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ABSTRACT

We investigate the question of whether ambipolar diffusion (ion-neutral drift) determines the smallest length and
mass scales on which structure forms in a turbulent molecular cloud. We simulate magnetized turbulence in a mostly
neutral, uniformly driven, turbulent medium, using a three-dimensional, two-fluid, magnetohydrodynamics (MHD)
code modified from Zeus-MP. We find that substantial structure persists below the ambipolar diffusion scale because
of the propagation of compressive slowMHDwaves at smaller scales. Contrary to simple scaling arguments, ambi-
polar diffusion thus does not suppress structure below its characteristic dissipation scale, as would be expected for
a classical diffusive process. We have found this to be true for the magnetic energy, velocity, and density. Corre-
spondingly, ambipolar diffusion leaves the clump mass spectrum unchanged. Ambipolar diffusion appears unable
to set a characteristic scale for gravitational collapse and star formation in turbulent molecular clouds.

Subject headingg: ISM: clouds — ISM: kinematics and dynamics — ISM: magnetic fields — MHD —
stars: formation — turbulence

1. INTRODUCTION

Molecular clouds are turbulent, with line widths indicating
highly supersonic motions (Zuckerman & Palmer 1974), and
magnetized, with magnetic energies in or near equipartition
with thermal energy (Crutcher 1999). They have low ionization
fractions (Elmegreen 1979), leading to imperfect coupling of
the magnetic field with the gas. Molecular clouds are the sites of
all known star formation, so characterizing the properties of this
nonideal, magnetized turbulence appears central to formulating
a theory of star formation.

The drift of an ionized, magnetized gas through a neutral gas
coupled to it by ion-neutral collisions is known by astronomers as
ambipolar diffusion (AD) and by plasma physicists as ion-neutral
drift. It was first proposed in an astrophysical context byMestel &
Spitzer (1956) as a mechanism for removing magnetic flux and
hence magnetic pressure from collapsing protostellar cores in the
then-novel magnetic field of the Galaxy. However, more recently,
as turbulence has regained importance in the theory of star forma-
tion, AD has been invoked as a source of dissipation for magnetic
energy in the turbulent magnetohydrodynamic (MHD) cascade
and thus a characteristic length scale for the star formation process
(e.g., Pudritz 1990; Tassis &Mouschovias 2004). This is due to its
well-known ability to damp certain families of linear MHD
waves (Kulsrud & Pearce 1969; Ferrière et al. 1988; Balsara
1996). However, as Balsara (1996) pointed out, AD does allow
slow modes to propagate undamped.

A brief calculation suggests that AD should be the most im-
portant dissipation mechanism in molecular clouds. AD can be
expressed as an additional force term in the momentum equation
for the ions

Fin ¼ �i�n�AD(vn � vi) ð1Þ

and an equal and opposite force Fni ¼ �Fin in the neutral
momentum equation, where �i and �n are the ion and neutral

densities and �AD ’ 9:2 ; 1013 cm3 s�1 g�1 is the collisional
coupling constant (Draine et al. 1983; Smith & Mac Low 1997).

The effect of ion-neutral drift on the magnetic field can be
simply expressed in the strong coupling approximation (Shu
1983) that neglects the momentum and pressure of the ion fluid
and equates the collisional drag force on the ions Fin with the
Lorentz force,

��i�n�AD(vi � vn) ¼
(: < B) < B

4�
: ð2Þ

Brandenburg & Zweibel (1994) note that by substituting equa-
tion (2) into the induction equation for the ions, one arrives at

@tB¼ : < (vn < B)þ (: < B) = B

4��i�n�AD
B� � þ �ADð Þ: < B

� �
;

ð3Þ

where

�AD ¼ B2

4��i�n�AD
ð4Þ

is the ambipolar diffusivity and � is the ohmic diffusivity. How-
ever, dissipation is not the only contribution of AD to the in-
duction equation. Given that AD tends to force magnetic fields
into force-free states (Brandenburg et al. 1995; Zweibel &
Brandenburg 1997) with (: < B) < B ¼ 0, it should come as
little surprise that the (: < B) = B term must be given proper
consideration.

We can approximate the scale lds below which dissipation
dominates turbulent structure for a given diffusivity � in at least
two ways. The first is commonly used in the turbulence com-
munity. It is to equate the driving timescale

�dr ¼ Ldr=vdr; ð5Þ

where Ldr is the driving wavelength and vdr is the rms velocity at
that wavelength, with the dissipation timescale �ds ¼ l 2ds/�, and
solve for lds. The second method was suggested by Balsara
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(1996) and Zweibel & Brandenburg (1997) and advocated by
Klessen et al. (2000). It is to estimate the length scale at which
the Reynolds number associated with a given dissipation
mechanism becomes unity. The Reynolds number for ion-
neutral drift can be defined as

RAD ¼ LV

�AD
; ð6Þ

where V is a characteristic velocity. This method requires set-
ting RAD to one and solving for L ¼ lds to find

lAD ¼ B2

4��i�n�ADV
: ð7Þ

Klessen et al. (2000) show that by adopting values charac-
teristic of dense molecular clouds, a magnetic field strength
B ¼ 10B10 �G, ionization fraction x ¼ 10�6x6, neutral number
density nn ¼ 103n3 cm�3, mean mass per particle � ¼ 2:36mH

(where mH is the hydrogen mass), such that �n ¼ �nn, and the
above value for the ion-neutral coupling constant, the length
scale at which AD is important is given by

lAD ¼ (0:04 pc)
B10

MAx6n
3=2
3

; ð8Þ

where MA ¼ V /vA is the Alfvén Mach number. By contrast,
ohmic dissipation acts only at far smaller scales, l� � 10�13 pc
(Zweibel & Brandenburg 1997).

For our purposes, we use the Reynolds number method and
choose V ¼ vrms, the rms velocity. Although we use Reynolds
numbers, we find that using the timescale method has no effect
on our results.

Previous three-dimensional numerical studies of turbulent
ion-neutral drift have used the strong coupling approximation
(Padoan et al. 2000). This by definition renders simulations un-
able to reach below RAD � 1 and thus into the dissipation region.

In this paper, we present runs in which we vary the AD cou-
pling constant and thus lAD. We find a surprising lack of depen-
dence of the spectral properties on the strength of the ambipolar
diffusivity. In particular, no new dissipation range is introduced
into the density, velocity, or magnetic field spectra by AD, nor is
the clump mass spectrum materially changed.

2. NUMERICAL METHOD

We solve the two-fluid equations ofMHD using the ZEUS-MP
code (Norman 2000) modified to include a semi-implicit treat-
ment of ion-neutral drift. ZEUS-MP is the domain-decomposed,
parallel version of the well-known shared memory code ZEUS-
3D (Clarke & Norman 1994). Both codes follow the algorithms
of ZEUS-2D (Stone & Norman 1992a; Stone & Norman 1992b),
including van Leer (1977) advection, and the constrained trans-
port method of characteristics (Evans &Hawley 1988; Hawley&
Stone 1995) for the magnetic fields. We add an additional neutral
fluid and collisional coupling terms to bothmomentum equations.
Because ion-neutral collisions constitute a stiff term, we evaluate
the momentum equations using the semi-implicit algorithm of
Mac Low&Smith (1997).We also include an explicit treatment
of ohmic diffusion by operator splitting the induction equation
(Fleming et al. 2000).

We ignore ionization and recombination, assuming that such
processes take place on timescales much longer than the ones

we are concerned with. This means that ions and neutrals are
separately conserved. Furthermore, we assume that both fluids
are isothermal and at the same temperature, thus sharing a com-
mon sound speed cs.

2.1. Initial Conditions and Parameters

All of our runs are on three-dimensional Cartesian grids with
periodic boundary conditions in all directions.
The turbulence is driven by the method detailed in Mac Low

(1999). Briefly, we generate a top-hat function in Fourier space
between 1< jkj< 2. The amplitudes and phases of each mode
are chosen at random, and once returned to physical space, the
resulting velocities are normalized to produce the desired rms
velocity, unity in our case. At each time step, the same pattern of
velocity perturbations is renormalized to drive the box with a
constant energy input (Ė ¼ 1:0 for all simulations) and applied
to the neutral gas.
Our isothermal sound speed is cs ¼ 0:1, corresponding to an

initial rms Mach numberM ¼ 10. The initial neutral density �n
is everywhere constant and set to unity. The magnetic field
strength is set by requiring that the initial ratio of gas pressure to
magnetic pressure be everywhere � ¼ 8�c2s �/B

2 ¼ 0:1; its di-
rection lies along the z-axis.
Although our semi-implicit method means that the time step

is not restricted by the standard Courant condition for diffusive
processes [that is, / �xð Þ2], the two-fluid model is limited by
the Alfvén time step for the ions. This places strong constraints
on the ionization fraction (x ¼ ni/nn) we can reasonably compute.
We therefore adapt a fixed fraction of x ¼ 0:1 for our simulations.
While this fraction is certainly considerably higher than the 10�4

to 10�9 typical of molecular clouds, the ionization fraction only
enters the calculation in concert with the collisional coupling
constant �AD. Thus, we are able to compensate for the unreal-
istically high ionization fraction by adjusting �AD accordingly.
We present four runs, two with AD, one with ohmic diffu-

sion, and one ideal MHD run (see Table 1). For the AD runs, we
vary the collisional coupling constant in order to change the
diffusivity.
Our results are reported for a resolution of 2563 at time

t ¼ 0:125ts ¼ 2:5, where ts ¼ 20 is the sound crossing time for
the box. This exceeds by at least 30% the turbulent crossing
time over the driving scale �dr computed from equation (5) and
tabulated in Table 1. Our computation of �dr is done for Ldr ¼ 1,
the maximum driving wavelength. Vestuto et al. (2003) note that
�dr is the relevant timescale for the formation of nonlinear struc-
tures. Furthermore, we find from studies performed at 1283 out
to t ¼ 0:3ts that 0:125ts is enough time to reach a steady state in
energy.

3. RESULTS

Figure 1 shows cuts of density perpendicular and parallel to
the mean magnetic field. For the AD runs, we show the total
density � ¼ �i þ �n. Themorphology of density enhancements in

TABLE 1

Models

Run Diffusivity �AD �AD � �v;n �v; i �dr

A1............ AD 8 0.275 0 0.603 0.526 1.66

A2............ AD 4 0.575 0 0.615 0.501 1.63

O.............. Ohmic 0 0 0.250 . . . 0.577 1.73

I ............... . . . 0 0 0 . . . 0.630 1.59
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the different runs appears similar, giving a qualitative suggestion
of the quantitative results on clump mass spectra discussed next.

3.1. Clump Mass Spectrum

We wish to understand whether AD determines the smallest
scale at which clumps can form in turbulent molecular clouds.
Determining structure within molecular clouds has proved
difficult in both theory and observation. Molecular line maps
(e.g., Falgarone et al 1992) show that for all resolvable scales,
the density fields of clouds is made up of a hierarchy of clumps.
Furthermore, the identification of clumps projected on the sky
with physical volumetric objects is questionable (Ostriker et al.
2001; Ballesteros-Paredes & Mac Low 2002).

Nonetheless, density enhancements in a turbulent flow likely
provide the initial conditions for star formation. To clarify the
effects of different turbulent dissipation mechanisms on the clump

mass spectrum, we study our three-dimensional simulations of
turbulence without gravity. By using the clumpfind algorithm
(Williams et al. 1994) on the density field to identify contiguous
regions of enhanced density, we can construct a clumpmass spec-
trum (Fig. 2). Although such methods are parameter-sensitive
when attempting to draw comparisons to observed estimates
for the clump mass spectrum (Ballesteros-Paredes & Mac Low
2002), we are only interested in using themass spectrum as a point
of comparison between runs with different dissipative properties.

For this section, we dimensionalize our density field follow-
ing Mac Low (1999), with a length scale L0 ¼ 0:5 pc and mean
density scale �0

0 ¼ 104(2mH) g cm�3 in order to present results
in physical units relevant to star formation.

We search for clumps above a density threshold set at 5h�i
(where in the AD cases � ¼ �i þ �n) and bin the results by mass
to produce a clump mass spectrum. Figure 2 shows that while

Fig. 1.—Random cuts of density � parallel and perpendicular to the magnetic field for each of three runs of varying ambipolar diffusivity �AD. Each image is scaled
to its own minimum and maximum, enhancing structural features. For AD runs, � ¼ �i þ �n.
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ohmic diffusion has a dramatic effect on the number of low-
mass clumps, AD has nearly none. Although there are small
fluctuations around the hydrodynamic spectrum, there is no
systematic trend with increasing strength of AD. This result
suggests that AD does not control the minimummass of clumps
formed in turbulent molecular clouds.

3.2. Magnetic Energy and Density Spectra

The lack of an effect on the clump mass spectrum can be
better understood by examining the distribution of magnetic field
and density.

AD produces no evident dissipation range in the magnetic
energy spectrum. As seen in Figure 3, for two different values of
ambipolar diffusivity �AD, the power spectrum of magnetic field
retains the shape of the ideal run. For comparison, we have also
plotted the run with ohmic diffusion. While the expected dissi-
pation wavenumbers (determined in both cases by the Reynolds
number method mentioned above) of the �AD ¼ 0:275 and
� ¼ 0:250 runs are very similar, the effect of ohmic diffusion is
quite apparent in the declining slope of the magnetic energy
spectrum, in contrast to AD.

The total power does decrease as the ambipolar diffusivity
�AD increases. Because we drive only the neutrals, this could be
interpreted as magnetic energy being lost during the transfer of
driving energy from the ions to the neutrals via the coupling.
However, we performed a simulation in which both ions and
neutrals were driven with the same driving pattern and found
almost no difference in the power spectra from our standard
(neutral driving only) case.
We instead suspect that the decline in total magnetic energy

occurs because AD does damp some families of MHD waves,
notably Alfvén waves (Kulsrud & Pearce 1969), even though it
does not introduce a characteristic damping scale.
In order to demonstrate this, the flow will need to be decom-

posed into its constituent MHD wave motions at each point in
space. Such a technique has been used before by Maron &
Goldreich (2001) for incompressible MHD turbulence and by
Cho & Lazarian (2002) for compressible MHD turbulence. The
technique used by Cho & Lazarian (2002) decomposes wave
motions along a mean field assumed to be present. However,
because the local field is distorted by the turbulence and thus not
necessarily parallel to themean, amean-field decomposition tends
to spuriously mix Alfvén and slow modes (Maron & Goldreich
2001). If the local field line distortion is great enough, the de-
composition must be made with respect to the local field, a much
more demanding procedure. Although wave decomposition anal-
ysis is outside the scope of this paper, it remains a fruitful avenue
for future research.
In order to ensure that the lack of spectral features seen in the

magnetic spectrum (and similarly in the density spectrum) is not
an artifact of the limited inertial range in our simulations, we ran
our �AD ¼ 0:275 (medium collision strength) case at resolutions
of 643, 1283, and 2563. Figure 4 demonstrates that increasing the
resolution increases the inertial range but does not resolve any
noticeable transition to dissipation at the AD length, suggesting
that our results are not sensitive to the resolution.
Figure 5 shows the spectrum of the density for all runs. In the

case of the AD runs, we use the sum of the neutral and ion
densities.
The density spectrum peaks at small scale in compressible

turbulence (Joung & Mac Low 2006). Varying the ambipolar
diffusivity by a factor of 2 makes little systematic difference to
the shape of the density spectrum. It seems clear that although
there are only slight differences in the density spectrum due to

Fig. 2.—Clump mass spectrum measuring the number of clumps of a given
mass for one ideal MHD run (labeled �AD ¼ 0), two AD runs (�AD ¼ 0:275,
0.525), and one ohmic dissipation run (� ¼ 0:250). Compare the lack of effect of
AD to the significant decrease in the number of low-mass clumps for the ohmic
diffusion case.

Fig. 3.—Magnetic energy spectra for the same runs as Fig. 2. The vertical
lines represent the wavenumber at which the AD or ohmic Reynolds number
crosses unity.

Fig. 4.—Magnetic energy spectra for three runs of varying resolution from
643 to 2563. Increased resolution shows no effects at the AD wavenumber given
by the vertical line.
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varying magnetic diffusivities, the density spectrum is not a
particularly good indicator of underlying clump masses.

Note that we use for the density spectrum the Fourier trans-
form of the density field rather than its square, which in the case
of the magnetic field yields the one-point correlation function
(or power spectrum) of the magnetic energy.

4. DISCUSSION

Supersonic turbulence performs a dual role in its simultaneous
ability to globally support a molecular cloud against gravity while
at the same time producing smaller density enhancements that can
sometimes gravitationally collapse (Klessen et al. 2000). While

our simulations do not include gravity, it is clear that AD does not
set a characteristic scale to the density field below which MHD
turbulence is unable to further influence structure formation.

One of the main motivations of this study was to verify the
claim made by, for example, Klessen et al. (2000) that AD sets
the minimum mass for clumps in molecular cloud turbulence.
However, it appears that AD is unable to set this scale, because
of its selective action on different MHD waves. We do note that
AD can occasionally help form magnetohydrostatic objects in
MHD turbulence, but this is not a dominant pathway, as shown
by Vázquez-Semadeni et al. (2005). Although ohmic diffusion
has little trouble inhibiting low-mass clump formation, it never
reaches significant values at the densities where molecular
clumps form.

This opens up other possibilities for the physical mechanisms
determining the smallest scale fluctuations occurring in mo-
lecular clouds. An attractive option is the sonic-scale argument
of Vázquez-Semadeni et al. (2003), in which the length scale at
which turbulent motions become incompressible, with Mach
numbers dropping well below unity, determines where turbulence
ceases to have an effect on the prestellar core distribution and thus
determines the minimum mass scale.
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