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ABSTRACT

The existence of solar prominences—cool, dense, filamented plasma suspended in the corona above magnetic
neutral lines—has long been an outstanding problem in solar physics. In earlier numerical studies we identified
a mechanism, thermal nonequilibrium, by which cool condensations can form in long coronal flux tubes heated
locally above their footpoints. To understand the physics of this process, we began bymodeling idealized symmetric
flux tubes with uniform cross-sectional area and a simplified radiative-loss function. The present work demonstrates
that condensations also form under more realistic conditions, in a typical flux tube taken from our three-dimensional
MHD simulation of prominence magnetic structure produced by the sheared arcade mechanism. We compare these
results with simulations of an otherwise identical flux tube with uniform cross-sectional area, to determine the
influence of the overall three-dimensional magnetic configuration on the condensation process. We also show that
updating the optically thin radiative loss function yields more rapidly varying, dynamic behavior in better agree-
ment with the latest prominence observations than our earlier studies. These developments bring us substantially
closer to a fully self-consistent, three-dimensional model of both magnetic field and plasma in prominences.

Subject headings: Sun: corona — Sun: magnetic fields — Sun: prominences

Online material: mpeg animations

1. INTRODUCTION

High-resolution, high-cadence observations of the topology
and dynamical evolution of solar prominences (Martin & Echols
1994;Martin &McAllister 1997; Zirker et al. 1998;Martin 1998;
Lin et al. 2003) show that prominence plasmas are filamentary
and far from static. The recognition that prominences exhibit
counterstreaming flows high in the corona calls for a fundamental
shift away from the models that emphasize only dipped magnetic
fields containing stationary cool plasma. We have developed a
coherent picture in which solar prominences are straightforward
consequences of just two properties of the Sun’s corona: heat-
ing concentrated near the chromosphere on scales much less than
the loop length, and magnetic shear localized near neutral lines
(Antiochos & Klimchuk 1991; Antiochos et al. 1994, 1999,
2000; Dahlburg et al. 1998; Karpen et al. 2001). At the heart of
this picture is thermal nonequilibrium: the catastrophic and dy-
namic consequence of an imbalance among the energy sources
and sinks in coronal plasmas within long, low-lying flux tubes
(see also Mok et al. 1990). We have identified a range of dipped
to arched flux tube geometries in which this dynamic process
yields a repetitive cycle of condensation formation, motion, and
destruction by falling onto the nearest chromospheric footpoint
(Antiochos et al. 2000; Karpen et al. 2001). Loops higher than the
gravitational scale height yield chaotic formation and destruction
of smaller, shorter lived knots, unlikely to contribute to promi-
nence formation (Karpen et al. 2001) but providing a plausible
explanation for coronal rain (Müller et al. 2003, 2004). Con-
densations also form in long, deeply dipped flux tubes, but their
subsequent evolution is determined by the dip slopes: for slopes
steeper than a critical value (see Karpen et al. 2003), thermal
nonequilibrium cannot force the condensation out of the dip and
onto the nearest chromosphere. Rather, the condensation falls to

the lowest point in the dip and remains there, continuing to ac-
crete mass as long as the footpoint heating continues.

Combining our understanding of thermal nonequilibrium
with the basic features of the sheared three-dimensional arcade
model for the magnetic structure (Antiochos et al. 1994; DeVore
& Antiochos 2000; Aulanier et al. 2002), we have proposed a
natural explanation for several key observed aspects of prom-
inences. Prominences lie above sheared neutral lines simply be-
cause the longest field lines are there. Adjacent field lines farther
from the neutral line are unsheared or only slightly skewed
and, hence, too short to develop thermal nonequilibrium. These
form the EUV- and X-ray–emitting arcades that envelope
prominences.

Until now, our parametric studies have explored the physics
and observable signatures of thermal nonequilibrium in sim-
plified flux tubes that are symmetric about their midpoints and
uniform in cross-section. In these circumstances both dynamic
and stationary condensations formed, but the predicted lifetimes
of and intervals between condensations were significantly lon-
ger than those measured in high-cadence observations. More-
over, the idealized flux tubes did not adequately represent the
magnetic structure predicted by the sheared arcade model. To go
beyond this promising general scenario, then, we must demon-
strate that prominence-like accumulations of cool plasma can
form within an actual sheared arcade on timescales consistent
with observations.

Our first step toward this goal is described in this paper: a series
of hydrodynamic simulations showing the response to localized
heating of a flux tube extracted from the three-dimensional MHD
sheared-arcade calculation of DeVore & Antiochos (2000). In ad-
dition, we show that the revised radiative loss function yields
faster formation times, shorter life cycles, and higher frequencies
for the condensations, compared with our previous studies, in
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better agreement with observed prominence behavior. We report
the results of our simulations, explain the physical factors influ-
encing the plasma behavior, compare and contrast our results with
earlier studies by ourselves and others, and present implications
for prominence structure and life cycle. As a consequence, we are
much closer to a fully self-consistent, three-dimensional model of
both magnetic field and plasma in prominences.

2. NUMERICAL MODEL

The simulations were performed with ARGOS, our adap-
tively refined, high-order Godunov solver (for further details of
the basic methodology see Antiochos et al. 1999). Two signifi-
cant changes and one minor modification were introduced into
the code for the present study. First, our previous investigations
treated each field line as an isolated flux tube with a constant,
circular cross section normal to the field direction. This assump-
tion was sufficient for basic studies of thermal nonequilibrium,
but is inadequate for modeling specific field lines taken from the
sheared-arcade model. In this scenario, the sheared inner field is
compressed where the overlying unsheared field is strongest and
expands where the overlying field is weakest. As a result, those
flux tubes most capable of supporting prominence material have
cross-sections that vary significantly from one footpoint to the
other: constricted at both footpoints, as in any bipolar field, and
where the flux tube is most constrained by the overlying field.
We altered the code to incorporate these effects.

ARGOS now solves the following one-dimensional hydro-
dynamic equations for conservation of mass, momentum, and
energy:
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Here s represents the distance along the loop from the left base,
� ¼ 1:67 ; 10�24n is the mass density assuming a fully ionized
hydrogen plasma with electron number density n, T is the tem-
perature, v is the plasma velocity, P ¼ 2nkT is the pressure, A(s)
is the cross-sectional area as a function of s, �0 ¼ 10�6 is the co-
efficient of thermal conduction, � ¼ 5/3 is the ratio of the spe-
cific heats, Q(s) is the volumetric heating, �(T ) is the radiative
loss function, and gk is the component of gravity parallel to the
loop axis.
The second significant modification was to update the opti-

cally thin radiative loss function from the simple form used in
our previous investigations, �o(T ), to the more complex and
up-to-date parameterization of Klimchuk & Cargill (2001),
denoted the Klimchuk-Raymond radiative loss function�K(T ).
In addition to reproducing more closely the variations in the
temperature dependence above 0.46 MK, the revised values are
generally an order of magnitude larger than the original over
most of the relevant temperature range (see Fig. 1), shortening
the radiative cooling time at a given temperature without al-
tering the basic requirements and qualitative characteristics of
the thermal nonequilibrium process. Finally, we modified the
gravitational force calculation to include the dependence on
distance from the solar surface, which barely affected the pres-
ent calculations because the maximum flux tube height was less
than half of the gravitational scale height in the corona.
We selected a typical dipped field line from the sheared-

arcade simulation presented in DeVore & Antiochos (2000),
as shown in Fig. 2. The height, cross-sectional area, and gravity
as functions of distance s along this representative field line,
shown in Fig. 3, were derived as follows. We measured the
height above the photosphere, z(s), and magnetic-field magni-
tude, jB(s)j, at several points along the chosen field line. Flux
conservation then yielded the effective area along the flux tube,
A(s), normalized to the area A0 measured at the left footpoint.
We assumed that the flux tube area is circular and remains un-
changed throughout the simulation. Next we calculated the best
fifth-order polynomial fits to z(s) and A(s). The gravitational
acceleration, g(s) ¼ g0 dz/ds, was calculated by differentiating
the best fit to z(s), yielding a fourth-order polynomial. Because

Fig. 1.—Radiative loss functions �(T ): Klimchuk-Raymond (dashed line)
and original (solid line).

Fig. 2.—Selected magnetic field lines (thick lines) and contours of constant
Bz (vertical component of the field) at the bottom boundary at t ¼ 600 dur-
ing the three-dimensional sheared-arcade simulation discussed in DeVore &
Antiochos (2000) and Aulanier et al. (2002). The field line modeled here is
red; a typical overlying arcade line (dark blue), singly dipped core line (dark
gray), and triply dipped and reconnected helical line (light blue) are analogous
to the field lines shown in Fig. 4 of DeVore & Antiochos (2000).
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adaptive-mesh refinement changes the gridding as needed
throughout the ARGOS simulations, the code recalculates A(s)
and g(s) from the polynomial fits whenever the grid changes.
Note that, unlike in our earlier calculations, neither the height
profile nor the area is symmetric about the midpoint of the flux
tube.

Scaled to solar units, the field line length is �285 Mm, to
which a 60 Mm chromospheric region has been added at each
end for a total length of 405 Mm. For the nonuniform-area runs,
the normalized area of the left (right) chromospheric section
is assumed to be uniform and equal to 1.0 (0.65); uniform-area
runs use a normalized area of 1 throughout the flux tube. The
peaks are located at s ’ 138 and 298Mm, with respective heights
above the chromosphere of �15 and 22 Mm. The bottom of the
dip is at s ’ 219 Mm, sitting only 2.8 Mm above the chromo-
sphere. Rigid-wall, fixed-temperature boundary conditions were
imposed at the two endpoints, located many gravitational scale
heights deep in the chromosphere. Figure 4 shows the initial
plasma temperature and density versus distance along the flux
tube before the onset of localized heating, denoted by the runs
in which these initial conditions were used. The original radia-
tive loss function produces an initial atmosphere that is denser
and hotter than the corresponding system with �K(T ), while the
uniform-area flux tube atmospheres are denser and hotter than
their nonuniform-area counterparts.

As in our earlier studies, the heatingQ(s) has two components:
a spatially localized component at each footpoint (El, r) that is
uniform in the chromosphere and falls off exponentially above
with a predetermined scale k ¼ 10 Mm, plus a small, spatially
uniform, background heating rate of 1:5 ; 10�4 ergs cm�3 s�1.
The two footpoints are heated unequally, as is likely on the Sun:
on the dominant side El or Er ¼ Emax ¼ 10�2 ergs cm �3 s�1,
while the peak heating rate at the other footpoint is 0.75Emax.
Note that the location and scale height for the localized energy
deposition are consistent with the coronal heating location and
scale length deduced independently from Transition Region and

Fig. 4.—Temperature (top) and mass density (bottom) as functions of po-
sition along the model flux tube just before the localized heating is turned on
(t ¼ 99;900 s). Note that the abscissa is distance along the loop, not horizontal
distance, so that (for example) the two horizontal sections at each end of the
temperature plot actually indicate constant temperatures in the vertical legs of
the loop.

Fig. 3.—Bottom: Best-fit parameters vs. distance along the selected flux tube:
height above the chromosphere scaled to solar units (solid line) and cross-
sectional area normalized to the area at the left footpoint (dashed line). Top:
Gravitational acceleration parallel to s, normalized to the maximum value at the
solar surface, g0 ¼ 2:7 ; 104 cm s�2.

TABLE 1

Simulation Parameters

Run El /Er Area �(T ) End Statea
Condensation Center

(Mm)

URK..... 0.75 Uniform K S 217

NRK..... 0.75 Nonuniform K D . . .

ULK ..... 1.33 Uniform K S 219

NLK ..... 1.33 Nonuniform K S 220

URO..... 0.75 Uniform O S 217

NRO..... 0.75 Nonuniform O D . . .

ULO ..... 1.33 Uniform O S 220

NLO ..... 1.33 Nonuniform O S 222

Notes.—See x 2 for initial and boundary conditions common to all simu-
lations. The three-letter acronyms combine the first letters of the following pa-
rameters of each run: area variation (uniform or nonuniform), dominant localized
heating site (right or left), and the radiative loss function (Klimchuk-Raymond or
original).

a Stationary or dynamic condensations. On the dominant side El or Er ¼
Emax; peak heating rate at the other footpoint is 0.75Emax.
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Coronal Explorer (TRACE) observations (Aschwanden et al.
2001). In all cases, an equilibrium consistent with the canonical
scaling laws (Rosner et al. 1978) was established first with only
background heating turned on (see Fig. 4). After 105 s, the lo-
calized heating was ramped up over 1000 s and maintained at
that level thereafter. Except for the brief turn-on phase, all of the
dynamics produced by our simulations are due to an intrinsic
nonequilibrium of the system, rather than a temporally varying
external driver.

Table 1 lists the relevant parameters for all calculations in this
study, and defines the acronyms that identify every run. To estab-
lish the effects of flux tube area, we performed comparable runs
with both uniform cross-section and nonuniform cross-section
(derived as outlined above), with dominant heating deposited
above the left or right footpoint as indicated. The remaining runs
listed in Table 1 illustrate the effects of changing the radiative loss
function.

3. RESULTS

We begin by briefly characterizing the common aspects of the
overall evolution of the system, focusing our attentionmainly on
the runs with�K(T ) for reasons made clear in x 3.1.We illustrate
the evolution of our model flux tube with plots of the time evo-
lution of temperature as a function of position along the tube
(Figs. 5 and 6) and with selected animations (Figs. 7 and 8)1 of
the time evolution of two-dimensional ‘‘images’’ of the simu-

lated flux tube as would be seen in H� and two spectral emission
lines observed by the SOHO CDS instrument: O v (629 8) and
Mg x (625 8) (see Karpen et al. 2001, x 4, for details). All times
quoted below and in the figures are normalized so t ¼ 0 at
the onset of localized heating. Only the first third of the NLK
and NRK runs (see Table 1) are shown in animations 1 and 2
(Figs. 7 and 8), respectively, to keep them amanageable size. As
is clear from Figure 5, this is more than adequate to illustrate our
primary results.
All runs except NRK and NRO exhibit the same qualitative

behavior: a condensation forms, oscillates, falls to the bottom
of the dip (s � 220 Mm), and grows linearly until the end of
the run. Figures 5 and 6 show the spatial distribution along the
‘‘straightened’’ tube in the horizontal direction, with time (the ver-
tical axis) starting shortly before the onset of localized heating
and increasing downward. Starting from the top, we see the tem-
perature first increase throughout the corona followed by cooling
over an extended region and then collapse into a small conden-
sation at the lowest possible temperature. The steady growth of
the condensation is evident in the increasing thickness of the
black vertical line representing the condensation, in sharp con-
trast to the cyclic asymmetric patterns that characterize the NRK
and NRO plots. The maximum condensation particle density at
the end of these runs is� 7 10ð Þ ; 1011 cm�3. Animation 1 (in the
electronic version; see Fig. 7) shows the associated emission evo-
lution for a typical case, the NLK run. However, the conden-
sations initially form at different positions within the flux tube
(see Fig. 9). As expected for left-dominant versus right-dominant
heating, the NLK/NLO/ULK/ULO condensations initially form
to the right of x � 130Mm (s � 190Mm),while theNRK/NRO/
URK/URO condensations form to the left of x � 110 Mm
(s � 170 Mm). The final condensation positions also are shifted

Fig. 5.—Temperature vs. distance along the flux tube during the runs with
�K(T ) as labeled. Time increases from top (t ¼ �0:55 hr relative to the onset
of localized heating) to bottom (t ¼ 71:22 hr), while s increases from left to
right (s ¼ 0 405 Mm) in each plot.

Fig. 6.—Same as Fig. 5, but for the runs with the original �(T ) as labeled.

1 See animations 1 and 2 in the electronic version (Figs. 7 and 8 show
representative frames from the animations).
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slightly (a few Mm) away from the dominant heating side, and
their density profiles are noticeably asymmetric—higher on the
dominant heating side—particularly for the uniform-area runs.

Within a few hours after the condensation forms, steady
flows are driven into the condensation by the one-sided heat-
ing at both footpoints, for all runs except NRK and NRO. The
velocity profiles for the ‘‘K’’ runs are shown in Figure 10; the
‘‘O’’ run profiles are identical in shape but the maximum speeds
are�5 times lower, for reasons discussed in x 3.3. These steady
flows are similar to those recently investigated by Patsourakos
et al. (2004), although there are some key differences attribut-
able to the contrasting applications and assumptions in each
study. The steady flow on the more strongly heated side is
slightly faster than on the other side, in the uniform-area runs,

with a larger difference between the ULK and URK speeds to
the left of the condensation.

As is evident from Figures 5–8 (see also animation 2), runs
NRK and NRO depart significantly from the others. They exhibit
the characteristic dynamic cycle of condensation formation and
destruction first noted in our initial studies of thermal nonequi-
librium and observed inmany subsequent simulations (Antiochos
et al. 2000; Karpen et al. 2001, 2003). In addition, runs ULK and
URK initially produce paired condensations that quickly con-
verge and coalesce (see x 3.1), ultimately yielding a stationary
condensation as described above. The similarities and differences
among the runs provide important clues about how thermal non-
equilibrium is affected by the radiative loss function and the flux
tube geometry, so we discuss these factors in turn below.

Fig. 7.—Predicted H�, O v (629 8), and Mg x (625 8) normalized emission intensities projected onto a plane, assuming the SOHO CDS instrument response
function, at selected times during the NLK simulation. Each spectral line intensity is normalized independently, but the same normalization is used for a given line in
all frames. Normalization intensities and initial conditions are shown in Fig. 8. Localized heating onset is at time t ¼ 0. (a) Immediately before condensation.
(b) Condensation starting to form. (c) Condensation has cooled to H�-emitting temperatures. (d ) Condensation continues to collapse; newly born shocks are visible
in the center of O v image. (e) Condensation oscillating around bottom of dip before settling there; furthest excursion to the right is shown here. ( f ) Static con-
densation at end of run. This figure is also available as an mpeg animation in the electronic edition of the Astrophysical Journal.

Fig. 8.—Same as Fig. 7 for the NRK simulation, showing one of the 13 two-cycle episodes of condensation during this run. (a) Normalization intensities and
initial conditions for all nonuniform-area runs. (b) First condensation formed. (c) Condensation falling onto nearest chromosphere. (d ) Secondary condensation
formed (note shock front to the right, in Mg x). (e) Condensation falling onto nearest chromosphere. ( f ) Evaporation phase resumes. This figure is also available as
an mpeg animation in the electronic edition of the Astrophysical Journal.
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3.1. Effects of Modifying the Radiative Loss Function

Updating the radiative loss function has caused significant
changes in all aspects of the condensation life cycle, dramati-
cally reducing the associated timescales and increasing the
general level of dynamic activity. For the cases that ultimately
develop stationary condensations, the use of�K(T ) shortens the
formation time for the single condensation from�21.4 to 3.5 hr.
The condensation mass accretion rates are roughly 10 times
higher in the ‘‘K’’ runs, increasing the condensation length at
the end of the runs from �17 to 47 Mm. Even the initial con-
densation location is substantially affected by the radiative loss
function, as shown in Figure 9: the ‘‘K’’ runs produce conden-
sations 10–50Mm to the left of those formed in the correspond-
ing ‘‘O’’ runs, regardless of the localized heating being stronger
on the left or right. This radiation-dependent difference is larger
for the nonuniform-area cases than for the uniform-area runs,
some of which are also complicated by pairing. While the con-

densation is collapsing, peak inflow speeds exceed 200 km s�1

for the ‘‘K’’ runs but only reach 65 km s�1 or less for the ‘‘O’’
runs. Finally, as mentioned above and explained in x 3.3, the
steady flows that characterize the end state of the stationary-
condensation runs are much faster with �K(T ).
Although both nonuniform-area runswith right-dominant heat-

ing produce dynamic rather than stationary condensations, run
NRK is much more dynamic than NRO (see animation 2). The
NRO case develops only a single condensation at s � 140Mm, at
t ¼ 23:4 hr and every 26 hr thereafter (see Fig. 6). In contrast, the
first NRK condensation forms at t � 3:6 hr at s � 109 Mm and
disappears around 1 hr later, falling onto the left footpoint at
speeds up to �50 km s�1. About 4 hr later, two smaller con-
densations are formed and destroyed in quick succession, with
the second forming about 50 minutes later and �20 Mm to the
left of the location where the first condensation appeared. There-
after, this two-stage process repeats every 5.1 hr throughout the
run. After the first three condensations, the total mass in each pri-
mary or secondary condensation varies little from cycle to cycle
(Fig. 11): the first, larger condensation is almost 3 times more
massive than the second. We discuss possible reasons for this
two-cycle evolution in x 4.
Another dynamic phenomenon associated with the revised ra-

diative loss function is the appearance and coalescence of paired
condensations in the URK and ULK runs, which is completely
absent in the URO, ULO, and nonuniform-area simulations. We
illustrate this process in Figure 12 by showing a close-up of the
density profiles during the formation and merger of the paired

 

Fig. 9.—Initial locations of condensations in all runs, plotted on the height
profile of the center of the flux tube. For the ULK and URK runs, the two
initial locations of the paired condensations are shown bracketing the position
where they first coalesce.

Fig. 10.—Velocity vs. distance along the flux tube at the end of runs NLK,
ULK, and URK, showing the steady flows on either side of the stationary,
growing condensation.

Fig. 11.—Condensation mass per unit area vs. time. Top: Runs with �K(T ).
Bottom: Runs with �o(T ). The NRK mass has been multiplied by a factor of
10 for better visibility.
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condensations in runs ULK and URK, alongside the same in-
terval in the NLK run for comparison. The clearest example is
the URK simulation, in which the lefthand condensation appears
first and begins moving to the right immediately, followed after
�200 s by its sibling. The two condensations accelerate toward
each other for�500 s, reaching speeds of 75 (left) and 55 (right)
km s�1 just before merging. We interpret this phenomenon in
the context of earlier thermal-nonequilibrium studies in xx 3.3
and 4.

3.2. Effects of Modifying the Flux Tube Geometry

The height and area variations along the flux tube affect
the state of the plasma before and after the onset of localized
heating. It is well known that uniform heating in a flux tube
with a uniform cross section produces a static corona. The same
heating in the sheared-arcade flux tube modeled here, however,
yields a steady flow that is easily understood in terms of the
classical nozzle-flow problem. As shown in Figure 13, the flow
is directed toward the left footpoint throughout the corona, in-
dicating a net pressure drop from the right footpoint to the left.
The speed increases wherever the flux tube is constricted (see
Fig. 3)—that is, at both footpoints and near the midpoint (where
the overlying unsheared arcade prevents the flux tube from ex-
panding). The flow speed is faster above the right footpoint
than at the left because the constriction factor (dA/ds) is greater
there: the area drops from the maximum (2.15) to minimum
(0.65) value in �45 Mm. The highest speed is reached at the
midtube constriction, however, because both the widest and
highest points in the flux tube are located upstream; the nozzle
effect is amplified by gravity acting on the plasma falling toward
the constriction. The steep gradients in velocity above each

footpoint in the NLK run are particularly striking in Figure 13
and would also be expected in any coronal loops with similar
magnetic-field expansion factors. Note also that the maximum
speed is strongly affected by the radiative loss function, reaching
1.4 km s�1 with �o(T ) and 6.0 km s�1 with �K(T ) (see x 3.3).
Bulk flows of the latter magnitude in the coronal extension of
filament channels should be observable with the EIS instrument
on the upcoming Solar-Bmission, but the degree of isolation and
orientation of the flux tube with respect to the line of sight will
determine whether they appear as downflows, as upflows, or as
contributions to general line broadening.

The simulations are generally consistent with our earlier stud-
ies, in which we identified a critical slope relation that predicts
whether a condensation formed within a flux tube dip will be-
come stationary or dynamic (Karpen et al. 2003). For the first
time, we are modeling a loop in which the sides of the dip have

Fig. 12.—Close-up of mass density vs. distance along the flux tube during three runs with�K(T ) as labeled. Time increases from top (t ¼ 2:75 hr relative to the onset
of localized heating) to bottom (t ¼ 5:53 hr), while s increases from left to right in each plot. The chromospheres at left and right have been removed from each plot to
eliminate excess white space. The color scale has been deliberately saturated at both ends to enhance the contrast of fainter features. The lines propagating away from the
condensations are shocks generated by the collision of inflowing mass during formation. Note that the shocks are stronger where coalescence is involved.

Fig. 13.—Velocity vs. distance along the flux tube at t ¼ 0 for the non-
uniform area flux tube just before the onset of localized heating, showing the
effects of the original and revised radiative-loss functions.
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different slopes—13% at the left, 22% at the right—and different
lengths. All of the left-dominant heating cases form stationary
condensations regardless of the loop cross-section, most likely
because of the steep slope on the right side of the dip. The left
slope is close to the critical value described in Karpen et al.
(2003), making it difficult to predict a condensation’s final state
when the heating is stronger on the right. Because all other fac-
tors are identical in runs NRK and URK (or NRO and URO),
however, the area factor alone must be responsible for the diver-
gent outcomes of these runs. We find, therefore, that the re-
sponses to both uniform and localized heating are highly sensitive
to the flux tube geometry.

3.3. Analysis

Why does pairing occur only in the uniform-area runs with
�K(T )? In coronal loops with heating localized at the base, the
dominant contributor to the energy budget changes with in-
creasing distance from the location of maximum coronal tem-
perature, Smax, which is roughly a heating scale length k from
the footpoint (Antiochos et al. 2000; Müller et al. 2004). Due to
the quadratic dependence of the conduction term in equation (3)
on distance, the heat flux no longer balances the radiative losses
at distances greater than k or so from Smax. Therefore the evap-
orative flows from each footpoint are the only available means
for transporting sufficient energy farther into the radiating co-
rona to balance radiation. In the long loops that constitute prom-
inences, however, the existence of condensations indicates that
there is a ‘‘break-even’’ location beyond which even this enthalpy
flux cannot compensate for radiative losses, as demonstrated by
the following scaling analysis.

Assuming that all of the deposited localized heating is con-
ducted downward and drives evaporative flows, and that the
associated enthalpy flux balances the coronal radiative losses
up to some distance S from the chromosphere, we obtain the ap-
proximate relation

�k � T 3:5
max=k � Pv � n2�(T )S; ð5Þ

where Tmax is the maximum coronal temperature, the maximum
localized heating rate � ¼ El;r (x 2), and the remaining variables
are defined in x 2. Therefore,

S � Pv

n2�(T )
� �k

n2�(T )
:

Because �k is the same constant for both runs, the ratio of the
break-even distances obtained with the two radiative-loss
functions is

SK

So
� no

nK

� �2�o(T )

�K(T )

If the above ratio is less than one, the Klimchuk-Raymond ra-
diative loss function yields break-even locations that are closer
to the relevant footpoints than for �o(T ). Although this does not
guarantee that two condensations always will form with �K(T ),
clearly this outcome is more likely when the break-even distance
is shorter.

This relation can be evaluated, and the assumptions validated,
with the help of the simulation results. We compare the ULK
and ULO runs at the times of peak coronal temperature (0.92
and 3.0 hr, respectively), when all of the flows are still driven by
heating and not by the radiation-generated pressure drop higher

in the flux tube associated with condensation development. At
these times the peak temperatures are close (3.8 MK for ULK
and 4.1 MK for ULO) but the densities differ by a factor of
4 (1:5 ; 109 cm�3 for ULK and 6:0 ; 109 cm�3 for ULO). The
radiative loss functions at T � 4 MK also differ substantially,
but in the inverse direction: �o(T )/�K(T ) � 0:05. Therefore
SK/So � 0:8, which is apparently enough of a difference in the
break-even distance to yield two condensations in the ULK or
URK run but only one in ULO or URO. We also note that the
mass fluxes (nvA) are the same in the two runs at the times
quoted above, supporting the postulated equivalence of heat
deposition and enthalpy flux in equation (5).
From equation (5), we also derive the dependence of the

postcondensation steady-flow speed on the radiative loss func-
tion, for the cases that result in stationary condensations. By
equating the first (heat deposition) and second (thermal con-
duction) terms, we find that Tmax � (�k2)2/7 and hence the same
constant value for all runs. In addition, the equivalence of the
first and third terms yields

n2 � �k
�(Tmax)Sl;r

� � Tmaxð Þ�1; ð6Þ

because �, k, and Sl,r (the distance from the condensation to the
right or left footpoint, in this context) are constants. Finally,
equation (6) and the equivalence of the third (enthalpy) and last
(radiation) terms yield

nvTmax �
vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�(Tmax)
p � constant;

so

v �
ffiffiffiffiffiffiffiffiffiffiffi
�(T )

p
:

The value of Tmax is approximately 2.3–2.6 MK for the relevant
runs, and the ratio�K(Tmax)/�o(Tmax) is�25 (see Fig. 1). There-
fore, vK/vo � 5, consistent with the simulations (see x 3.1).
Using a similar approach, we also can explain why the steady

flows shown in Figure 10 differ between the left and right co-
ronal segments (LCS and RCS) and between the ULK and URK
runs in both segments (but with a larger disparity in the LCS).
The LCS and RCS differ primarily in length, while the ULK
and URK runs differ solely in the dominant heating location.
Therefore we proceed from the assumption that the speed must
depend on the localized heating rate and the length of the coronal
segment.
Equation (6) relates the density to the heating, radiative loss

function, and loop length, which is the segment length Sl,r in the
present context. The heat deposition scale k is the same in all
cases, and the revised radiative-loss function in ARGOS is a
series of power-law fits such that �K � T b (see Fig. 1). Hence,

n � �1=2��1=2S
�1=2
l;r � �1=2T�b=2

max S
�1=2
l;r :

With this definition for n and Tmax � �2=7 (from eq. [5]), the
equivalence of the first (heat deposition) and third (enthalpy)
terms in equation (5) yields

v � �k
nTmax

� �1=2T b=2�1
max S

1=2
l;r � � 3þ2bð Þ=14S

1=2
l;r :

In the relevant range of coronal temperatures the power-law ex-
ponent b is generally between 0 and �3/2, so the steady flow
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speed should vary from being weakly dependent on to inde-
pendent of �. To determine whether the predicted relation ac-
curately predicts the ratios of the speeds in Figure 10, we first
note that Sl /Sr � 1:3 and the weaker localized heating rate is
always 0.75 times the dominant rate. For either the ULK or
URK run, the speed thus depends only on Sl,r and we predict
vl /vr � 1:15, which is consistent with the maximum values in
Figure 10. In either segment, then,

vULK=vURK � (�i;ULK=�i;URK)
3þ2bð Þ=14;

where the i subscript denotes the left or right side. This ratio is
greater than 1 in the LCS and less than 1 in the RCS, as long as
b � �3/2, which is again consistent with Figure 10. In the LCS
the predicted ratio ranges from 1 for b ¼ �3/2 to 1.11 for b ¼ 0;
the largest observed ratio is �1.09.

4. DISCUSSION

Only in the NRK case do we observe two-cycle behavior, in
which both condensations repeatedly form in sequence, on the
downslope above the left footpoint. Obviously the nonuniform
area plays a role here, as this two-cycle behavior is not seen in
the analogous uniform-area run. A strong shock is generated by
the fall of the first condensation, and the second condensa-
tion appears when this shock passes through. It is likely that the
compression associated with this shock, coupled with the
strong downflows that continue to draw plasma toward the left
footpoint after the first condensation is formed, triggered an-
other bout of condensation at a location downstream from the
first site. This phenomenon resembles some of the chaotic be-
havior seen in the highest arched loop (apex height = 100 Mm)
discussed in Karpen et al. (2001): in general the condensations
formed at irregular intervals, but most formed in similar loca-
tions far down the legs of the loop and two condensations often
formed in rapid succession. Similar behavior also appears briefly
in the Müller et al. (2004) simulation with the smallest heating
scale (see, e.g., the early and middle stages of the right panel in
their Fig. 4), with much longer intervals between the two con-
densations. In neither of these earlier studies did a repetitive,
consistent, two-cycle pattern develop, however.

It is important to distinguish between this two-cycle evolu-
tion and the condensation pairing observed in runs ULK and
URK. Condensation pairing during thermal nonequilibrium
was first reported and explained by Müller et al. (2004), who
modeled coronal rain in shorter (L ¼ 100 Mm) semicircular
loops with symmetric localized heating on fractional scales rang-
ing from L/50 to L/8. In that environment, pairing sets in for heat-
ing scales smaller than L/20, consistent with our heating scale of
L/28. The location and fate of the paired condensations in our
work are quite different from the results of Müller et al. (2004),
however. The latter produced two nearly simultaneous conden-
sations�65 Mm apart, each less than 20 Mm above a footpoint,
which fell to the chromosphere an hour later without merging.
The symmetric heating and the force of gravity in their system
ensures a large initial separation and pulls the condensations in
different directions. In contrast, our condensations begin off-
center and much closer together in a dipped field geometry that
favors convergence, even though the left URK condensation
formed just outside the dip. Their independent existence is brief
(under 10 minutes), with no discernible effect on the subsequent
evolution of the system (see Fig. 5).

Shock waves are a key characteristic of the condensation life
cycle, with observable ramifications. Awide range of shocks are

produced: a single pair of shocks generated by the colliding
inflows during the initial formation phase; the shock generated
by the impact of a condensation falling onto the chromosphere;
shocks produced by the impact of coalescing condensations (dis-
cussed in more detail in Karpen et al. 2006). Intensity variations
in the corona due to shocks are visible in the animations, less so
in Figures 5 and 6 due to the compressed time scale. More in-
tense fluctuations are visible at the footpoints of the loop in O v

(6298) when the atmosphere oscillates after a condensation has
fallen and when the associated shock reaches the far footpoint
(e.g., at t � 15:2–15.9 hr). The duration and relative amplitude
of these variations are consistent with EUV blinkers, some of
which appear to be caused by density or filling-factor enhance-
ments without an increase in temperature (Harrison et al. 2003).
High-resolution and high-cadence spectroscopywill be essential
to distinguish these thin, dynamic features.

5. CONCLUSIONS

Two new phenomena appeared in this study that were not
seen in our earlier work: two-cycle evolution (in the NRK run),
and paired condensations (in the initial development of the
URL and URK runs). Pairing leads to rapid convergence of the
condensations at speeds substantially higher than the typical
horizontal motions noted in our earlier studies and in H� ob-
servations (Lin et al. 2003, 2005), but comparable to observed
proper motions of plasma at transition-region temperatures that
have been difficult to explain in view of the short radiative cool-
ing time at those temperatures (Kucera et al. 2003). Because
condensation coalescence is a new feature that might account
for these motions, we discuss this phenomenon in greater detail
in a subsequent paper (Karpen et al. 2006).

The properties of the radiative loss function play a key role in
both the overall dynamics and the condensation process itself.
We find that the Klimchuk-Raymond radiative loss function
brings better agreement with prominence observations, in par-
ticular, more rapid and more frequent condensation formation
and longer and more massive stationary condensations (in a
given time interval). Müller et al. (2004) have shown how even
more subtle changes in the radiative loss function—varying the
ions for which time-dependent ionization nonequilibrium effects
were included—changed the pattern of condensation generation
from chaotic to periodic. Variations in the local abundances and
low-temperature effects such as hydrogen ionization and recom-
bination might also alter the progress and outcome of the thermal
nonequilibrium mechanism. Therefore, true reproduction of the
properties of observed prominence knots might require more
accurate measurement of coronal abundances and atomic spec-
troscopy, as well as more sophisticated modeling of the radiative
losses.

Modeling a more realistic magnetic flux tube, in contrast to
all previous simulations of thermal nonequilibrium, has shown
that the absence of geometric symmetry and uniformity broad-
ens the complexity of the condensation process and can fun-
damentally alter the outcome. Significant height variations,
for example, can lead to condensations forming only in a re-
stricted portion of the flux tube. The flux tube constrictions
characteristic of the sheared-arcade geometry can yield dynamic
condensations where a uniform flux tube cross section would
yield stationary cool plasma. The nonuniform cross-sectional
area inherent to a sheared three-dimensional arcade produces
unique velocity signatures before, during, and after condensa-
tion formation—key signatures that might be visible with well-
resolved spectroscopy. These factors will be automatically taken
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into account in three-dimensional MHD modeling of our com-
bined picture of prominence magnetic support and plasma struc-
ture, which will be the ultimate self-consistent test of this
promising solution to one of the longest running problems in
solar physics.
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