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ABSTRACT. In this paper we present an error analysis for polarimetric data obtained with dual-beam
instruments. After recalling the basic concepts, we introduce the analytical expressions for the uncertainties of
polarization degree and angle. These are then compared with the results of Monte Carlo simulations, which are
also used to briefly discuss the statistical bias. We then approach the problem of background subtraction and the
errors introduced by an imperfect Wollaston prism, flat-fielding, and retarder plate defects. Finally, we investigate
the effects of instrumental polarization and propose a simple test to detect and characterize it. The application
of this method to real VLT-FORS1 data has shown the presence of a spurious polarization that is of the order
of ∼1.5% at the edges of the field of view. The cause of this problem has been identified as the presence of
rather curved lenses in the collimator, combined with the incomplete removal of reflections by the coatings. This
problem is probably common to all focal-reducer instruments equipped with a polarimetric mode. An additional
spurious and asymmetric polarization field, whose cause is still unclear, is visible in the B band.

Online material: color figures

1. INTRODUCTION

Performing polarimetry basically means measuring flux dif-
ferences along different electric field oscillation planes. In
ground-based astronomy, this becomes a particularly difficult
task, due to the variable atmospheric conditions, which make
it difficult to detect the relatively low polarization degrees that
characterize most astronomical sources (a few percent; see, e.g.,
Leroy 2000). These fluctuations in fact introduce flux variations
among different polarization directions, which can be even-
tually mistaken for genuine polarization effects.

This problem has been solved in a number of different ways,
reviewed by Tinbergen (1996), to which we refer the reader
for a detailed description. In this paper, we focus on the so-
called dual-beam configuration, which is the most popular one
for instruments currently mounted at large telescopes. Despite
new technologies, the basic concept of astronomical dual-beam
polarimeters (see, e.g., Appenzeller 1967; Scarrot et al. 1983)
has remained unchanged. A mask is placed on the focal plane,
preventing image (or spectra) overlap, followed by a Wollaston
prism, which splits the incoming beam into two rays that are
characterized by orthogonal polarization states and are sepa-
rated by a suitable angular throw. The rotation of the polari-
zation plane is usually achieved with the introduction of a
turnable retarder plate (half- or quarter-wave for linear and
circular polarization, respectively) just before the Wollaston
prism (see, e.g., Schmidt et al. 1992). Recently, new solutions

1 This paper is partially based on observations made with ESO telescope
at Paranal Observatory, under programs 066.A-0397, 69.C-0579, 069.D-0461,
and 072.A-0025.

have been proposed to fully solve the problem in a single
exposure (see Oliva 1997; Pernechele et al. 2003, for an ex-
ample application), but so far they have been implemented in
a few cases only.

Alternatives to Wollaston-based systems have been devised.
These are mainly based on the charge transfer in CCDs, which
allows an on-chip storage of two different polarization states
that are obtained by rotating a polarization modulator. After
the pioneering work of McLean et al. (1983), this technique,
originally proposed by P. Stockman, has been successfully ap-
plied in a number of instruments (McLean 1997).

In this work, we address the most relevant problems con-
nected to two-beam polarimetric observations and data reduc-
tion. The paper is organized as follows. In § 2 we introduce
the basic concepts of the problem, and in § 3 we recall the
analytical expressions for the uncertainties of polarization de-
gree and angle, which are then compared to Monte Carlo sim-
ulations in § 4. In the same section we also recap the basics
of polarization bias. Section 5 deals with the effects of back-
ground on polarization measurements, and § 6 covers flat-field-
ing issues. Section 7 is devoted to Wollaston prism deviations
from the ideal. The consequences of retarder plate defects are
addressed in § 8, while the effects of postanalyzer optics are
discussed in § 9. Section 10 is dedicated to instrumental po-
larization, and § 11 deals with the case of VLT-FORS1. Finally,
in § 12 we discuss and summarize our results.

2. BASIC CONCEPTS

The polarization state of incoming light can be described
through a Stokes vector ; see, e.g., ChandrasekharS(I, Q, U, V )
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(1950). Its components, also known as Stokes parameters, have
the following meanings: I is the intensity, Q and U describe
the linear polarization, and V is the circular polarization. Linear
polarization degree P and polarization angle x are related to
the Stokes parameters as:

2 2�Q � U
2 2¯ ¯�P p { Q � U , (1)

I

1 U
x p arctan , (2)

2 Q

where we have introduced the normalized Stokes parameters
and . The above relations can be easily in-¯ ¯Q p Q/I U p U/I

verted to yield

¯ ¯Q p P cos 2x, U p P sin 2x. (3)

Finally, the degree of circular polarization, not discussed in
this paper, is simply . For the sake of clarity, we¯P p V { V/Ic

set and neglect all circular polarization effects through-V p 0
out the paper.

The ideal measurement system for linear polarization is com-
posed of a half-wave retarder plate (HWP) followed by the
analyzer, which is a Wollaston prism (WP) producing two
beams with orthogonal directions of polarization. In general,
each of these elements can be treated as a mathematical operator
that acts on the input Stokes vector (see, e.g., Shurcliff 1962;S
Goldstein 2003). What one measures on the detector are the
intensities in the ordinary and extraordinary beams at a given
HWP angle , which are related to the Stokes parameters byvi

1 [ ]f p I � Q cos 4v � U sin 4v ,O, i i i2

1 [ ]f p I � Q cos 4v � U sin 4v . (4)E, i i i2

If the observations are carried out using N positions for the
HWP, the whole problem of computing I, Q, and U reduces to
the solution of the 2N linear equations system given by equa-
tion (4). It is clear that given three unknowns ( , and U),I, Q
at least N p 2 HWP position angles have to be used.

Introducing the normalized flux differences ,Fi

f � fO, i E, iF { , (5)i f � fO, i E, i

and noting that , equation (4) reduces to the Nf � f p IO, i E, i

equation

¯ ¯F p Q cos 4v � U sin 4v p P cos (4v � 2x). (6)i i i i

We note that each F-parameter is totally determined by a
single observation and is therefore independent of changes in

sky conditions. It is also worth mentioning that there are al-
ternative approaches to the normalized flux ratios. One example
can be found in Miller et al. (1987).

In principle, one can use any set of HWP angles to solve
the problem, but it is easy to show that adopting a constant
step is the optimal choice. In fact, besides mini-Dv p p/8
mizing the errors of the Stokes parameters, this choice makes
the solution of equation (6) trivial:

N�12 p
Q̄ p F cos i , (7)� ( )iN 2ip0

N�12 p
Ū p F sin i . (8)� ( )iN 2ip0

Finally, it prevents “power leakage” (see, e.g., Press et al.
1999) when performing a Fourier analysis (see below).

In the ideal case, the normalized flux differences obeyFi

equation (6), which is a pure cosinusoid. Since all possible
effects introduced by the HWP must reproduce after a full
revolution, it is natural to consider them as harmonics of a
fundamental function whose period is 2p.

Therefore, if , equation (6) can be rewritten as thev p pi/8i

following Fourier series:

N/2 2pi 2pi
F p a � a sin k � b cos k ,� ( ) ( )i 0 k kN Nip1

where the Fourier coefficients are given by

N�11
a p F ,�0 iN ip0

N�12 2pi
a p F cos k , (9)� ( )k iN Nip0

N�12 2pi
b p F sin k ,� ( )k iN Nip0

which are valid for , 8, 12, and 16. Comparing equa-N p 4
tion (9) with equation (6), it is clear that the polarization signal
is carried by the harmonic. In a quasi-ideal case, allk p N/4
Fourier coefficients are expected to be small compared with

and , and deviations from this behavior could arise froma bN/4 N/4

a number of effects. For such an approach to the error analysis,
and for the meaning of the various harmonics, the reader is
referred to Fendt et al. (1996). Here we just note that the a 0

term, which should be rigorously null in the ideal case, is related
to the deviations of the WP from the ideal result (see § 7).

In general, a Fourier analysis is meaningful when N p 16,
and it can reveal possible problems directly related to HWP
quality (cf. § 8). In most cases, however, for practical reasons,
one typically uses , and in that case, a different errorN p 4
treatment is required.
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Fig. 1.—Top: Comparison between the rms error on the polarization degree
from MC simulations (circles) and eq. (10). The dashed line traces the expected
rms error for the Rayleigh distribution (see text). Bottom: Bias estimated using
the mode (circles) and the average (crosses). For comparison, the solid curve
traces the Wardle & Kronberg (1974) solution for the mode, while the dashed
line shows the Sparks & Axon (1999) solution for the average. [See the elec-
tronic edition of the PASP for a color version of this figure.]

3. ANALYTICAL ERROR ANALYSIS

Under the assumption that all relevant quantities are distrib-
uted according to Gaussian laws, one can analytically derive
simple expressions for the corresponding errors of the final
results. As we see in § 4, this assumption is not always correct,
and when this happens, a numerical treatment is required in
order to test the analytical results and their range of validity.
Assuming that the background level is the same in the ordinary
and extraordinary beams, and that the readout noise can be
neglected, the analytical expression for the absolute error of P
can be readily derived (see, e.g., Miller et al. 1987) by prop-
agating the various errors through the relevant equations2:

1
j p , (10)P �N/2(S/N)

where S/N is the signal-to-noise ratio of the intensity image
( ). The S/N one expects to achieve in the polarizationf � fO E

2 Here we consider photon shot noise as the only source of random error.
Another potential source is represented by the mispositioning of the HWP
with respect to the optimal angles. However, as analytical solutions and nu-
merical simulations show, with the typical positioning accuracy currently at-
tainable (!1�), the associated error of the polarization degree and angle is
negligible.

degree, , is simply given by(S/N) p P/jP P

�(S/N) p N/2P(S/N).P

As for the error of x, this is given by

1 jP
j p { , (11)x � 2P2 N/2P(S/N)

from which it is clear that at variance with the degree of po-
larization, the accuracy of the polarization angle does depend
on the intrinsic polarization degree.

4. MONTE CARLO SIMULATIONS

The analytical treatment presented in § 3 relies on the as-
sumption that all relevant variables obey Gaussian statistics.
Numerical simulations are required in order to derive more
realistic distributions and to verify the validity of the analytical
results. One can easily implement the concepts we have de-
veloped until now in a Monte Carlo (MC) code, which also
allows higher sophistication, such as the inclusion of Poissonian
noise. With this tool, one can readily investigate the effects of
non-Gaussian distributions of the derived quantities, the most
important of which is the systematic error of the polarization,
as first pointed out by Serkowski (1958).

4.1. Linear Polarization Bias

Due to the various noise sources, the vector components
and are normally distributed, but since P is defined as the¯ ¯Q U

quadrature sum of and , the statistical errors always add¯ ¯Q U
in the positive direction, leading to a systematic increase of the
estimated polarization degree, thus introducing a bias. The
problem was addressed by several authors, using both analytical
and numerical methods (Serkowski 1958; Wardle & Kronberg
1974; Simmons & Stewart 1985; Clarke & Stewart 1986;
Sparks & Axon 1999). We refer the reader to those papers for
a detailed description of the problem; here we recall just the
basic concepts and apply them to our case.

The polarization bias is usually quantified using a robust
estimator, supposedly giving a statistically significant repre-
sentation of the observed value, which is then compared with
the input polarization in order to derive the systematic correc-
tion. Different choices have been adopted (see Sparks & Axon
1999). Following the considerations by Wardle & Kronberg
(1974) we have adopted here the mode of the distributionAPS
in order to estimate the bias, which we therefore define as

, where is the input polarization. Once appliedDP p APS � P P0 0

to the observed data, the bias correction tends to restoreDP
the symmetry of the deviation distribution (see, e.g., Sparks &
Axon 1999, their Fig. 4).

In Figure 1 we show the results of our MC simulations
for the estimated rms error of the polarization (top panel)jP

and polarization bias (bottom) for . FollowingDP N p 4
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Fig. 2.—Comparison between systematic bias and random error forDP jP

different estimators as a function of input polarization S/N. [See the electronic
edition of the PASP for a color version of this figure.]

Sparks & Axon (1999), we have used andh { P (S/N)0

as independent variables in our plots. As weAhS { APS(S/N)
had anticipated, follows the analytical prediction of equationjP

(10) when . For lower values of h, tends to be system-h 1 2 jP

atically smaller than the analytical prediction, and it converges
to the value expected for the Rayleigh distribution (dashed
line), which becomes a very good approximation for ,h ! 0.5
provided that . For intermediate values of h, the dis-S/N 1 3
tribution is described by a Rice function (Rice 1944). In con-
clusion, one can safely use the analytical solution given by
equation (10) for only.h ≥ 2

As for the polarization bias, we have plotted it as a function
of measurable quantities, namely the S/N and the observed
polarization .APS

The results of our MC simulations, as plotted in the bottom
panel of Figure 1, are in good agreement with the analytical
solution found by Wardle & Kronberg (1974) for the same
statistical estimator. For comparison, we have also plotted the
results obtained when the average is adopted (crosses). For

, the relation between and1/2(N/2) AhS 1 4 log (DP/APS)
is well approximated by a linear law. A least-1/2log ([N/2] AhS)

squares fit gives the result

1.920.62
P p APS 1 � ,0 ( )[ ]�N/2AhS

which can be used to correct the observed polarization values
according to the input S/N, measured polarization, and number
of HWP positions. In general, the bias effect is present even
at reasonably high values of S/N when the polarization is small
and and tend to become similar, so that the systematicj DPP

bias correction is comparable to the random uncertainty of the
polarization. This is better seen in Figure 2, where we have
plotted the ratio over as a function ofDP j P /j { (S/N)P 0 P P

deduced from our simulations. As anticipated, for low values
of , the ratio between and tends to unity, with(S/N) DP jP P

some variations among different estimators. For ,(S/N) ≥ 3P

the bias correction is less than 10% of the expected accuracy,
and it is therefore negligible. Moreover, above that threshold,
all estimators give practically identical results.

In Figure 2 we have plotted for comparison the function
computed by Simmons & Stewart (1985), who have used a
maximum likelihood estimator in order to evaluate the bias.
As these authors have shown, this is the best estimator for

, while for the mode first used by(S/N) ≤ 0.7 (S/N) 1 0.7P P

Wardle & Kronberg (1974) should be used.

5. THE EFFECTS OF THE BACKGROUND

Until now we have assumed that one is able to perfectly
subtract the background contribution. This is most likely the
case when performing polarimetric measurements on pointlike
sources, since in that situation local background subtraction is
in most cases straightforward.

We note that the background, whatever its nature is, must
be subtracted before calculating normalized Stokes parameters
(see also Tinbergen 1996), so that possible background polar-
ization can be vectorially removed.

If we assume that the object is characterized by and ,P xo o

and the background by and , the two polarization fieldsP xb b

can be expressed using Stokes vectors defined as S (I ,o o

and ,I P cos 2x , I P sin 2x ) S (I , I P cos 2x , I P sin 2x )o o o o o o b b b b b b b b

where we have neglected any circular polarization. Since Stokes
vectors are additive (see, e.g., Chandrasekhar 1950), the resulting
polarization field is described by , and therefore theS p S � So b

total polarization is given by the formula

I Po o 2�P p 1 � r � 2r cos [2(x � x )],o bI � Io b

where ; i.e., the ratio between the polarizedr p (I P )/(I P )b b o o

fluxes of background and object. The corresponding polari-
zation angle is

1 sin 2x � r sin 2xo b
x p arctan .

2 cos 2x � r cos 2xo b

Clearly, the background is going to significantly influence
the object when . For , one can writer � 1 r ∼ 1

� �P � P / 2 1 � cos [2(x � x )],( )o o b

which implies that for comparable polarized fluxes, the re-
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sulting polarization is nulled when the polarization fields are
perpendicular ( ).Fx � x F p p/2o b

6. FLAT-FIELDING

One of the basic problems in reducing the data produced by
dual-beam instruments is the flat-fielding. Because image split-
ting occurs after the focal mask, collimator, and the HWP, one
would in principle need to obtain flat exposures with all optical
components in the light path. Unfortunately, in all practical
conditions, this introduces strong artificial effects, due to the
strong polarization typical of flat-field sources (either twilight
sky or internal screens). In principle, one can reduce this effect
using the continuous rotation of the HWP as a depolarizer. This
is implemented, for example, in EFOSC2, currently mounted
at the ESO 3.6 m telescope (Patat 1999), and it is effective
only if the HWP rotation time is much shorter than the required
exposure time. The depolarizing effect can also be achieved
by averaging flats taken with the same set of HWP angles used
for the scientific exposures. In fact, with the use of the optimal
angle set (see § 2), one has

N�1
N

f p I� O, i 2ip0

and a similar expression for , which do not contain anyfE, i

polarization information. The problem is that this is true only
if the source is stable in intensity, which is surely not the case
for the twilight sky, and probably not really true for most lamps.

An alternative solution (at least for imaging) is the use of a
set of twilight flats obtained without HWP and WP. While on
the one hand this eliminates source polarization, on the other
hand it does not allow for a proper flat-field correction. In fact,
while the pixel-to-pixel variations are properly taken into ac-
count, the large-scale patterns are not, due to the splitting of
the beam, which maps a given focal plane area into two dif-
ferent regions of the post-WP optics and the detector. Moreover,
these calibrations do not carry any information about possible
spatial effects introduced by the HWP and the WP. However,
as the simulations show, this problem becomes milder if some
redundancy is introduced. For example, if one uses N p 4
HWP positions, the ordinary and extraordinary rays will just
swap when the angle differs by within each of the twop/4
redundant pairs ( ; see eq. [4]). This tends to canceli i�2f p �fO E

out the flat-field effect and becomes more efficient if the max-
imum redundancy ( ) is used. However, it must be notedN p 16
that time-dependent effects, such as fringing, may affect the
redundant pairs in a different way, therefore decreasing the
cancellation efficiency.

7. EFFECTS OF A NONIDEAL WOLLASTON PRISM

So far we have assumed that our system is described by
equation (4); i.e., that the Wollaston prism splits incoming un-

polarized light into identical fractions. A deviation from this
ideal behavior can be described by the introduction of a new
parameter t in equation (4), which can be reformulated as

[ ]f p t I � Q cos 4v � U sin 4v ,O, i i i

[ ]f p (1 � t) I � Q cos 4v � U sin 4v . (12)E, i i i

An ideal system is obtained for . Now, for unpolarized1t p 2

light (Q p U p 0), these new equations give andf p tIO, i

for all HWP angles, so that all normalized fluxf p (1 � t)IE, i

differences turn out to be identical (i.e., ). There-F p 2t � 1i

fore, the value of t can be directly estimated observing an
unpolarized source.

In the simplest situation, where , neglecting the pres-N p 2
ence of the t term would lead to a spurious polarization degree

, with a polarization angle . It is in-�P p 2(2t � 1) x p p/8
teresting to note that this is not the case, for example, when

. In fact in that situation, because all redundant F’s areN p 4
identical, equations (7) and (8) would correctly yield null
Stokes parameters.

The problem is more complicated when the incoming light
is polarized, since the normalized flux differences are no longer
a linear combination of and , as one can verify from equa-¯ ¯Q U
tion (12):

¯ ¯k � Q cos 4v � U sin 4vi iF p , (13)i ¯ ¯1 � kQ cos 4v � kU sin 4vi i

where we have set ( , in the idealk p 2t � 1 FkF ≤ 1 k p 0
case). If k is known, one can correct the observed and byf fO E

dividing them by and , respectively, before following2t 2(1 � t)
the procedure adopted for the ideal case. Of course, if the source
has a known polarization (e.g., a polarized standard), one can
use this information together with the observed F ratios to
derive k for each HWP angle, according to the relation

¯ ¯Q cos 4v � U sin 4v � Fi i i
k p .i ¯ ¯F (Q cos 4v � U sin 4v )i i i

If the input polarization is unknown, then one can in principle
derive k from the observations themselves, provided that

. In fact, after introducing the parameterN ≥ 4

1 � F Fj�1 j�1g p (14)j F � Fj�1 j�1

and using equation (13), it is easy to demonstrate that

2�k p g � g � 1, (15)j j j

where and the positive sign refers to thej p 1, … , N/2 � 2
case . For instance, for , one can determine twog ≤ 0 N p 4j
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independent estimates of k, which can be averaged to improve
on the accuracy.

It is interesting to note that when , equation (13) canP K 1
be approximated as . If N is a¯ ¯F � k � Q cos 4v � U sin 4vi i i

multiple of 4 (i.e., if the F function is sampled for an integer
number of periods ), one hasp/2

N�11
k ≈ F { a , (16)� i 0N ip0

which clarifies the meaning of the term in the Fourier seriesa0

(see eq. [9]).
It is worth mentioning that the redundancy in the F param-

eters does eliminate the effects of a nonideal WP, to a large
extent. For example, a blind application of equations (7) and
(8) to the case of gives the resultN p 4

N�1 22 1 � k¯F cos (4v ) p Q� i i 2 2¯N 1 � k Qip1

and a similar expression for . If the polarization is smallŪ
( ), we have that , and therefore the application2 2¯P ≤ 0.1 k Q K 10

of the procedure for an ideal case in a nonideal situation would
lead to a value of , which is times smaller than the2Q̄ (1 � k )
real one. Since the same is true for , the resulting polarizationŪ
P will also be times smaller than the input value,2(1 � k )
while the polarization angle remains unchanged. For example,
if , is less than 4%.FkF ≤ 0.2 j /PP

Equation (12) describes a particular case only, in which the
incoming unpolarized flux is distributed into two fractions, t
and . More generally, one should replace the term(1 � t)

with an independent parameter s so that the fraction of(1 � t)
light split by the WP in the ordinary and extraordinary rays
become uncorrelated. Using the same procedure, it is easy to
demonstrate that one can estimate the ratio k p (t � s)/(t � s)j

still using equation (15).
Another effect we have investigated is the possibility that

the difference in polarization direction between the ordinary
and the extraordinary rays of the WP is not . If we callp/2

the deviation from this ideal angle, then using the generalDa

expression of the Mueller matrix for a linear polarizer (see,
e.g., Goldstein 2003) and deriving the expressions for the nor-
malized flux ratios, one gets

Q̄
F � [cos (4v � 2Da) � cos 4v ]i i i2

Ū
� [sin (4v � 2Da) � sin 4v ],i i2

where the approximation is valid under the assumption that
. From of this expression, it is easy to conclude that forP K 1

reasonably small values of Da (≤10�), the implied errors are
of the order of 0.05% on the polarization degree and 5� on the
polarization angle, irrespective of the number of HWP positions
used.

8. HWP DEFECTS

In the ideal case, the normalized flux differences are modulated
by the HWP rotation according to equation (6), which is a pure
cosinusoid. If defects such as dirt or inhomogeneously distributed
dust are present on the HWP, one can expect spurious flux mod-
ulations that are unrelated to the polarization of the incoming
light and that can reduce the performance of the instrument. As
a consequence, error estimates based on pure photon statistics
are systematically smaller than the actual errors.

These kinds of problems can be investigated with the aid of
Fourier analysis, following the procedure we have outlined at
the end of § 2. This method becomes particularly effective
when the observations are taken sampling the full HWP angle
range (i.e., 2p), which, given the choice of the optimal angle
set , implies retarder plate positions. Underv p pi/8 N p 16i

these circumstances, one can determine the Fourier coefficients
and for the first eight harmonics, the fundamental har-a bk k

monic ( ) being related to local transparency fluctuations,k p 1
which repeat themselves after a full revolution, like dirt or dust.
By definition (e.g., eq. [6]), the fourth harmonic is directly
related to the linear polarization (i.e., and ).¯ ¯a { Q b { U4 4

All other harmonics, with the only remarkable exception being
the second one ( ), are simply overtones of harmonicsk p 2
with lower frequencies, and include part of the noise generated
by the photon statistics, which is present at all frequencies and
is therefore indicated as white noise. For this reason, the global
random error is often estimated as the signal carried by the
harmonics with k p 3, 5–8 (see, e.g., Fendt et al. 1996, their
Appendix A.3).

The second harmonic deserves a separate discussion. Ideally,
the HWP operates as a pure rotator of the input Stokes vector,
with the advantage that one does not need to rotate the whole
instrument in order to analyze different polarization planes. In
the real case, in which the HWP is usually constructed using
birefringent materials, it is affected by so-called pleochroism.
This is a wavelength-dependent variation of the transmission
that takes place when the direction of the incoming light is
changed with respect to the crystal lattice. Because of the way
the HWP is manufactured, the crystals have an axial symmetry,
which gives a period of p. Therefore, this effect is seen as the

component.k p 2
In Figure 3 we show a real case in which we have applied

this analysis to archival data obtained with FORS1, which is
currently mounted at the Cassegrain focus of the ESO VLT
8.2 m telescope (Szeifert 2002).

A bright (and supposedly unpolarized) star was observed
using HWP positions. First, a Fourier analysis indi-N p 16
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Fig. 3.—Example of Fourier analysis applied to archival VLT-FORS1 ob-
servations of a bright star in the V passband (see text). Top: Normalized flux
differences. Partial reconstructions using eight harmonics (solid curve) and the
fourth harmonic only (dashed curve). The dashed horizontal line is placed at
the average of F values ( ). Middle: Residuals after subtracting the k p 1,a0

2, and 4 components. Bottom: Harmonics power spectrum.

cates the presence of a small deviation of the WP from the
ideal ( ; see § 7). Second, a clear polari-�3k ≈ a � 4.1 # 100

zation is detected at the level of about 0.4%, while all other
components are smaller than 0.05% (this polarization is actually
an instrumental effect present in FORS1; see § 10). The ef-
fective significance of harmonics other than can bek p 4
judged on the basis of the expected errors of the Fourier co-
efficients. For example, using the expression , one finds thatak

N2 2pi2�j p � cos k .ak
ip1N(S/N) N

With this kind of analysis, one can see that in the example
of Figure 3, and are consistent with a null value fora bk k

, 5–7 (see center panel). As for the and 2 har-k p 3 k p 1
monics, the Fourier coefficients are non-null at a 2 j level.
Since for the test star it was , it is clear that toS/N ∼ 1600
detect and 2 harmonics of this amplitude (0.05%), ak p 1

is required.S/N ≥ 3000
It is important to note that the presence of these non-null

harmonics is implicitly corrected for when one has a sufficient
number of HWP positions covering the maximum period 2p.
In the most common case, in which angles spaced byN p 4
p/8 are used, one can derive the fundamental (i.e., linear po-

larization, period p/2) and the first overtone (period ) only.p/4
The latter corresponds to the component of thek p 8 N p 16
cases, which therefore carries the high-frequency information
only. As a consequence, if other harmonics are present, they
are not properly removed and contribute to the final error, ef-
fectively setting the maximum accuracy one can achieve, ir-
respective of the S/N. Numerical simulations performed as-
suming a virtually infinite S/N show that in the presence of

and 2 components, the use of HWP angles leadsk p 1 N p 4
to systematic errors that are of the same order of amplitude as
the two harmonics. From this and the example reported in
Figure 3, we estimate that the absolute maximum accuracy
attainable with FORS1 using is of the order of 0.05%.N p 4

Another typical problem that affects the retarder plates is the
chromatic dependence of the angle zero point. This is usually
measured by means of a Glan-Thompson prism, and it can
change by more than 5� across the optical wavelength range.
The computed polarization angle can be corrected by simply
adding the HWP angle offset for the relevant wavelength (or
effective wavelength, in the case of broadband imaging); see,
for example, Szeifert (2002).

Finally, we have investigated the effects produced by a de-
viation from the nominal phase retardance of an HWP (p).Db

Using the general expression of the Mueller matrix for a re-
tarder (see, e.g., Goldstein 2003), the normalized flux ratios
turn out to be

2¯F p Q[cos 4v � sin 2v (1 � cos Db)]i i i

1 ¯ ¯� U sin 4v (1 � cos Db) � V sin 2v sin Db,i i2

from which it is clear that the measured linear polarization
depends on the circular polarization of the input signal. For

and , the corresponding absolute error of theV p 0 Db ≤ 10�
polarization degree is less than 0.05%, while the outcome on the
polarization angle is negligible. For , the exact effect de-V ( 0
pends on the ratio between the degrees of circular and linear
polarization. For example, for andD p 10� Q p U p V p

, the absolute error of the computed polarization degree is0.01
about 0.1% for , which decreases to 0.01% for .N p 4 N p 16
It is worthwhile noting that this defect would be detected by
a Fourier analysis as a component with a period p and an
intensity of .¯FV sin DF

9. EFFECTS OF POSTANALYZER OPTICS

Typically, the analyzer is followed by additional optics, such
as filters, grisms, and camera lenses, which, due to their possible
tilt with respect to the optical axis, may behave as poor linear
polarizers. In the most probable case, in which the polarization
is produced by transmission (see also § 10), the properties of
postanalyzer (PA) components can be described by the ap-
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proximate Mueller matrix

1 Bc Bs 0
Bc 1 0 0

M � A ,PA Bs 0 C 0( )
0 0 0 C

where , , , , and J is the po-A ≈ 1 C ≈ 1 c p cos 2J s p sin 2J

larization angle (which can change across the field of view),
while B is related to the polarization degree introduced by the
PA optics. This expression can be deduced from the general
formulation (see Keller 2002, eq. [4.63]) after applying the
usual matrix rotation (see, e.g., Keller 2002, eq. [2.5]). If

is the input Stokes vector, the effect ofS p (I , Q , U , V )0 0 0 0 0

PA optics can be evaluated by computing the Stokes vectors
that correspond to the ordinary and extraordinary beams pro-
duced by the WP, transforming them using the operator ,MPA

and using the resulting intensity components to compute the
normalized flux differences . After simple calculations, oneFi

arrives at the expression

¯ ¯F � B cos 2J � Q cos 4v � U sin v ,i 0 i 0 i

where we have assumed that , i.e., that the linear po-FBF K 1
larization induced by the PA optics is small. Given this ex-
pression, it is clear that the redundancy in the HWP positions
(N p 4, 8, and 16) eliminates this problem, since the additive
term is not modulated by the HWP rotation, while forB cos 2J

N p 2 the derived polarization degree and angle would be affected,
possibly severely. If the optimal HWP angle set has been used, it
is easy to verify that , which is identical

N�1
B cos 2J p � F /Niip0

to equation (16). This means that in a first approximation, it is
not possible to distinguish between an imperfect WP and the
presence of polarization in the PA optics. Therefore, the fact that

in Figure 3 can actually be attributed to both kinds ofa � 0.4%0

problems. The PA optics effect definitely becomes stronger when
these include highly tilted components, such as grisms. This is
very well illustrated by the two examples in Figure 4, where we
show the results obtained using VLT-FORS1 archival data of a
highly polarized star (Vela 1 95, a p 09h06m00s, d p �47�19�00�)
and an unpolarized star (WD 1615�154, a p 16h17m55s, d p
�15�35�51�),3 which were observed on the optical axis, where the
instrumental polarization is known to be null (Szeifert 2002).

In both cases, the polarization degree deduced using N p 2
(center panels) is markedly different from that derived with

(top), and the deviation is particularly severe for theN p 4
unpolarized object. As is finally apparent, the resulting values
of show a strong wavelength dependency and areB cos 2J

higher than 5% at about 800 nm. It is interesting to note that
at about 450 nm; i.e., at the wavelength whereB cos 2J ∼ 0

the antireflection coatings are optimized (see § 10). This fact,

3 See http://www.eso.org/instruments/fors/inst/pola.html.

together with the marked wavelength dependency and the much
lower level seen in broadband imaging (see Fig. 3), strongly
suggests that the effect seen in Figure 4 is indeed produced by
the tilted surfaces of the grism.

10. EFFECTS OF INSTRUMENTAL POLARIZATION

So far, we have assumed that all optics preceding the analyzer
do not introduce any polarization. Of course, this is not gen-
erally true (see, e.g., Tinbergen 1996; Leroy 2000 for a general
introduction to the subject).

To show the effect of instrumental polarization, we assume
that the preanalyzer optics, which include telescope mirrors,
collimator, HWP, and so on, introduce an artificial polarization,
which depends on the position in the field. For the sake of
simplicity, we assume that these optics act as a nonperfect linear
polarizer characterized by a position-dependent polarization de-
gree and polarization angle . This can be de-p(x, y) J(x, y)
scribed by the Mueller matrix

1 pc ps1 2M (x, y) p pc 1 � ps psc ,I ( )1 � p 2ps pcs 1 � pc

where we have neglected circular polarization and have set
and . For , one obtains a totallys p sin 2J c p cos 2J p p 0

transparent component, while gives an ideal linearp p 1
polarizer.

If is the Stokes vector describing the inputS (I , Q , U )0 0 0 0

polarization state, it will be transformed by preanalyzer optics
into the vector before entering the analyzer:S p M · S1 I 0

( )I 1 � p p I � pcQ � psU ,1 0 0 0

2( )Q 1 � p p Q � pcI � ps Q � pcsU ,1 0 0 0 0

2( )U 1 � p p U � psI � pcsQ � pc U , (17)1 0 0 0 0

and therefore the measurements would lead to , which wouldS1

then need to be corrected for the instrumental effect inverting
equation (17), provided that and are known.p(x, y) J(x, y)

Of course, if the observed source is known to be unpolarized,
p and J can be derived immediately, for example by placing
a single target on different positions of the field of view, or
observing an unpolarized stellar field.

If the source is polarized, the problem becomes much more
complicated, since equation (17) is nonlinear in c and s. The
solution can be simplified by assuming that and ,p K 1 P K 10

which is a reasonable hypothesis in most real cases, since in-
strumental polarization is typically less than a few percent. In
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Fig. 4.—VLT-FORS1 observations of Vela 1 95 (left) and WD 1615�154 (right). The plots show the linear polarization derived with N p 4 HWP positions
(top), N p 2 (middle) and for N p 4 (bottom; see text for more details). The original spectra were obtained with the 300V grism and a slit of 1�; for

N� F /Niip0

presentation, they have been binned to 25 Å. The open circles in the top left panel mark the broadband polarimetric measurements for Vela 1 95 (UBVRI, from
left to right). [See the electronic edition of the PASP for a color version of this figure.]

this case, equation (17) can be rewritten as

I � I ,1 0

Q � Q � pI cos 2J,1 0 0

U � U � pI sin 2J. (18)1 0 0

It is important to note that the instrumental polarization is
not removed by the local background subtraction. Moreover,
it is independent of the object’s intensity; in fact, using the

previous expressions, one can verify that

2 2�P p P � p � 2P p cos [2(x � J)],0 0 0

where and are the input polarization degree and angle,P x0 0

respectively. From this expression, it is clear that when ,P k p0

it is also , while in the case that object and instrumentalP ≈ P0

polarization are comparable ( , the observed polarizationp ≈ P )0

is approximately given by

� �P � 2P 1 � cos [2(x � J)],0 0
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TABLE 1
Data for the Empty Fields

Filter a (J2000.0) d (J2000.0)
l

(deg)
b

(deg)
l � l,

(deg)
Psky

(%)
xsky

(deg)

B . . . . . . 03 32 17 �27 44 24 �41.1 �45.1 128.1 6.45 �68.4
V . . . . . . 13 58 03 �31 22 21 218.6 �18.1 �159.7 1.74 �53.8
I . . . . . . . 20 36 08 �13 06 39 308.0 �5.3 �110.0 1.34 �68.7

Note.—Units of right ascension are hours, minutes, and seconds, and units
of declination are degrees, arcminutes, and arcseconds.

which, according to the value of , gives values that(x � J)0

range from 0 to 2 . It is important to note that the mainP0

difference between instrumental polarization and a polarized
background is that the latter is effective only when the back-
ground is �I (see § 5), while the former acts regardless of the
object intensity; what counts is its polarization.

With the aid of these approximate expressions (eq. [18]),
one can easily evaluate the instrumental polarization, provided
that the input polarization field is known and the observed
source covers a large fraction of the instrument field of view.
In fact, solving equation (18) for J and p yields

U � U1 0tan 2J �
Q � Q1 0

and

Q � Q U � U1 0 1 0p � , p � ,1 2I cos 2J I sin 2J0 0

where and are two independent estimates of p that canp p1 2

be averaged to increase the accuracy.
As it is well known, the night sky shows a polarization that

varies according to the ecliptic and Galactic coordinates (see
Leinert et al. 1998 for an extensive review). It is mostly dom-
inated by zodiacal light polarization, which reaches its mini-
mum, below a few percent, at the antisolar position (Roach &
Gordon 1973). Since this is not expected to vary on scales of
a few arcminutes, in principle, relatively empty fields represent
suitable targets for panoramic polarization tests, provided that
the S/N per spatial resolution element is of the order of several
thousand.

11. THE CASE OF FORS1 AT THE ESO VLT

As an example application, we have performed a test using
real data obtained with FORS1 at the ESO VLT. In this in-
strument, the polarimetric mode is achieved by inserting into
the beam a superachromatic HWP and a WP that has a throw
of about 22� (Szeifert 2002).

We have identified in the ESO archive three sets of data ob-
tained in rather empty fields in B, V, and I passbands. Table 1
lists the equatorial coordinates (a, d), ecliptic longitude and
latitude (l, b), helioecliptic longitude ( ), and degree ofl � l,

sky polarization and angle ( , ) for the different fields.P xsky sky

In all three cases, the S/N achieved on the sky background
in the combined images is larger than pixel�1.I S/N � 200sky

With such a signal and for a typical 1% polarization, the bias
effect is expected to be small (see Fig. 1), and the rms error
of the polarization degree, according to equation (10), is of the
order of 0.3%, while the uncertainty of x is about 9� (see
eq. [11]). In order to further increase the accuracy and to allow
for outlier rejection, we have computed a clipped average in

30 # 30 pixel bins, which, given the FORS1 detector scale
(0�.2 pixel�1), translates into an angular resolution of 6�.

Since the instrumental polarization on the optical axis, mea-
sured with unpolarized standard stars, is smaller than 0.03%
(Szeifert 2002), we are confident that the sky background po-
larization field ( , xsky) measured close to that area is notPsky

affected by spurious effects (the values are reported in the last
two columns of Table 1). Therefore, we can easily compute

and , using the method previously outlined, wherep(x,y) J(x,y)
p , , and .I I Q p I P cos 2x U p I P sin 2x0 sky 0 sky sky sky 0 sky sky sky

The results of these calculations are presented in Figures 5, 7,
and 9. With the remarkable exception of the B band, the in-
strumental polarization of FORS1 shows a quasi-symmetric
radial pattern. For example, for the V filter, the instrumental
polarization remains below 0.1% within 1� of the geometrical
center of the detector, while it grows to ∼0.6% at 3�, to reach
the maximum (i.e., ∼1.4%) at the corners of the field of view.

This is illustrated in the top panels of Figures 6, 8, and 10,
where we have plotted the estimated instrumental polarization
for each 30 # 30 pixel bin as a function of its average distance
r from the center. The deviation from a perfect central sym-
metry is distinctly shown by the dispersion of the points, which
is larger than the measurement error. Particularly marked is the
case of the B band, which shows a strong azimuthal dependence
and thus deserves a separate discussion (see § 11.1). For the
V band, there is a systematic deviation from central symmetry
for a polar angle between 10� and 80�. Thisa p arctan (y/x)
region is probably disturbed by the presence of a saturated star
and a reflection caused by the HWP, visible in the input images.
Excluding these points, a linear least-squares fit to the V data
gives

2 3p(r) p 0.012r � 0.046r � 0.002r ,

where r is expressed in arcminutes (Fig. 8, solid curve). The
I band shows the smoothest behavior, and the observations are
described very well by the polynomial

2 3p(r) p �0.017r � 0.105r � 0.006r .

The absolute rms deviations shown by the data from the best
fits are of the order of 0.05%, so that in these two passbands
the spurious polarization can be corrected with an accuracy that
is comparable to that dictated by the photon statistics. In both
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Fig. 5.—FORS1 instrumental polarization map in the B band. The contours trace 0.3%, 0.6%, and 0.9% polarization levels. Coordinates, expressed in arcminutes,
refer to the geometrical center of the detector. [See the electronic edition of the PASP for a color version of this figure.]

cases, but especially in the I band, the pattern is remarkably
radial, as shown in the bottom panels of Figures 8 and 10,
where we have plotted J as a function of polar angle a.

In order to verify these results for the V filter, we have carried
out a test observing an unpolarized standard star placed in the
lower right corner of the detector. Measured polarization was
P p 0.92% � 0.04% and , while accordingx p �48� � 1�.4
to the previous analysis, the expected instrumental polarization
in that position is p p 0.96% and , which are inJ p �51�.9
very good agreement with each other (see also Fig. 7, lower
right corner).

Once the instrumental polarization is mapped, one can cor-
rect for it using the approximate equation (18), which holds

when p and are small, and only if the instrumental polari-P0

zation is produced by a linear polarizer preceding the analyzer.

11.1. The Cause of Instrumental Polarization in FORS1

As we have seen, the spurious polarization detected in
FORS1 in V and I passbands has a clear central symmetry, is
null on the optical axis (Szeifert 2002), shows a radial pattern,
and grows with the distance from the optical axis. All these
facts suggest that this must be generated by the optics that
precede the analyzer (i.e., within the collimator). In fact, when
a light beam enters an optical interface along a nonnormal
direction, the component of the transmitted beam perpendicular
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Fig. 6.—Top: FORS1 instrumental polarization radial profile for the B band.
Each point is the result of a 30 # 30 pixel binning in the original images.
Radius, expressed in arcminutes, is computed from the geometrical center of
the detector. The thick line traces a linear least-squares fit, while the thin line
is the polarimetric ray-tracing prediction. Bottom: Instrumental polarization
angle as a function of pixel polar angle. The solid line is not a fit to the data,
but rather has unit slope and zero intercept.

to the plane of incidence is attenuated, according to Fresnel
equations (see, e.g., Born & Wolff 1980). As a consequence,
the emerging beam is linearly polarized in a direction that is
parallel to the plane of incidence. If the surface is curved, as
it is in the case of lenses, the incidence angle quickly increases,
moving away from the optical axis, and this in turn produces
an increase in the induced polarization. The effect becomes
more pronounced if the lens is strongly curved; i.e., if the
curvature radius is comparable to its diameter. Of course, on
the optical axis, the incidence angle is null, so no polarization
is produced. Therefore, at least from a qualitative point of view,
the polarization induced by transmission has all the features
necessary to explain the observed pattern.

The polarization induced by transmission can be easily eval-
uated using the appropriate expression for the corresponding
Mueller matrix (see Keller 2002, eq. [4.63]). For a typical
refraction index and an incidence angle of 30�, re-n p 1.5
fraction through an uncoated glass would produce a polariza-
tion of about % per optical surface. This polarizationB p 1.7
is usually reduced in a drastic way (i.e., down to 0.1%–0.2%)
by antireflection (AR) coatings. Nevertheless, since the effect
of multiple surfaces is roughly additive, in the presence of
numerous and rather curved lenses, residual polarization can

be nonnegligible. Another important aspect is that this mech-
anism has no effect on circular polarization, supported by the
fact that no instrumental circular polarization has been mea-
sured in FORS1 (Bagnulo et al. 2002).

We have run polarization ray-tracing simulations, including
telescope mirrors, collimator lenses, and AR coatings. This kind
of calculation allows one to describe in detail the optical sys-
tem, taking into account partial polarization cancellation pro-
duced by symmetries within the optical beams, and the de-
polarizing effect of AR coatings.

The standard resolution collimator of FORS1 contains three
lenses and a doublet, all treated with a single-layer MgF2 quar-
ter-wave AR coating at 450 nm (Seifert 1994). The ray-tracing
calculations (Avila 2005) show that the polarization induced
by transmission is indeed not totally removed by the AR coat-
ings. For V and I filters, a best fit to the simulated data gives
a radial dependence that is very similar to the results we have
derived from the experimental data. The deviation reaches max-
imum at the edges of the field of view, where the ray-tracing
model gives a polarization that is ∼0.08% and ∼0.05% smaller
than what is actually observed in V and I, respectively (see
also Figs. 8 and 10, thin curves, top panel). Possible expla-
nations for this small discrepancy can be attributed to imper-
fections in the AR coatings, and to the effects of nonorthogonal
incidence on the HWP.

In principle, since single-layer AR coatings are optimized
for one specific wavelength (450 nm, in the case of FORS1),
the residual polarization is expected to be higher at other wave-
lengths. Simulations have been run in order to sample the wave-
length range 400–900 nm, and these show that the expected
wavelength dependency can be very well approximated by the
linear relation

p(l)
�3� 0.02 � 1.73 # 10 l,

p(550)

where l is expressed in nm. This relation predicts reasonably
accurately the ∼40% relative increase we indeed see passing
from V to the I passband, and it can thus be safely used to
predict the effect in the R band.

According to the simulations, one would expect that the
spurious polarization in B is about 25% smaller than in V. But
as we have already mentioned, this passband shows a rather
weird behavior and does not conform to the model predictions.
In fact, the polarization pattern strongly deviates from central
symmetry, displaying a marked azimuthal dependence (Fig. 5,
left panel). This becomes more evident in the radial profile pre-
sented in Figure 6 (top): the purely radial dependence is clearly
disturbed by an asymmetric field. In some directions, the polar-
ization field grows much faster than in others, producing a great
spread in the observed data, and in most of the cases, the ob-
served polarization is larger than that predicted by the polari-
zation ray-tracing (thin solid curve). The deviations from a cen-
trally symmetric pattern reach up to 0.5% (see Fig. 11), making
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Fig. 7.—Same as Fig. 5, but for the V band. The dark segment marked by a circle in the lower right corner indicates the values obtained from an unpolarized
standard star. [See the electronic edition of the PASP for a color version of this figure.]

the correction in the B band quite difficult, and certainly not
feasible using simple smooth functions, as in the cases of V and
I. Rather, a much more accurate correction can be obtained by
interpolating the map of Figure 5 at the required field position.
We must note, however, that a rigorous correction for this sec-
ondary effect will be possible only once its physical cause is
identified and its mathematical description is formulated.

We have tried to reproduce the observed behavior by intro-
ducing defects in the system, such as a weak linear polarization
from the HWP, and the presence of linear polarization in the
post-analyzer optics. In both cases, the effect is completely dif-
ferent from what we see in the B band. Therefore, the physical
reason for this phenomenon is still unclear (see also the discus-

sion in § 12). What we can say here is that the deviation from
central symmetry is also present, although to a much smaller
extent, in the V band. This is shown by the contours at constant
polarization, which are clearly box-shaped (see Fig. 7), while
in the I band they are practically circular (see Fig. 9). The
conclusion is that this additional effect, whatever its origin is,
becomes more severe at shorter wavelengths.

We must note that our method relies heavily on the as-
sumptions that the instrumental polarization is null on the op-
tical axis and that the sky background polarization is constant
across the field of view. In fact, the night-sky polarization is
not very well studied. The only extensive analysis we could
find in the literature is that of Wolstencroft & Bandermann
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Fig. 8.—Same as Fig. 6, but for the V band.

(1973), who concluded that the polarization structure varies in
scale from a few degrees to about 30�; i.e., on scales that are
much larger than the field of view of FORS1 (6�.8 # 6�.8). In
order to explain the deviations we observe from a centrally
symmetric pattern, one would need a variation in the sky po-
larization of the order of 0.5%, on a scale of a few arcminutes.
Even though this seems to be quite a large gradient, in principle
we cannot exclude it. Only further tests will clarify the nature
of the effect we see in the B band.

12. DISCUSSION AND CONCLUSIONS

Dual-beam polarizers coupled to two-dimensional arrays pro-
vide a tool with which to perform panoramic imaging polar-
imetry and multiobject spectropolarimetry. For these instru-
ments, the problem of atmospheric fluctuations is solved by
obtaining simultaneous measurements of two orthogonal polar-
ization states. Of course the use of a WP has also some draw-
backs, such as the flat-fielding issue discussed in § 6. With the
exception of this one feature, data reduction and analysis are
totally similar to other polarimetric systems, as we have shown
with both analytical and numerical approaches (§§ 3 and 4).

When the targets of study are extended and cover a large
fraction of the field of view, accurate background subtraction
becomes an issue whose effects we have investigated in § 5.
This is particularly important when the background is not the
simple sky background, but rather has a complicated structure.
This is the case, for instance, for a faint supernova projected
onto a galactic spiral arm.

Another problem that may reduce the performance of a dual-
beam polarimeter is the imperfect behavior of the WP. In § 7
we discuss this issue and present a test to determine possible
deviations from the ideal case. As an example, we have applied
it to the FORS1 archive data described in § 10. Using an object-
free region roughly in the center of the field of view, we have
used equations (14) and (15) to compute t (see eq. [12]), which
turns out to be , i.e., perfectly compatible witht p 0.502 � 0.001
the value derived from the Fourier analysis (§ 8). As we have
shown, the redundancy introduced by having strongly re-N ≥ 4
duces this problem, even in the cases where t differs by about
10% from the ideal case ( ). This is also the case for thet p 0.5
presence of linear polarization in the postanalyzer optics, whose
effects are practically eliminated by the redundancy (§ 9).

Finally, we have addressed the instrumental polarization is-
sue, described its consequences, and proposed an easy test to
detect any spurious effect, with rather high accuracy (§ 10).
As an example, we have applied it to archival FORS1 data and
have detected an instrumental polarization pattern that is
roughly centrally symmetric (for V and I) and has a radial
dependency. The presence of this spurious polarization affects
all objects placed at distances larger than 1�.5 from the optical
axis, with intrinsic polarizations of a few percent or less. The
problem becomes particularly severe when , in whichp � P
case the measured Stokes parameters can be very wrong. For
objects filling most of the field of view, there will always be
regions that are affected by this problem. Moreover, the correct
sky background estimate, which is absolutely necessary to re-
cover the intrinsic object field in the outer parts of the Galaxy,
becomes impossible if the instrumental polarization is not taken
care of properly. The spurious field must be removed before
one is able to estimate the background contribution. Both our
data and ray-tracing simulations show that the effect is wave-
length dependent. In the case of FORS1, a strong deviation
from central symmetry is seen in the B band, and we have
interpreted this as a signature of an additional effect that has
yet to be explained and is not included in the ray-tracing sim-
ulations that, in contrast, accurately reproduce the observed
data in V and I.

One possible source of asymmetric instrumental polarization
is the unrelieved stress birefringence in the optical glasses, due
to thermal strain and mechanical loading (see, e.g., Theocaris
& Gdoutos 1979). This phenomenon is known to introduce a
retardance that can in turn change the polarization status of
incoming polarized light (the effect is null if the light is un-
polarized). Since the incoming radiation is certainly polarized
by FORS1 in a differential way across the field of view, this
would also imply that the secondary effect should be weaker
where the centrally symmetric component is smaller. The fact
that this is indeed the case (see Fig. 11), and also that the
retardance is expected to grow faster than , seems to suggest�1l

that this is a plausible explanation for the asymmetric com-
ponent. If this is indeed the case, then it is not possible to
correct the measured linear polarization just by vector-sub-
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Fig. 9.—Same as Fig. 5, but for the I band. [See the electronic edition of the PASP for a color version of this figure.]

tracting the residual field (like the one shown in Fig. 11), simply
because the effect of retardance depends on the polarization
state of the incoming light. This requires a more sophisticated
treatment that is necessarily based on the exact knowledge of
the physical mechanism and its mathematical description
through Mueller matrix formalism.

In general, instrumental polarization induced by transmission
is most likely common to all focal reducers equipped with a
polarimetric mode. While the overall pattern should be a gen-
eral feature of these instruments, the exact radial dependence
may change according to the optical design and the curvature
of the lenses. The method we have described in this paper
provides an accurate way to characterize the instrument, as
well as a tool to correct for this effect.
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larimetric ray-tracing, S. D’Odorico and H. Dekker for their
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strumental polarization of FORS1. Finally, we would like to
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Fig. 10.—Same as Fig. 6, but for the I band. [See the electronic edition of
the PASP for a color version of this figure.]

Fig. 11.—Residual field obtained subtracting the ray-tracing model from
the observed polarization in the B band.
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