incarnations of this paper.

APPENDIX

CONSTANT ANISOTROPY DISTRIBUTION FUNCTIONS

In this appendix we summarize some results regarding con-
stant-anisotropy DFs used in the main body of the paper. For the
DF given in equation (2), direct integration over velocity space
gives

� ¼ r�2� (2�)
3=2�(1� � )

2��(3=2� � )

Z  

0

( � E )1=2��fE(E ) dE: ðA1Þ

The formula for inversion for the unknown function fE(E ) is
given by (Cuddeford 1991)

f (E; L) ¼ 1

L2�
2�

(2�)3=2�(1� � )�(1� � )

;
d

dE

Z E

0

d 

(E �  )�
d nh

d n

¼ 1

L2�
2�

(2�)3=2�(1� � )�(1� � )

;

Z E

0

d 

(E �  )�
d nþ1h

d nþ1
þ 1

E�
d nh

d n

����
 ¼0

" #
; ðA2Þ

where h( ) ¼ r 2�� is expressed as a function of  , and n ¼
b3/2� �c and � ¼ (3/2� � )� n are the integer floor and the
fractional part of 3/2� �, respectively. This includes equation (1)
as a particular case of � ¼ 0 (n ¼ 1 and � ¼ 1/2). If � is a half-
integer constant (i.e., � ¼ 1/2,�1/2,�3/2, and so on), the above
inversion simplifies to

f (E; L) ¼ 1

2�2L2�
1

(�2� )!!
d 3=2��h

d 3=2��

�����
 ¼E

; ðA3Þ

that is, this only involves differentiations in the process (Cuddeford
1991). In addition, the expression for the differential energy dis-
tribution (DED) is found to be

d�

dE

����
E¼E0

¼
Z

fE(E )

L2�
�(E � E0) d

3v

¼ (2�)3=2�(1� � )

2��(3=2� � )

( � E0)
1=2��

r 2�
fE(E0)�( � E0);

ðA4Þ

dM

dE
¼
Z

d�

dE
d 3r ¼ fE(E )

(2�)5=2�(1� � )

2��1�(3=2� � )

;

Z rE

0

( � E )1=2��r 2(1��) dr; ðA5Þ

where  (rE) ¼ E, and �(x) is the Heaviside unit step function.
In particular, if � ¼ 1

2
, the last integral does not explicitly in-

volve the potential, and so the DED may be found simply as
dM /dE ¼ 4�3r 2E fE(E ).
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For example, theDF and theDED for the generalized isochrone
sphere with � ¼ 1

2
can be found entirely by differentiation as

f (E; L) ¼ 1

(2�)3L

E 2g (E )

(1� E )2p (1� E ) p � Ep½ �1=p
;

dM

dE
¼ (1� E ) p � Ep½ �1=p

2(1� E )2p
g (E ); ðA6Þ

g (E ) ¼ E 2p�1 6( pþ 1)E � 6E 2 � ( pþ 1)(2pþ 1)
	 


þ (1� E ) pE p�1 ( pþ1)( pþ 2)þ12E 2� 6( pþ 2)E
	 


þ 6(1� E )2pþ1: ðA7Þ

Here, because 0 � E �  � 1
2
, the nonnegativity of the DF is

satisfied only if 0 < p � 1.
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