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ABSTRACT

Accreting X-ray binaries display a wide range of behaviors. Some of them are observed to spin up steadily, others
to alternate between spin-up and spin-down states, sometimes superimposed on a longer trend of either spin-up or
spin-down. Here we interpret this rich phenomenology within a new, simple model of the disk-magnetosphere in-
teraction. Our model, based on the simplest version of a purely material torque, accounts for the fact that when a
neutron star is in the propeller regime, a fraction of the ejected material does not receive enough energy to completely
unbind, and hence falls back into the disk. We show that the presence of this feedback mass component causes the
occurrence of multiple states available to the system for a given, constant value of the mass accretion rate Ṁ� from the
companion star. If the angle � of the magnetic dipole axis with respect to the perpendicular to the disk is larger than a
critical value �crit, the system eventually settles in a cycle of spin-up/spin-down transitions for a constant value of Ṁ�
and independent of the initial conditions. No external perturbations are required to induce the torque reversals. The
transition from spin-up to spin-down is often accompanied by a large drop in luminosity. The frequency range
spanned in each cycle and the timescale for torque reversals depend on Ṁ�, the magnetic field of the star, the magnetic
colatitude �, and the degree of elasticity regulating the magnetosphere-disk interaction. The critical angle �crit ranges
from�25� to 30� for a completely elastic interaction to�40�–45� for a totally anelastic one. For � P �crit, cycles are
no longer possible and the long-term evolution of the system is a pure spin-up. We specifically illustrate our model in
the cases of the X-ray binaries GX 1+4 and 4U 1626�67.

Subject headinggs: accretion, accretion disks — binaries: close — stars: magnetic fields — stars: neutron —
pulsars: general
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1. INTRODUCTION

Accreting X-ray binaries, with luminosities up to �1038–
1039 ergs s�1, constitute the brightest X-ray sources in the sky.
Since their discovery (Giacconi et al. 1971) more than three de-
cades ago, they have provided a unique laboratory to study, among
other things, the physical processes regulating accretion onto a
strongly magnetized neutron star (typically, B k 1011 G). In neu-
tron star (NS) binary systems containing a supergiant or a low-
mass star, mass transfer takes place through Roche lobe overflow,
and the specific angular momentum of matter is sufficiently high
to form an accretion disk (the conditions for forming a disk are,
however, not necessarily met in Be-star systems, where the NS
accretes from capturing the star’s wind; e.g., Rappaport 1982;
Henrichs 1983). In disk-fed systems that host a strongly magnetic
NS, the material from the disk is channelled toward the magnetic
poles, where it releases its gravitational energy giving rise to the
X-ray luminosity we observe. Pulsations at the NS spin frequency
are thus generated from a lighthouse-like effect. While the lumi-
nosity yields an estimate of the mass accretion rate, pulse timing
measurements allow one to measure the torque, and hence probe
the nature of the accretion process mediated by the magneto-
sphere of the star. Early works (Pringle & Rees 1972; Davidson
& Ostriker 1973; Lamb et al. 1973) showed that when accretion
occurs through a prograde disk, the angular momentum transferred
by the accreting material to the star (material torque) tends to spin

the star up, until the centrifugal barrier inside the corotation radius
of the magnetosphere (Illianorov & Sunyaev 1975) becomes large
enough to inhibit further accretion. The star is then expected to set-
tle in a state with an equilibrium spin period that dependsmainly
on the mass accretion rate provided by the companion and the NS
magnetic field (e.g., Frank et al. 1985).

Observations of disk-accreting X-ray pulsars during the 1970s
and 1980s were rather sparse and appeared to be roughly com-
patible with the near-equilibrium picture (e.g., Nagase 1989),
although there were already hints at times of some unexpected
behaviors. These included torque reversals for some time while
still accreting, or spin-up rates much smaller than expected for
the observed luminosity. In the 1990s, continuous monitoring of
several disk-fedX-ray pulsars with the Burst and Transient Source
Experiment (BATSE) on board theComptonGamma-RayObser-
vatory, shed light on the long-term behavior of several objects (see
Bildsten et al. 1997 for a comprehensive review). Particularly
striking were the findings for GX 1+4 and 4U 1626�67: after
about 15 yr (for GX 1+4) and 20 yr (for 4U 1626�67) of spin-up,
both systems showed a torque reversal, which made them switch
to a spin-down phase. Other systems, such as Cen X-3, Vela X-1,
andHerX-1, often showed an alternation of spin-up and spin-down
sometime superimposed on a longer term of either spin-down or
spin-up. Inmost cases, themagnitude of the torques is comparable
during the spin-up and the spin-down regimes. These unusual be-
haviors were a sign that the simple scenario outlined above might
be incomplete, and hence they triggered a revival of research,
mostly in the direction of finding other sources of torque in ad-
dition to the one provided by the accreting material alone.

Ghosh&Lamb (1979a, 1979b, hereafter GL) andWang (1987,
1995) suggested that in addition to thematerial torque, there is also
an extra source of torque provided by the magnetic field lines
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threading the disk. While in the model of Pringle & Rees (1972)
the disk is truncated at the point at which the magnetic pressure
of the magnetosphere balances the pressure of the accreting ma-
terial, in the GL model there exists a broad transition zone in
which the magnetic field lines still thread the disk even if the vis-
cous stress in the diskmaterial dominates over themagnetic stress.
This is made possible through the combination of a number of
effects, such as the Kelvin-Helmholtz instability, turbulent diffu-
sion, and reconnection.

In the models of Arons et al. (1984) and Lovelace et al. (1995)
the extra torque is provided by the expulsion of a magnetically
driven wind. Transitions between spin-up and spin-down states
are possible, but they must be induced by external perturbations,
such as variations in the viscosity parameter � of the disk or, most
plausibly, the accretion rate from the companion star. These var-
iations would have to be finely tuned just so that the two torque
states have comparable magnitude but opposite sign. This seems
unlikely in general, but evenmore so in a system like 4U 1626�67,
in which the average mass accretion rate is likely determined by
the loss of orbital angular momentum via gravitational radiation
(Chakrabarty et al. 1997a). Alternatively, in the case of GX1+4,
Makishima et al. (1988) and Dotani et al. (1989) suggested that
the spin-down could be due to accretion from a retrograde disk
formed from the stellar wind of the red giant companion. White
(1988), however, showed that this was unlikely to be the case. A
retrograde disk around theNS spin axis could also be produced by
magnetic torques generated in the interaction between surface
currents on the disk and the component of the NS magnetic field
parallel to the disk (Lai 1999).

In this paper we discuss a new scenario for the spin-up/spin-
down transitions observed in binary systems accreting from a
disk. The torque exchange between the magnetosphere and the
disk material is supposed to be dominated by the material compo-
nent as in the early models (Pringle & Rees 1972). In this respect,
our toy model is very simple and idealized: possible torques non-
parallel to the rotation axis are neglected, aswell asmagnetic torques
(e.g., GL; Lai 2003). What is new in our model is a computation
of the fate of the ejected material during the propeller phase of
the NS. Our calculation accounts for the following facts: (1) not
all the ‘‘propelled’’ material receives sufficient energy to unbind
from the system; and (2) if the magnetic moment of the NS is
inclined with respect to its rotation axis, there can be, at the same
time, regions of the magnetospheric boundary that are allowed to
accrete while others are propelling material away. This is a funda-
mental assumption of our model. While in this paper we provide
arguments in its support, a final validationwill have towait for de-
tailed numerical simulations. This work should therefore be con-
sidered as an investigation (the first of its kind to the best of our
knowledge) of the characteristic timing behavior of a pulsar whose
magnetosphere can simultaneously eject and accrete matter in
different regions of its boundary. As we show in the following, ac-
counting for this possibility leads to fundamentally different con-
clusions for the long-term, equilibrium state of the system. Rather
than settling at the equilibrium period at which the Keplerian fre-
quency of the disk matches the star rotation frequency at the point
of interaction (e.g., Franket al. 1985), the system settles, for a wide
range of conditions, in alternating cycles of spin-up/spin-down for
a constant accretion rate from the companion star. A qualitative
summary of our model is described below, and is formalized math-
ematically in the following sections.

A magnetic NS surrounded by an accretion disk is able to ac-
crete only under the condition that the velocity of the magneto-
sphere at the point of interaction (magnetospheric radius, RM) is
smaller than the local Keplerian velocity of the disk material. If

this condition is not satisfied, accretion is inhibited (Illiaronov &
Sunyaev 1975) and angular momentum is transferred from the
star to the gas. Whether this propelled gas can be completely un-
bound from the system will depend on the location of the mag-
netospheric radius within the gravitational field of the NS. There
exists a minimum distance, Rinf, beyond which ejection of matter
to infinity is possible. If RM < Rinf , the propelled material can-
not be unbound, and therefore it will fall back on the disk and
accrete again. This matter is, in this sense, ‘‘recycled.’’ An ac-
creting system with recycled material can, under certain con-
ditions, have multiple states available. This is due to the fact that
for the system to be in a steady state condition, the total mass in-
flow rate at the magnetospheric boundary (which determines the
position of the magnetospheric boundary itself ), Ṁtot ¼ Ṁacc þ
Ṁrec þ Ṁeje must be such that Ṁacc þ Ṁeje ¼ Ṁ�, where Ṁ� is
the mass inflow rate provided by the companion star, and Ṁacc;
Ṁrec, and Ṁeje are, respectively, the rate at which mass is ac-
creted, recycled, and ejected. Whenever the term Ṁrec is non-
negligible, there could be in principle different solutions to the
above condition corresponding to the same value Ṁ� of the mass
inflow rate. As the system spins up or down on a certain branch
of the solution, this solution can be lost, and the system is con-
sequently forced to jump to a different state, often characterized
by opposite torque. This qualitative argument is formalized math-
ematically in detail in x 2, while x 3 presents specific applications
to the cases of the accreting sources GX 1+4 and 4U1626�67.
Our results are summarized and discussed in x 4.

2. MODEL DESCRIPTION

2.1. Magnetosphere-Disk Interaction in an Oblique Rotator

In this section we discuss the main concepts and assumptions
upon which our disk-magnetosphere model is based. The basic
geometry is depicted in Figure 1. The axis of the magnetic mo-
ment � of the NS is inclined with respect to the rotation axis by
the magnetic colatitude �. In cylindrical coordinates (r, �, z),
where the z-axis coincideswith the rotation axis, the component of
the magnetic field in the disk plane is (Jetzer et al. 1998)

B2 ¼ �2

r6

�
1þ 3( sin � sin �)2

�
; ð1Þ

under the assumption that the disk is planar and its axis is
parallel to the spin axis of the NS. When the rotation axis of the
NS is inclined (i.e., � 6¼ 0), the strength of the magnetic field in
the plane of the disk depends on the longitude �. As shown
below, this angular dependence results in an asymmetric mag-
netospheric boundary.
The fate of the matter funneled from the accretion disk to the

rotating, magnetized NS depends on a number of factors, the
most important of which are the relative strength of the magnetic
pressure and the pressure of the accreting material, and the rel-
ative velocity of the magnetosphere of the star at the inner radius
of the disk with respect to the Keplerian velocity at that same
radius. Following Lamb et al. (1973), the former condition can
be formalized by equating the magnetic energy with the kinetic
energy of the infalling matter:

1

2
�v2 ¼ B2

8�
: ð2Þ

In the free-fall approximation the density is given by � ¼ �A ¼
Ṁ /(4�vAr

2), where vA ¼ (2GM /r)1
=2 is the free-fall velocity.

Using these expressions, together with equations (1) and (2), the
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magnetospheric radius for an oblique rotator can be obtained
(Jetzer et al. 1998; see also Campana et al. 2001):

RM (�) ¼ 3:2 ; 108�4=7
30 M

�1=7
1 Ṁ

�2=7
17 1þ 3( sin � sin �)2

� �2=7
;

ð3Þ

where �30 is the magnetic moment in units of 1030 G cm�3,M1

is the NS mass in units of 1M�, and Ṁ17 is the accretion rate in
units of 1017 g s�1. The minimum radius RM(0) also corresponds
to � ¼ 0, the approximation usually adopted in models of the
disk-magnetosphere interaction. The maximum radius RM(�/2)
is only a factor of (1þ 3 sin2�)2/7 � 1:49 larger. Note that the
elongated shape of the magnetospheric boundary plays a funda-
mental role in our model.

An important assumption of our model is that during the ro-
tation of the magnetosphere (whose shape depends upon the in-
stantaneous position of the magnetospheric radius as a function
of �), matter in the Keplerian disk is able to fill the region that
separates the disk and the magnetospheric flow on a timescale
shorter than the spin period of the star. This ensures that the inner
boundary of the disk remains in constant contact with the mag-
netosphere.We show in the Appendix that the Kelvin-Helmholtz
instability operates on a sufficiently short timescale and wide
range of radii that this assumption can be justified.

Accretion to the star is possible only under the condition that
at the magnetospheric radius, the Keplerian velocity of the ac-
creting gas,�K(RM), is larger than the velocity�0 of the rotating

magnetosphere of the star (equal to the velocity of the star);
otherwise centrifugal forces will inhibit accretion (Illianorov &
Sunyaev 1975). The above condition is equivalent to saying that
the magnetospheric radius must be smaller than the corotation
radius, Rco ¼ (GM /�2

0)
1/3, which is the radius at which the

Keplerian frequency of the orbitingmatter is equal to the NS spin
frequency �0. In an oblique rotator, the onset of the propeller
stage will occur when RM (�) ¼ Rco at least in one point of the
magnetospheric boundary. Note that while a parallel rotator can
be either in the propeller or in the accreting regime, an oblique
rotator can be in both states simultaneously for different longi-
tudes of the magnetospheric boundary. Indeed, this special fea-
ture of the oblique rotator was used by Campana et al. (2001) in
building up a model that explained the dramatic luminosity var-
iations seen in the BeppoSAX observation of the transient X-ray
pulsar 4U 0115+63.4

The interaction between the magnetosphere of the NS and the
matter in the disk is likely to be at least partially anelastic because
of dissipative effects in the mixing process between the magne-
tospheric plasma and the disk matter during the propeller phase.
For clarity of presentation, here we first consider the two limiting
cases of a completely anelastic and a completely elastic interaction
and then generalize our results to the partially anelastic case.

In the anelastic case, the magnetic field of the NS is able to
force matter to corotate at the same velocity of the star, and it is
endowed at the magnetospheric boundary with specific kinetic
energy � ¼ 1/2�2

0R
2
M and angular momentum l ¼ �0R

2
M . In or-

der for matter to be ejected from the system via the propeller
mechanism, the magnetic field must provide it with enough en-
ergy to reach a velocity in excess of the local escape velocity at
RM. Because in the anelastic case the ejection velocity is vej ¼
�0RM , the requirement above converts to an ‘‘ejection radius,’’

Rinf ;ane ¼ (2GM=�2
0)

1=3 ’ 1:26Rco: ð4Þ

Only matter that is located beyond this radius during the inter-
actionwith themagnetosphere of the NS can be unbound from the
system through the propeller mechanism. Therefore there exists a
region (Rco < RM < Rinf ) in which the propeller is active but
matter cannot be unbound from the system by merging with the
disk matter (Spruit & Taam, 1993). We assume that matter in this
zone is swung out and circularizes at the radius where its angular
momentum equals the Keplerian value, i.e., when l ¼ �0R

2
M ¼

lK ¼ �K(RK)R
2
K (here RK is the circularization radius). This con-

dition defines the Keplerian circularization radius:

RK;ane ¼
�2

0R
4
M

GM
: ð5Þ

Matter that is not ejected from the system will fall back into the
disk and restart its motion toward the NS from the radius de-
fined in equation (5).

In the case of the elastic propeller, we assume that material in
the disk atRMmoves toward the magnetosphere with a tangential
relative velocity of �vrel ¼ RM (�0 � �K), where �K is the
Keplerian angular velocity at RM. In a completely elastic inter-
action this matter bounces off at the magnetospheric boundary
with an opposite velocity of +vrel that in the nonrotating frame

4 This simultaneous presence of different regimes, which is crucial to our
model, has not yet been seen in numerical simulations. However, to the best of
our knowledge, current numerical simulations of the propeller regime (e.g.,
Romanova et al. 2004) are axisymmetric; because of this geometry, they cannot
verify the simultaneous presence of different regimes of the kind discussed here.

Fig. 1.—Schematic illustration of the NS-disk system for an oblique rotator.
(a) The relative positions of the magnetic dipole moment axis, the phase angle
�, and the inclination angle �. The NS is assumed to rotate around the z-axis.
(b) A two-dimensional representation of the position of the magnetosphere (solid
line) with respect to the corotation radius (long-dashed line) and the infinity
radius (short-dashed line), for arbitrarily fixed values of the NS parameters.
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sums with vrot ¼ �0RM . Thus the ejection velocity is vej ¼
RM ½2�0 � �K(RM )�. In this case the requirement that this veloc-
ity be larger than vesc(RM ) can be written as

R2
M

2
4
GM

R3
co

þ GM

R3
M

� 4
GM

R
3=2
co R

3=2
M

 !
� GM

RM

;

where we have used the definition of the corotation radius. This
equation can be solved as a function of the magnetospheric ra-
dius to define the limit beyond which ejection of matter to in-
finity is possible in the purely elastic case:

Rinf ;el ¼
1þ

ffiffiffi
2

p

2

� �2=3

Rco ’ 1:13Rco: ð6Þ

The matter leaving the magnetospheric boundary is endowed
with specific angular momentum lel ¼ R2

M (2�0 � �K); equating
this to lK gives a new circularization radius for matter that is not
ejected to infinity. Using the same notation as above we find

RK;el ¼
R4
M (2�0 � �K)

2

GM
: ð7Þ

Let us now consider the most general case of a partially elastic
interaction. Following the formalism developed by EkYi et al.
(2005), we define the ‘‘elasticity parameter’’ �, which is a mea-
sure of how efficiently the kinetic energy of the NS is converted
into kinetic energy of ejected matter through the magnetosphere-
disk interaction. Taking into account the definitions given above,
we now consider the generalized rotational velocity of matter at
the magnetospheric boundary:

vgen ¼ �K(RM )RM (1� 	); ð8Þ

where 	 ¼ (1þ � )(1� �0/�K). The elastic case is obtained in
the limit � ¼ 1, and the totally anelastic one when � ¼ 0. Using
equation (8) we can then generalize also the expression for the
infinity radius

Rinf ¼
� þ

ffiffiffi
2

p

1þ �

� �2=3

Rco ð9Þ

and for the circularization radius

RK ¼ RM (1� 	)2: ð10Þ

In our model we consider the general case of a partially elastic
interaction and use � as one of the model parameters.

Figure 1b shows the various characteristic radii defined above
on the disk plane z ¼ 0. Depending on the phase (�) and the in-
clination angle (�), it is possible to have regions of the magneto-
spheric boundary in which accretion is possible [RM (�; �) <
Rco] together with other portions in which the propeller is already
active, resulting in ejection of matter to larger radii [Rco <
RM (�; �) < Rinf ], or to infinity (RM > Rinf ). In those cases in
which the inclination angle is sufficiently large, it is possible to
have all the three regimes described above simultaneously.

It should be noted that in our model, we consider ejection of
matter from regions of the disk that are away from the corotation
radius, where the Keplerian velocity of matter becomes rapidly
supersonic (e.g., Frank et al 1985). This could in principle lead
to the formation of supersonic shocks that can heat the plasma
and eventually stop the ejection mechanism. However, in this

situation, due to the high relative rotation rate between the plasma
inside the magnetosphere and that inside the disk, the Kelvin-
Helmholtz instability can be very efficient. As previously dis-
cussed, this instability can lead to a large mixing of the two fluids,
providing a mechanism to maintain the interaction between the
magnetic field of the NS and the matter in the disk. Under these
circumstances, it has been shown that outflowing bubbles of mat-
ter are likely to be accelerated magnetically by the NS toward the
outer region of the disk (Wang & Robertson 1985), in turn sup-
porting the idea that ejection far away from the corotation radius
can be sustained.

2.2. Conditions for the Existence of a Limit Cycle

Let Ṁ� be the rate of inflowing matter, regulated through the
Roche lobe overflow or capture of part of the wind of the com-
panion star. We assume that this matter possesses in all cases
enough angular momentum that a prograde accretion disk forms.
We further assume that the mass inflow at the inner disk bound-
ary is azimuthally symmetric (i.e., independent of �). As illus-
trated in Figure 1 and discussed in x 2.1, for a general, oblique,
orientation of the magnetic field of the NS with respect to the
normal to the disk and the spin axis of the NS (which we assume
are parallel), there will be regions where RM (�) < Rco, and there-
fore some matter is able to accrete, regions for which RM (�) >
Rinf that result in matter being ejected, and intermediate zones
with Rco < RM (�) < Rinf from which matter gets recycled. The
fraction of material in each of these regions is expected to be pro-
portional to the angle � subtended by the relevant region in the
magnetosphere, as shown in Figure 1. As in x 1, let us define Ṁacc,
Ṁeje, and Ṁrec to be, respectively, the rates of accreting, ejected,
and recycled material at any given time. These various compo-
nents are illustrated in Figure 2. If dṀtot/d� is the total rate ofmat-
ter exchanged at the magnetosphere-disk boundary per unit angle,
these components are given by Ṁcomp ¼ 1/2�

R �2

�1
d� d Ṁtot/d�
� �

,
where the integration interval [�1, �2] of � is such that RM (�) <
Rco when comp = ‘‘acc,’’ Rco < RM (�) < Rinf when comp =
‘‘rec,’’ and RM (�) > Rinf when comp = ‘‘eje.’’ Figure 3 shows an
example of these components as a function of the total mass
inflow across the entire magnetospheric boundary, Ṁtot. At low
values of Ṁtot, Rinf > RM for all values of �, and therefore all
matter is ejected (i.e., Ṁeje ¼ Ṁtot). On the other hand, at high val-
ues of Ṁtot, Rco > RM for any �, and therefore all matter is ac-
creted (Ṁacc ¼ Ṁtot). For values of Ṁtot such that RM (�) crosses
Rco at some values of �, Ṁrec 6¼ 0.
While the total mass inflow rate available to the system is de-

termined by the mass transfer rate from the companion, Ṁ�, the
value of the magnetospheric radius RM, on the other hand, is de-
termined by the total pressure of the accreting matter, i.e., Ṁtot ¼
Ṁacc þ Ṁeje þ Ṁrec. Since, in general, Ṁtot � Ṁ�, the magne-
tospheric radius can be smaller than it would be if the recycled
mass component were not accounted for (as commonly assumed
in the literature). Therefore, including Ṁrec in the computation of
RM, allows accretion at the same rate to occur for smaller values
of Ṁ� than it would otherwise.
In order to demonstrate the existence of a limit cycle, testified

by a hysteresis-like loop in the Ṁ�-Ṁtot plane, we start by noting
that the rate at which matter is recycled, Ṁrec, does not contribute
to the mass budget; therefore a steady state solution is possible
only if

Ṁ� ¼ Ṁacc þ Ṁeje: ð11Þ

Let us therefore examine the behavior of the curve Ṁtot as a
function of the accretion rate Ṁacc þ Ṁeje ¼ Ṁ�. An example of

PERNA, BOZZO, & STELLA366 Vol. 639



such a curve for a rotator inclined by an angle of � ¼ 50
�
is

shown in Figure 4. All the characteristic parameters of the NS
(B, �0, RNS,MNS) and the angle � are kept fixed while the mass
supply from the companion is varied. For a given value of the
external rate of mass supply Ṁ�, the corresponding points on the
curve yield the value (or values) of Ṁtot for which there exists a
solution. Again, we stress that the ‘‘state’’ of the system and the
characteristics of the solution are determined by Ṁtot since it is
this quantity (and not Ṁ�) that determines the position of RM.
There can be multiple solutions for a given Ṁ�, and the one that
is realized at a certain time depends on the previous history of
the system. This situation is reminiscent of a system with hys-

teresis, and in fact, as Figure 4 shows, the shape of the curve
Ṁtot(Ṁ�) resembles a hysteresis curve, where the role of the ex-
ternal magnetic field is played by the rate of mass supply by the
companion, Ṁ� (the independent variable in the present context).
If at a certain point the system is in, say, the state indicated by the
point ‘‘C’’ in the figure, and Ṁ� increases, the solution (i.e., only
available state for the system) will be forced to jump to the state
indicated by point D. As Ṁ� decreases, the solution will move
from point D to point A, but from that point on, any further de-
crease in Ṁ� will cause the solution to jump to point B. Therefore,

Fig. 3.—Various contributions to the total accretion rate Ṁtot ¼ Ṁacc þ Ṁrec þ
Ṁeje at the magnetospheric-disk boundary. The system parameters are B ¼ 6 ;
1013 G, 
 ¼ 9 mHz, � ¼ 45�, and � ¼ 0:3.

Fig. 2.—Fate of the matter provided by the companion at a rate Ṁ� depends on the relative position of the magnetospheric radius with respect to the corotation
radius and the ejection radius. Matter can be accreted, ejected, or recycled into the disk. [See the electronic edition of the Journal for a color version of this figure.]

Fig. 4.—Schematic representation of the hysteresis-type limit cycle. The ar-
rows indicate the points where the system ‘‘jumps’’ between different states as a
result of variations in the external mass supply rate Ṁ�. The system parameters
in this example are 
 ¼ 9 mHz, B ¼ 6 ; 1013 G, � ¼ 80�, and � ¼ 0. [See the
electronic edition of the Journal for a color version of this figure.]
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like in the traditional hysteresis cycle, continuous variations in Ṁ�
result in discontinuous states for the system.

In the following section, after discussing the computation of
the torque, it is shown that the points where the solution jumps
from one place to another in the Ṁtot(Ṁ�) curve often straddle the
point of torque reversal. Therefore, transitions between different
states are often characterized by a torque reversal.

The case we have illustrated in Figure 4 is only an example of
a cyclic behavior. The shape of the curve Ṁtot(Ṁ�) changes with
the parameters � and � (while 
 and B only cause a translation in
the Ṁtot-Ṁ� plane). This can result in several types of cycles
with a different number of jumps. More examples are shown in
Figure 5.

2.3. Torque and Luminosity in the Different
States of an Oblique Rotator

We calculate here the net specific angular momentum
transferred between the disk and the NS. In the region of the
magnetospheric boundary where accretion is allowed, the net
specific angular moment transferred from the disk to the NS is
given by

lacc ¼
1

2�

Z
RM < Rco

(GMRM )
1=2 d�: ð12Þ

In the ejection region, the NS accelerates the material to the
ejection velocity, which, as discussed in x 2.1, is different in the
two limiting cases of a completely elastic or anelastic propeller.
For the general case of a partially elastic interaction, using equa-
tion (8), the angular momentum given by the NS to the ejected
matter is

leje ¼
1

2�

Z
RM>Rco

(vgenRM � �KR
2
M ) d�

¼ 1

2�

Z
RM>Rco

�KR
2
M (1þ � )(�0=�K � 1) d�: ð13Þ

By relating this transfer of angular momentum between the NS
and the disk to the variation of the NS angular momentum, we
have

d�0

dt
¼ Ṁtotltot

I
; ð14Þ

where ltot is the sum of the angular momentum computed from
equations (12) and (13), andwe have assumed that the variation of
the NS moment of inertia (I ) is negligible. Using equations (12)
and (13) in equation (14), we obtain

d�0

dt
¼ Ṁtot

2�

;

Z 2�

0

(GMRM )
1=2
�
1� �(RM � Rco)

�
(1þ � )(�0=�K�1)

�	
d�;

ð15Þ

where �(RM � Rco) is 1 for RM > Rco and 0 for RM < Rco.
Next we compute the different contributions to the luminosity.

A schematic representation of these contributions is shown in
Figure 6. Let us consider first the region of the magnetosphere
in which there is accretion [RM (�) < Rco]. The accretion lumi-
nosity is given by the potential and kinetic energy released by
matter falling from the magnetospheric radius to the surface of
the NS; this is

Lacc ¼
Z
RM < Rco

GM
1

RNS

� 1

RM

� �
þ 1

2
�2 R2

M � R2
NS

� �
 �
dṀacc;

ð16Þ

where Ṁacc is the fraction of Ṁtot that accretes. Next we consider
the contribution to the luminosity coming from the recycled
matter. This can be calculated by summing the luminosity de-
rived from the release of energy of matter impacting the disk at
RK, and the luminosity released from the same matter spiralling
in the disk from RK back to RM. This gives

Lrec ¼
Z
Rco< RM < Rinf

v2gen
2

� GM

2RM

 !
dṀrec; ð17Þ

where Ṁrec is the rate corresponding to the recycling part of the
magnetospheric boundary [Rco < RM (�) < Rinf ].
Another contribution to the total luminosity is provided by the

release of energy in the boundary layer which separates the mag-
netosphere from the Keplerian disk. This term applies to matter
at any longitude � if we consider a completely anelastic propeller
(� ¼ 0), because in this case the magnetosphere forces matter to

Fig. 5.—Various types of hysteresis limit cycles. The system parameters are 
 ¼ 9mHz, B ¼ 6 ; 1013 G, and � ¼ 0 in all cases, while � ¼ 80� in panel a,� ¼ 50� in
panel b, and � ¼ 47� in panel c. In the top panels of each case, the arrows indicate the points where the system ‘‘jumps’’ between different states as a result of variations
in the external mass supply rate Ṁ�. Themiddle panels show that, under most circumstances, a jump is accompanied by a torque reversal and, in some cases, by an abrupt
change in luminosity (bottom panels). [See the electronic edition of the Journal for a color version of this figure.]
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corotate with it during both the accretion and the propeller re-
gime. On the other hand, in the limit of a completely elastic pro-
peller (� ¼ 1), this term is present only for those angles � for
whichRM < Rco andmatter is thus slowed down in the boundary
layer before it can begin falling toward the NS. If we consider a
generic value for the elasticity parameter, the luminosity of the
boundary layer can be written as

LBL ¼

Ṁtot

4�

Z 2�

0

�
R2
M (�

2
K � �2

0)
�
d� for RM < Rco;

Ṁtot

4�
(1� � )

Z 2�

0

�
R2
M (�

2
0 � �2

K)
�
d� for RM � Rco:

8>>><
>>>:

ð18Þ

Finally, we have to account for the luminosity produced by the
matter inflowing from the companion as it spirals in toward the
magnetospheric radius in the Keplerian disk. This contribution,
which is obviously present in all different regimes, is given by

Ldisk ¼
GMṀ�
2RM

: ð19Þ

It is important to emphasize that in our model both the torque
and the luminosity depend on the total mass inflow rate Ṁtot at
the magnetospheric boundary, and this can take different values
for the same mass accretion rate Ṁ�. The three panels of Fig-
ure 5 show the behavior of the torque and luminosity as a func-
tion of Ṁtot for three combinations of NS parameters. These are
chosen to represent different types of limit cycles (also shown in
the figure for each case—note the axes here are swapped with
respect to Fig. 4 for consistency with the other panels). In Fig-
ure 5a a transition between points A and B is accompanied by a
reversal from spin-up to spin-down, while the jump from point
C to point D will cause a transition from spin-down to spin-up.
The luminosity is at its lowest at point B and at its highest at
point D, but the overall variation during the cycle is well within

an order of magnitude. A more complicated cycle is depicted in
Figure 5b; here a transition from point A to B causes a spin-up
to spin-down reversal, while the opposite happens during the
jump from point E to point F. This cycle comprises also another
jump, from point C to point D, with both points on the spin-down
branch. The luminosity varies bymore than 3 orders ofmagnitude
during the cycle, being at its lowest during most of the spin-down
phase. The third example of limit cycle, the one shown in Figure 5c,
has only two allowed jumps, both of them straddling the point of
torque reversal, as in Figure 5a, but the luminosity is substantially
larger when the system is on the spin-up branch (A–D), thanwhen
it is on the spin-down branch (B–C).

Whether there exists a limit cycle depends crucially on the
angle �: this has to be large enough to ensure that some regions
of the magnetosphere are in the accretion regime while, at the
same time, others are in the propeller phase. There exists a crit-
ical value of the magnetic colatitude,�crit, belowwhich the steady
state solution breaks into two disjoint curves and it is no longer
possible to find a cyclic behavior through a sequence of steady
state solutions. This is illustrated in Figure 7 for the cases � ¼ 0
and � ¼ 1. If the accretion rate Ṁ� from the companion is above a
certain value (which depends on 
,B,�, and � ), only one solution
is available to the system, and it corresponds to the spin-up branch
(see Fig. 5). On the other hand, if Ṁ� P Ṁcrit (for the exam-
ple under consideration, Ṁcrit ¼ 2:4 ; 1016 g s�1 for � ¼ 0 and
Ṁcrit ¼ 3:5 ; 1016 g s�1 for � ¼ 0, but it varies with 
 and B),
then multiple solutions are available for any value of � displayed,
and the one that is realized at any given time depends on the
history of the system. However, a cyclic jump of the solutions
between the spin-up and the spin-down branches can only be
realized for angles above �crit.

The critical angle ranges from about 25�–30� for � ¼ 1 to
about 40

�
–45

�
for � ¼ 0, and, for a given �, it is independent of


 and B. Therefore, for the curves shown in the figure, a limit
cycle can only be achieved in the cases with � ¼ 30� and � ¼
40

�
for � ¼ 1, and in the cases with � ¼ 50

�
and � ¼ 70

�
for

� ¼ 0. In the other cases displayed, the Ṁ�(Ṁtot) curve is dis-
continuous. The shape of the curve is such that if the system is
spinning up, a solution on the spin-up branch can be found for

Fig. 6.—Various contributions to the total luminosity budget for an accreting NS. [See the electronic edition of the Journal for a color version of this figure.]
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any value of Ṁ�, and therefore the system will continue spinning
up. On the other hand, if the system is originally on the spin-
down branch (which is possible only for Ṁ� P Ṁcrit), then any
decrease in Ṁ� will keep the system on the spin-down branch,
while an increase in Ṁ� above Ṁcrit will cause a jump on the spin-
up branch, and from that point on the system will be spinning up
independent of the value of Ṁ�. Note that, depending on the
angle �, there can be spin-up solutions even at very low mass
inflow rates Ṁ�. This result is a novelty of our model, deriving
from the fact that the recycledmass component Ṁrec can keep the
magnetospheric radius in ‘‘pressure’’ even if Ṁ� is very small.

Among all the components that make up the total luminosity,
the accretion term is the only one that is certainly pulsed, since
the accretionmaterial is funneled by the magnetic field of the star
onto the NS magnetic poles, where its energy is released. The
accretion luminosity therefore varies with the phase of the star,
resulting in a pulsating flux. Also, the boundary layer luminos-
ity might be pulsed at the NS spin. Therefore, the maximum
pulsed fraction in our model is constrained to be between fpul ¼
Lacc/Ltot and fpuls ¼ (Lacc þ LBL)/Ltot.

Note that the sum of the various contributions in equations (16),
(17), (18), and (19) can result in a complex, nonmonotonic depen-
dence of Ltot as function of the accretion rate from the companion,
Ṁ�. In the classical model of accretion onto magnetized NSs, the
transition between the standard accretion regime onto the NS sur-
face to the regime of accretion onto the magnetospheric boundary
in the propeller regime is marked by the change between the
/Ṁ� and the/Ṁ 9=7

� scaling of the luminosity (Stella et al. 1994;
Campana & Stella 2000). In the propeller phase, the underlying
assumption of these works is that the main contribution to the lu-
minosity derives from the disk luminosity (eq. [19]). In the present
model, this might not be the case if there is a nonnegligible
contribution to the luminosity from recycled matter. Moreover, at
low accretion rates, we find that the contribution to the luminosity
from the boundary layer generally dominates over that from the
disk for an anelastic propeller (see Fig. 8). For sufficiently low
values of Ṁ� [so that �2

K
(RM )/�

2
0T1], the boundary layer lu-

minosity scales as/Ṁ 3=7
� , while LBL / Ṁ 9=7

� at high values of Ṁ�
[for which�2

K(RM )/�
2
0 31].When the corotation radius is of the

order of the magnetospheric radius, however, these dependences
are changed. Since the Keplerian frequency at themagnetospheric
radius is an increasing function of Ṁ�, in the propeller regime the
term �2

0 � �2
K(RM )

�� �� decreases with the increase of Ṁ�, while in
the accretion regime the same term increases with increasing Ṁ�.
As a result, when RM is of the order of Rco, the luminosity of the
boundary layer has a flatter dependence on Ṁ� forRM > Rco and a
steeper dependence for RM < Rco. This can be seen in Figure 8.
Both the case of a completely anelastic propeller (� ¼ 0), and a
totally elastic one (� ¼ 1) are considered, showing respectively
the maximum and the minimum boundary layer luminosity that
the system can have. In the former casewe find that for sufficiently
low accretion rates (so that the whole magnetospheric boundary is
in the propeller regime), the boundary layer luminosity is sub-
stantially larger than the disk luminosity. The relative contribution
LBL/Ldisk clearly increases as the degree of anelasticity increases,
since LBL / (1� � ). As the mass accretion rate Ṁ� increases, so
that at least some regions of the magnetospheric boundary are in
the accretion regime, the disk luminosity begins to dominate
over that of the boundary layer (this is now independent of � ).
However, LBL has a stronger dependence on Ṁ�, and, for suf-
ficiently large Ṁ� that RMTRco, LBL becomes �Ldisk.
The two panels in Figure 8 show the cases of a slow pulsar

(
 ¼ 9 mHz) and a fast one (
 ¼ 100 mHz). The discussion
above regarding the relative contribution of LBL and Ldisk to the
total luminosity budget holds in both cases. Furthermore, once
accretion sets in, the accretion luminosity dominates over both
Ldisk and LBL. The slower the pulsar, the larger is this term com-
pared to the others. Therefore, in the accretion regime and for
RMTRco, Ltot / Ṁ� as in the classical models. However, for
RM � Rco, the presence of the recycled term of luminosity in our
model causes a nonmonotonic dependence of the total luminosity
on Ṁ�, withmultiple solutions allowed. The actual solution that is
realized at any given time will depend on the history, i.e., whether
the system is on the spin-up or spin-down branch of the limit cycle

Fig. 7.—Break of the cyclic solution in the Ṁ�-Ṁtot plane is shown for a system with 
 ¼ 9 mHz s, B ¼ 6 ; 1013 G, � ¼ 0 (left), and � ¼ 1 (right). When the
inclination angle is small, it is no longer possible to find a steady state, cyclic solution. The value of � around which the solution breaks depends on the anelasticity
parameter � but is independent of the values of 
 and B.
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(see Fig. 4). This is an important difference of our model with
respect to the classical solution where, once the system is in the
accreting phase, the luminosity scales monotonically with Ṁ�. On
the other hand, Figure 8 shows that there are regions for which a
small variation in Ṁ� can cause a large jump in luminosity.

Similar to the luminosity, the behavior of the torque in the
surroundings of the region with RM � Rco is complex and non-
monotonic. Small variations in Ṁ can cause the system to jump
between states with opposite sign of the torque. Within this re-
gion, because of the complex dependence of both L and �̇ on
Ṁ�, our model does not make any specific prediction regarding
correlations between torque and luminosity. In most situations,
these are expected to be uncorrelated, and different types of limit
cycles (see Fig. 5) will generally lead to different behaviors in the
various spin-up and spin-down phases.

2.4. Cyclic Spin-up/Spin-down Evolution at a Constant Ṁ�

In systems in which mass transfer takes place through Roche
lobe overflow, the rate at which material is fed to the disk is ex-
pected to be roughly constant, or characterized by relatively low-
amplitude, long-term variations. We are not concerned in this
section with the accretion disk instabilities that likely give rise
to the very large amplitude variations of the mass inflow rate in bi-
nary X-ray transient systems. Rather, in the following we describe
how recurrent episodes of spin-up and spin-down can be achieved
in our model in response to a strictly constant accretion rate Ṁ�
from the companion star.

Figure 9 shows the behavior of the curve Ṁ ¼ Ṁeje þ Ṁacc

(top) and the corresponding frequency derivative, 
̇, (bottom) as
a function of Ṁtot and for different values of the period (corre-
sponding to different times). The parameters B, �, and � are the
same in all cases. They yield a limit cycle of the type described in
Figure 5b. While the specific points of torque reversal will vary
depending on the type of cycle (as shown in the various exam-
ples of Fig. 5), the underlying structure determining the transi-
tions is the same in all cases and therefore we analyze in detail
only one of the possible scenarios.

In order to illustrate how the spin-up/spin-down states are
achieved at a constant Ṁ�, let us start, say, with the system at a
frequency 
 so that the corresponding Ṁ (Ṁtot) curve is the one
labeled ‘‘2’’ in Figure 9, and let us assume that the system is in a
spin-up state. The intersection between the curves Ṁ and Ṁ� on

Fig. 8.—Various contributions to the total luminosity budget Ltot ¼ Lacc þ Lrec þ Ldisk þ LBL for an accreting NS as function of the mass accretion rate from the
companion, Ṁ�. The system parameters are 
 ¼ 9 mHz, B ¼ 6 ; 1013 G, and � ¼ 80

�
in the top panels and 
 ¼ 9 mHz, B ¼ 109 G, and � ¼ 80

�
, in the bottom ones.

The two limiting cases of a completely elastic interaction (left panels) and of a completely anelastic interaction (right panels) are shown.

Fig. 9.—Variation of the function Ṁ (Ṁtot) 	 Ṁacc þ Ṁeje (top) and of the
corresponding spin rate variation (bottom panel) at three different times during a
spin-up/spin-down cycle. The system parameters are B ¼ 6 ; 1013 G, � ¼ 45�,
and � ¼ 0:3. The three curves correspond to frequencies 
 ¼ 9:1 mHz (curve 1),

 ¼ 8:3 mHz (curve 2), and 
 ¼ 7:7 mHz (curve 3). Allowed states for the system
are only those satisfying the condition Ṁ� ¼ Ṁ(Ṁtot); in this case, log (Ṁ�) ¼
16:3. When multiple solutions are allowed, the state in which the system will be
found depends on its previous history. [See the electronic edition of the Journal for
a color version of this figure.]
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the spin-up branch of the cuspid determines the value of Ṁtot,
Ṁtot;sol, corresponding to the allowed spin-up state for that value
of the frequency. This value of Ṁtot;sol in turn determines the
value of the frequency derivative at that point in time (point O in
both panels of the figure). The frequency at time t þ dt is simply
determined as 
(t þ dt) ¼ 
(t)þ d
(Ṁtot;sol)/dt. As the pulsar
spins up, curve 2 moves toward curve 1 until the point at which
the spin-up branch of the solution rises higher than the system
Ṁ� (point A). From that point on, the only possible state for the
system that satisfies the condition Ṁ ¼ Ṁ� is the one corre-
sponding to point C in the figure, on the spin-down branch (neg-
ative torque). Once again, the new (current) value of Ṁtot;sol

determines the actual value of 
̇ (corresponding to point C in the
bottom panel) that is used for the next time step to determine the
new 
. While on the spin-down branch of the solution, the curve
Ṁ nowmoves from curve 1 toward curve 2 and then 3. Spin-down
continues until this branch of the solution does not intersect any
longer the Ṁ� line (point B), at which point the only allowed state
for the system to be in is on the spin-up branch, and the system
reverses from spin-down to spin-up. This is the beginning of a
new cycle.

In this model, the points of spin reversals are determined by
the maximum andminimum of the Ṁ (
) curve. The shape of this
curve depends on the anelastic parameter � and on the angle �.
For a given � and�, a change in the strength of themagnetic field
simply results in a shift of the curve without a change in shape: a
higher B field would move the curve to higher values of Ṁtot,
therefore resulting in stronger spin-up and spin-down torques,
and hence in a shorter timescale for torque reversals. For the
model to work as described, it is clear that the points where the
solution jumps must straddle the point of torque reversal. We
find this to be the case for a wide range of combinations of � and
�. However, for each value of �, there is a narrow range of angles
� for which the torque inversion point falls outside the allowed
region for the transitions. For these particular and rare cases, the
systemwould tend toward the point �̇0 ¼ 0 and remain there, for
a strictly constant Ṁ�. However, small fluctuations in Ṁ� can still
cause the system to jump from one solution to another. For the
rest of this discussion we will focus on the greatest majority of
cases for which torque reversals naturally occur at Ṁ� ¼ const,
unless we explicitly state otherwise.

If the magnetic colatitude angle � is larger than �crit , the sys-
tem is bound to end up in a cyclic sequence of spin-up/spin-down
transitions. In fact, as it can be seen from Figure 9, if the system
starts with a much larger frequency than the maximum frequency
in the cycle, 
max, it will spin down since only one solution (on the
spin-down branch) is allowed as long as 
 > 
max. Similarly, if the
system starts with a frequency much smaller than the minimum
frequency in the cycle, 
min, it will spin up as only one solution (on
the spin-up branch) is allowed as long as 
 < 
min. Therefore, our
model predicts that the system, independent of the initial con-
ditions, eventually settles in a region where there are cyclic tran-
sitions between spin-up and spin-down states. This limit cycle is
not induced by external perturbations, but is the natural equilib-
rium state toward which the system tends.

3. APPLICATION OF OUR MODEL TO PERSISTENT
X-RAY PULSARS

In the following, we apply our model to two objects for which
long-termmonitoring showed amarked transition between a spin-up
and spin-down phase. We then discuss the way our model can
be generalized to other cases where short-term episodes of spin-up/
spin-down are superimposed onto longer term spin-up or spin-

down trends. The most comprehensive monitoring of the spin be-
havior of accreting X-ray pulsars in binaries is given in Bildsten
et al. (1997), and here we briefly summarize the observations
for the two cases that we model.

3.1. GX 1+4

GX 1+4, discovered in 1970 through an X-ray balloon ex-
periment (Lewin et al. 1971), is an accreting X-ray pulsar binary
hosting an M red giant (Davidsen et al. 1977); the orbital period
is likely to be of a few years (Chakrabarty & Roche 1997). Early
observations through the 1970s showed that this source was
spinning up at a very high pace with a spin-up timescale j
/
̇j �
40 yr. The frequency changed from �7.5 to �9 mHz during the
first 15 yr of observations. In the early 1980s, however, the flux
dropped abruptly and the source could not be detected byGinga.
Given the sensitivity of the instrument, the flux must have de-
creased bymore than 2 orders ofmagnitudes for a few years. Once
its flux raised, the source could be monitored again, and it was
found to spin down on a timescale comparable to the previous
spin-up timescale (Makishima et al. 1988).
A solution that closely reproduces the observed source be-

havior was found by running the time-dependent code described
in x 2.4 for a range of parametersB,�, �. The corresponding value
of M� is determined so that the point of torque reversal of the
system between spin-up and spin-down matches the observed
value. The larger the magnetic field, the larger Ṁ� and hence the
torque, and therefore the more rapid the timescales of the torque
transitions are; the parameters � and �, by determining the shape
of the Ṁ curve, especially influence the total frequency range

max 
min that the system spans in a cycle.
For the case of GX 1+4, we found that a good choice of pa-

rameters is the combination B ¼ 6 ; 1013 G, � ¼ 45�, and � ¼
0:3. These yield a cycle of the type displayed in Figure 5b and in
Figure 9. In particular, the parameters B, �, and � used in Fig-
ure 9 are the same as those used for GX 1+4. The accretion rate
provided by the donor companion must be Ṁ� � 2 ; 1016 g s�1

in order to produce a turnover in frequency around 9 mHz. With
this choice of parameters, Figure 10 shows the behavior of the
system that our model predicts. Cycles of spin-up/spin-down
alternate in response to torque reversals. The luminosity of the
source is comparable during the spin-up and spin-down phases,
except for a few years around the time of spin reversal from spin-
up to spin-down, when it drops abruptly. This is due to the fact
that after the system has ‘‘jumped’’ to point C in Figure 9 (at the
beginning of the spin-down phase), there are no regions in the
magnetosphere-disk boundary where accretion onto the NS can
take place, theNS is in the propeller regime, and therefore Ṁacc ¼ 0
(see Fig. 3). During that time, the only contribution to the lumi-
nosity comes from the disk and the boundary layer, which are,
however, much smaller than the accretion luminosity (since this is
a slow pulsar). A prediction of our model is that, while large drops
in luminosity can be expectedwhen the system reverses from spin-
up to spin-down, they should not occur in correspondence of the
spin-down/spin-up transition, because when this transition occurs
(refer to the jump frompointB to pointA in Fig. 9),most regions at
the magnetospheric boundary are allowed to accrete. While these
overall features are generally robust predictions of our model, the
detailed variation of Ṁ (and hence the luminosity) with torque
shown in our examples should not be taken too rigorously. These
variations depend on the shape of the Ṁ (Ṁtot) curve, and this is in
turn determined by the shape of the magnetospheric boundary as a
function of time. As discussed in x 3.3, a number of effects ne-
glected here can influence this shape, and hence affect the detailed
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behavior of the solution. In particular, note that observations of
GX 1+4 show that luminosity and torque strength are correlated
during the spin-down phase (Chakrabarty et al. 1997b). This fea-
ture is not reproduced by the current version of our model.

3.2. 4U 1626�67

4U 1626-67, discovered by SAS-3 in 1977 (Rappaport et al.
1977) is an ultracompact binary with an extremely low-mass
companion (Levine et al. 1988; Chakrabarty et al. 1997a) and a
42 minute orbital period (Middleditch et al. 1981). During the
first�20 yr of observations, the source was found to spin upwith
a timescale 
/
̇ of about 5000 yr. The frequency increased from
130.2 mHz to about 130.5 mHz, at which point the source started
to spin down. Unlike the case of GX 1+4, there was no evidence
for a large change in the bolometric luminosity of the source
during the transition.

The very long timescale for spin reversal of this source (due to
a smaller torque compared to the case of GX 1+4) requires a
smaller magnetic field. We found that our model yields a reason-
able match to the observations with the choice of parametersB ¼
2:5 ; 1012 G, � ¼ 68

�
, and � ¼ 0. The corresponding solution

found with our model is displayed in Figure 11. The top panel
shows only one spin-up/spin-down torque reversal, since the com-
plete spin-up/spin-down cycle, of the order of several thousand
years, lasts much longer than the observed time. Although the
luminosity somewhat drops around the time of spin reversal, it
does so to a lesser extent and for a much shorter time than for the
case of GX 1+4. The reason for these differences lies in the var-
iation of the shape of the function Ṁ (Ṁtot) for different choices
of the parameters � and �. The parameters that best match the
solution for 4U 1626�67 yield a cycle of the type in Figure 5a.
The transition from spin-up to spin-down (point A to point B in
the figure) is accompanied by a less dramatic variation in lumi-
nosity than it is for the cycles of the type shown in panels b and c.
Note how, for this source, since the observation window is much
smaller than the timescale for torque reversal, other torque inver-

sions are not expected in the near future, unless induced by ex-
ternal perturbations.

3.3. Generalizations and Limitations of our Model

The two examples given above, for two sources spinning up
and down at very different rates, show that our model can re-
produce different types of cyclic behaviors. In the two cases
discussed, we assumed that the mass accretion rate from the
companion, Ṁ�, does not vary with time. Under this assumption,
our model predicts that the points of torque reversals will always
occur at the same value of the frequency. On the other hand, if the
donor accretion rate varies with time, this will no longer be the
case. If Ṁ� increases with time, then the points of torque rever-
sals will occur at larger frequencies as time goes on. On the other
hand, if Ṁ� decreases with time, then the points of torque rever-
sals will occur at smaller and smaller frequencies with time. A
combination of discrete states in an oblique rotator (producing
cyclic torque reversals), with longer term variation in the exter-
nal Ṁ� can produce a long-term spin evolution with superimposed
shorter cyclic episodes of spin-up and spin-down.

Also note that, depending on the system parameters [namely,
the inclination angle � and the elasticity parameter �, which
determine the shape of the Ṁ (Ṁtot) curve, and hence the points of
torque reversals], the transition from a state of spin-up to a state
of spin-down can result in a period of time during which accre-
tion is completely inhibited (i.e., Ṁacc ¼ 0) and the luminosity is
orders of magnitude lower (unless the pulsar has a very fast spin
in the ms range and the luminosity of the disk and the boundary
layer are conspicuous even when Ṁacc ¼ 0). The system can then
behave as a ‘‘transient’’ even when the accretion rate from the
companion is constant.

In the present (simplest) version of our model, the frequency
range (
max 
min) spanned in a spin-up/down cycle cannot, how-
ever, be made arbitrarily small. In order for the torque reversals
to occur at constant Ṁ� and without any other external pertur-
bation, the curves Ṁ (
max) and Ṁ (
min) (curves 1 and 3, respec-
tively, in Fig. 9) must be such that the two points of torque reversals

Fig. 11.—Oblique NS rotator with magnetic field B ¼ 2:5 ; 1012 G, incli-
nation angle � ¼ 68�, and elasticity parameter � ¼ 0 is able to reproduce the
main spin-up/spin-down characteristics of 4U 1626.

Fig. 10.—Oblique NS rotator with magnetic field B ¼ 6 ; 1013 G, inclina-
tion angle � ¼ 45�, and elasticity parameter � ¼ 0:3 is able to reproduce the
main spin-up/spin-down characteristics of GX 1+4. The luminosity is compa-
rable during the spin-up and spin-down phases, except for a few years at the
beginning of the spin-down phase, when it drops abruptly.
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(A and B in Fig. 9) satisfy the conditions ṀA(
max) ¼ Ṁ� and
ṀB(
min) ¼ Ṁ�, respectively. Arbitrarily small cycles require ar-
bitrarily small loops in the Ṁ (Ṁtot) curve, so that the inversion
points can be extremely close. This cannot be achieved with the
current version of our model, in which the shape of the Ṁ (Ṁtot)
curve (and hence the ‘‘size’’ of the loop around the points of
torque reversals) depends only on the inclination angle � and the
elasticity parameter �. However, there are a number of effects that
we have neglected here, and which could be potentially important
for small-scale torque reversals. In particular, if the disk plane is
not orthogonal to the NS rotation axis, a precession of the disk
around the spin axis can be induced (Lai 1999), producing a time-
dependent modulation of the various regimes on a timescale on
the order of the spin period of the star. We reserve to future work a
more comprehensive exploration of the physical effects that in-
fluence the magnitude and frequency of the torque reversals.

4. SUMMARY AND DISCUSSION

A magnetic rotating NS surrounded by an accretion disk is an
intuitive example of an accreting system in which the conditions
can be realized such that a fraction of the matter is accreted,
another fraction is ejected and completely unbound from the sys-
tem, and another part is propelled out but does not possess
enough energy to unbind and therefore falls back onto the disk,
getting recycled. We have shown that for a given mass rate
supply from the companion, accretion with the mass feedback
term included leads to multiple available states for the system,
characterized by different (and discrete) values of the total mass
inflow at the magnetospheric boundary. The luminosity in each
of these states is generally different, as it depends on the relative
amounts of the various components of the total mass inflow rate.
The available states often straddle the point of torque rever-
sal, and therefore correspond to states with opposite sign of the
torque.

The character of the solutions is essentially determined by the
inclination angle � of the NS axis with respect to the disk. At
angles �P �crit, the limit cycle breaks down. In this case, for an
external mass supply larger than a critical value (which depends
on the system parameters), the system can only be on the spin-up
branch. For accretion rates smaller than this critical value, both
the spin-up and the spin-down branches of the solution are pos-
sible, and the one that is realized will depend on the history of the
system. After a sufficiently long time, however, if the system is
spinning down, the available solutions will be drifting and the
source will jump out of the spin-down branch and continue ev-
olving on the spin-up branch. For �k �crit, cyclic transitions
between states of opposite torque can be realized even at a
constant value of the accretion rate from the companion. This is a
particularly nice feature of our model: periodic variations be-
tween spin-up and spin-down states take place without requiring
the presence of any external, periodic, and fine-tuned pertur-
bation. Most importantly, we have shown that periodic, cyclic
episodes of spin-up/spin-down behavior must be realized in a
number of situations. While in the classical theory of accret-
ing X-ray binaries (where the effect of mass feedback is not ac-
counted for) the system is expected to eventually settle at the

equilibrium frequency that matches the Keplerian frequency at
the magnetospheric boundary, in our model, where recycling is
accounted for, the system will eventually settle around a limit-
cycle behavior in which different spin derivative and luminosity
states alternate, recurrently. The points of spin reversal and the
timescales of the torque reversals depend on a combination of
factors, namely, the accretion rate from the companion, the mag-
netic field of the NS, the inclination angle of the NS axis, and the
degree of anelasticity at the disk-magnetospheric boundary.
In the case of the twoX-ray binaries GX 1+4 and 4U 1626�67,

we have determined a set of parameters B, �, � that is able to
reproduce the main features of their timing behaviors, such as the
timescales and frequency span of the transitions, as well as the
large luminosity drop observed around the transition from spin-up
to spin-down in the case of GX 1+4 but not of 4U 1626�67. The
correlation between torque strength and luminosity in the spin-
down phase observed in GX 1+4 (Chakrabarty et al. 1997b) is,
however, not reproduced by the present scenario. On the other
hand, we still need to emphasize that ours is a very simplified
model, and therefore the detailed behavior of our solution
should not be considered too rigorously: while our model ap-
propriately accounts for the material torque at the disk-mag-
netospheric boundary when a fraction of mass is recycled, it
neglects other possible sources of torque, such as magnetic
stresses (e.g., GL) or magnetically driven outflows in an ex-
tended boundary layer (Arons et al. 1984; Lovelace et al. 1995).
The presence of other torque terms could modify the character
of the solutions if nonmaterial torques dominate over the ma-
terial one. A general treatment that includes all possible sources
of torques is beyond the scope of this paper, especially since the
relative strength of the various terms would be hard to estimate
from first principles.
Finally, while the details of the solutions that we have dis-

cussed specifically apply to the case of a rotating NS accreting
from a disk fueled by a companion star, the general feature of
a multiplicity of states available for a given mass inflow rate of
matter can probably be generalized to other accreting systems
in which recycling occurs. An example is that of an accretion
disk around a rotating black hole. Numerical simulations (e.g.,
Krolik et al. 2005) show that while a fraction of the accreting
mass is ejected through a jet, another fraction, of slower velocity
and at larger angles from the jet axis, falls back into the disk,
getting recycled. It would be interesting to include this mass
feedback process into numerical simulations of accretion disks
around black holes and to investigate whether the discontinuous
states and cyclic behavior might ensue in those cases as well.
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APPENDIX

Here we justify our assumption that during the rotation of the magnetosphere, matter in the disk is able to fill the region that
separates the disk and the magnetospheric flow on a timescale shorter than (or comparable to) the spin period of the star.

Let �
 ¼ R2/
 ¼ R/vR be the viscous timescale in the disk, where R is the radial distance from the star, 
 the kinematic viscosity
coefficient, and vR the radial velocity in the disk. In the reference frame of the disk (in which �
 is measured), the stellar rotation time is
�rot ¼ 2�/j�0 � �Kj. Using the thin-disk approximation, the disk height H can be written as H ¼ fR, where f T1 is a numerical
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factor that can be assumed to be approximately constant for small variations of the radial distance from the NS (typically f � 1/10).
Furthermore, using the � prescription for the viscosity (Shakura & Sunyaev 1973), we can write vR ¼ �v2s /vK ¼ �f 2vK where vs is the
sound speed in the disk and we have assumed vs/vK ’ H /R.

Let us consider first the propeller regime (RM > Rco). For R ¼ RM , we obtain that �
 < �rot only if

Rco < RM < (1þ 2��f 2)2=3Rco; ðA1Þ

which corresponds to a very narrow region around the corotation radius. Beyond this region, the viscous timescale becomes too long
to permit a replenishment of the inner regions of the disk as the star rotates. Here another mechanism is needed to justify our
assumption. Indeed, in the propeller regime, the surface of separation between the magnetospheric and disk flow is Kelvin-Helmholtz
unstable due to the large shear velocity (Wang & Robertson 1985; Spruit & Taam 1993). In the frame corotating with the NS this
velocity is vrel ¼ RM ½�� � �K(RM )�. Because of the Kelvin-Helmholtz instability (KHI), matter in the disk is mixed with the NS
magnetic field lines, thus maintaining a strong interaction between the disk and the magnetosphere.

The characteristic timescale for the development of the KHI (in the direction of the shear motion) can be estimated as (e.g., Stella &
Rosner 1984) �KH 
 4�(kjvrelj)�1, where k ¼ 2�/k is the wavevector of the perturbation that initializes the instability. The condition
that the KHI develops within a time shorter than the local timescale � rot/2 is hence satisfied for wavevectors k > 2/R. Furthermore, in
order for the interaction between the disk and the magnetospheric flow to be maintained throughout the rotation of the star, the KHI
must be able to mix disk matter and magnetic field lines at least on a distance d � ½RM (0)� RM (�/2)�P 0:5RM (0) (see eq. [3] and
Fig. 1). The simulations of Wang & Robertson (1985) show that perturbations of length scale k become rapidly unstable and evolve
into elongated vortices of magnitude comparable to k. This means that a perturbation of length k is able to produce mixing between
matter and field lines on a distance scale of the same order.Wang&Robertson also argue that the dominant mode of the instability will
likely be the one just sufficient to offset the effect of viscous damping through the turbulent motions in the shear layer. In our case this
condition translates into k/2�vt � (�� � �K)

�1 where vt is the turbulent velocity. If we choose vt � vs and use f � H /R, we can
roughly estimate

k � 2�f

(RM=Rco)
3=2 � 1

RM ; ðA2Þ

that is of the order required to cover the radial extension d discussed above [here we have used the fact that in our model the propeller
regime typically occurs for RM within the range Rco < RM < (1:6� 1:7)Rco]. Since the wavelength in equation (A2) satisfies the
condition k > 2/RM , the dominant mode of instability develops in a shorter time than the local dynamical timescale, and therefore the
KHI is able to maintain a close interaction between the disk and the magnetosphere on this timescale.

Let us now consider the accretion regime (RM < Rco). Using the same derivation as above, the analogous of equation (A1) is

(1� 2��f 2)2=3Rco < RM < Rco; ðA3Þ

which is again a narrow region in the vicinity of the corotation radius. In the accretion regime, however, considering the argument
used in the propeller case [where now vrel ¼ RM (�K � �0)], we obtain the same conclusion about the efficiency of the KHI, and the
analogous of equation (A2) is now

k � 2�f

1� RM=Rcoð Þ½ �3=2
RM ; ðA4Þ

which clearly satisfies the requirement kk 0:5RM for any value of RM in the region of interest. Furthermore, after the KHI has brought
matter just inside the magnetospheric radius, the enhanced contribution of the gravitational with respect to the centrifugal force, forces
matter to fall toward the NS also under the effect of the Rayleigh-Taylor instability (Arons & Lea 1980; Wang & Robertson 1984).
This enhances the transport of matter toward the NS and therefore strengthens the reliability of our assumption.
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