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ABSTRACT

The commonly used minimum-mass power-law representation of the early solar nebula is reanalyzed using a
new cumulative mass model. This model is a first integral of the planetary data and predicts a smoother surface
density approximation compared with methods based on direct computation of surface density. The density is
quantified using two independent analytical formulations. First, a best-fit transcendental function is applied directly
to the basic planetary data. Next, a solution to the time-dependent disk evolution equation is parametrically
adapted to the solar nebula data. The latter model is shown to be a good approximation to the finite-size early
solar nebula and, by extension, to extrasolar protoplanetary disks.

Subject headings: accretion, accretion disks — planetary systems: protoplanetary disks —
solar system: formation

1. INTRODUCTION

Surface density models are routinely used as basic building
blocks for predicting complex physical processes in protoplan-
etary disks. For example, simulations of molecular species dis-
tribution require such models to determine the background tem-
perature and number density environment. These models are used
in either one-dimensional (Aikawa et al. 1996) or vertical struc-
ture treatments (Aikawa & Herbst 2001). Another example is
the prediction of infrared emission from protoplanetary disks
where radiation transport also depends on surface density mod-
eling (Dullemond et al. 2001; Chiang & Goldreich 1997; Nomura
2002). Such investigations routinely use power-law surface den-
sity models, probably the most popular being the Hayashi (1981)
minimum-mass model with a radial decay proportional tor�3/2.
Other investigations using detailed vertical structure models con-
clude that computed surface densities do not fit the power-law
models (D’Alessio et al. 1998). The issue concerning the rele-
vance of a “minimum-mass” solar nebula has been argued re-
peatedly (Cameron 1988), but its basic appeal lies in its sim-
plicity; therefore, it is commonly used as a primary tool in
theoretical studies. It is in the spirit of retaining a simple model
for the surface density in a solar (or extrasolar) nebula that the
current development is aimed.

In this Letter, the basic Hayashi minimum-mass model is
compared with an approximate transcendental function and an
analytical disk evolution model from Davis (2003), each of
which does not admit a simple power-law representation. The
analytical disk evolution model predicts radial distributions
with approximate inner disk decay rates ofr�1/2 followed by a
rapid exponential decay. Conventional power-law models,
which are reasonable approximations in the intermediate region
of the solar nebula, possess too much surface density in the
inner region, extend the surface density too far, and have infinite
masses. Unlike power-law approximations, these surface den-
sity models predict a sharp outer edge to the nebula as discussed
by Levison et al. (2004). The evolutionary model further pre-
dicts that the surface density depends primarily on the initial
angular momentum of the disk and on the mass of the central
star. It should be borne in mind in applying these models that
no allowance is taken of irreversible evolutionary processes.
Only a simple augmentation of present-day masses of planets
in their current orbits is considered in predicting nebular surface
densities.

In the following sections, the early solar nebula is examined
by augmenting the planet’s present-day mass following the
prescriptions of Cameron (1962), Kusaka et al. (1970), and
Weidenschilling (1977). These three prescriptions give different
augmentation factors but are all reasonable approximations
considering the many uncertainties. In contrast to the method
used in the cited papers, the current approach avoids an a priori
choice of a surface area over which to apply the local aug-
mented planetary masses. Rather than using a more or less
arbitrary annular space over which the augmented planetary
mass acts, an approximate analytical curve is fit to cumulative
augmented planetary masses. Due to the unavoidable coarse-
ness of the augmented planetary masses and the scatter in the
planetary data, great precision is not to be expected, but im-
portant trends regarding radial surface density distributions are
revealed. The cumulative mass is a monotonically increasing
function that is essentially a first integral (smoothing process)
of the surface density distribution. The surface density is com-
puted directly from the quotient of the gradient of either the
empirical curve or the analytical expression with the disk’s
area variation.

2. SURFACE DENSITY APPROXIMATION FROM
PLANETARY MASSES

A useful standard for solar nebula modeling is the Hayshi
minimum-mass nebula (Hayashi 1981). It is an approximation
to the gas-dominated nebula, taking into account the primitive
composition of the solar disk. It expresses as a simple power
law , wherer is measured in AU. The total�3/2S(r) p 1700r
mass of the nebula is infinite in this formulation, so inner and
outer boundaries must be specified. For example, a value of
0.013 solar masses (M,) represents a power-law disk mass
between 0.35 and 36 AU.

Converting planetary data to surface densities is discussed
by Cameron (1962), Kusaka et al. (1970), and Weidenschilling
(1977). The mass of each planet is augmented by a ratio of
condensable mass to total mass representing the primitive com-
position of the preplanetary disk, although the implementation
is different in each case. In this manner an equivalent mass is
computed at each planet’s radial location. Next, a choice must
be made concerning the range of radii associated with each
planet. The ratio of this mass to an appropriate annular area is
the local surface density. However, such a procedure is critically
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TABLE 1
Basic Planetary Data and Cumulative Mass

Planet
Radius
(AU)

Mass
( )M�

Cumulative Mass
( )M�

Augumented Mass
( )M�

Augmented
Cumulative Mass

( )M�

Mercury . . . . . . . . . . 0.3871 0.0553 0.0553 18.433 18.433
Venus . . . . . . . . . . . . . 0.7233 0.815 0.8703 271.66 290.09
Earth . . . . . . . . . . . . . . 1 1 1.8702 333.33 623.43
Mars . . . . . . . . . . . . . . 1.5327 0.1074 1.9776 35.8 659.233
Jupiter . . . . . . . . . . . . 5.2028 317.894 319.87 3178.94 3838.17
Saturn . . . . . . . . . . . . . 9.5388 95.185 415.05 951.85 4790.02
Uranus. . . . . . . . . . . . 19.1914 14.537 429.59 855.11 5645.14
Neptune. . . . . . . . . . . 30.0611 17.132 446.72 1007.76 6652.90
Pluto/Kuiper . . . . . . 40 0.1499 446.87 15 6667.90

Fig. 1.—Distribution of cumulative mass growth in an early solar nebula
model. The triangles represent data from Kusaka et al. (1970), the circles data
from Cameron (1962), the short-dashed line the power-law nebula, the
long-dashed line the empirical transcendental curveM(r) p 0.00667[p/2 �

, and the solid line the solution of the evolution equation.�1tan (5/r � r/5)]

dependent on the choice of radial annulus over which the aug-
mented planetary mass is distributed.

The new approach used here is to compute planetary data as
a monotonically increasing augmented mass starting from the
central star. Relevant solar system data are shown in Table 1
using data from Kusaka et al. (1970) as an example. The third
and fourth columns are the mass and cumulative mass of the
planets as currently constituted, except that now Pluto is con-
sidered along with the Kuiper Belt (Jewitt & Luu 2000). The
cumulative solar system mass is 446.9M� (2.669# 1030 g or
0.00134M,), representing the mass of the entire solar system
excluding the (small) asteroid belt. The fifth column is the aug-
mented mass following Kusaka et al. (1970), and the final column
is the cumulative mass in the primitive solar system. It is
6668M� (0.0199M,) or about 15 times the current planetary
mass. The angular momentum of the existing planetary system
is 3.148# 1050 g cm2 s�1 (see Cox 2000). The augmented system
possesses an angular momentum of 5.349# 1051 g cm2 s�1

(0.379M, AU2 yr�1) or an augmentation factor of approximately
17.

The augmented cumulative mass in the last column of
Table 1 and similar data from Cameron (1962) and Weiden-
schilling (1977) will be used in two ways. First, it will be fit
to an approximating transcendental function and, second, to an
analytical solution of the nebula evolution equations. These

monotonically increasing curves are shown in Figure 1 (the
triangles and circles represent data from Table 1 and Cameron
1962, respectively, and error bar estimates are from Weiden-
schilling 1977). The only clear trend is the saturation effect at
large distances from the central star.

In the first approach, the cumulative mass was approximately
fit to a monotonically increasing function. Considering the slow
initial and final growth tendencies (a classical growth/saturation
effect not apparent in this logarithmic plot), an arc tangent
function was chosen with parameters that reasonably fit the
data. Such a curve is shown in Figure 1 as the long-dashed
line and is taken as .�1M(r) p 0.00667[p/2 � tan (5/r � r/5)]
The short-dashed line is the integrated 3/2 power law that over-
and underestimates the cumulative mass in the inner and outer
nebula. The terrestrial planets have the largest deviations
(which can possibly be associated with unknown migration
factors), but the transcendental curve seems to fit the gaseous
planets better than the minimum-mass model. Considering the
approximate nature of these augmented masses, this is probably
a reasonable indicator of the radial mass growth in the early
solar system. The associated surface density is easily found
from

dM dM/dr dM/dr
S(r) p p p . (1)

dA dA/dr 2pr

In the second approach, analytical solutions to the evolution
equation are used to approximate the surface density. In Davis
(2003), a solution for the evolving nebula is

3/2 4 381GM M G0 7/3
S(r, t) p

3 4/3˙�256pJ r(1 � 3M t/M )0 0 0

3/2 3 3 3/227GM M G r0 7/3# exp � , (2)[ ]3 ˙64J (1 � 3M t/M )0 0 0

whereGM is the product of the solar mass and the universal
gravitational constant (in astronomical units for the2GM p 4p
solar nebula); (a negative quantity), andJ0 are initial˙M , M0 0

nebula conditions representing mass, accretion rate, and angular
momentum, respectively; andG is the complete Gamma func-
tion of the indicated order. This formula is derived based on
the so-calledb-viscosity method that was shown in the afore-
mentioned reference to be generally equivalent to the often
useda-viscosity formulation. The numerical values ofa or b
are empirical constants constrained by observational data re-
garding the lifetimes of protoplanetary disks;b is of the order
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Fig. 2.—Surface density distributions in the early solar nebula. The symbols
and curves are the same as in Fig. 1.

10�6 to 10�5. Using the relation between andb from DavisṀ0

(2003), the surface density can be written in terms ofb instead
of :Ṁ0

3/2 4 381GM M G0 7/3
S(r, t) p

3 2 3 3 3 4/3�256pJ r[1 � (729GM M G /256J )bt]0 0 7/3 0

3/2 3 3 3/227GM M G r0 7/3# exp � .{ }3 2 3 3 364J [1 � (729GM M G /256J )bt]0 0 7/3 0

(3)

Note that the time evolution in equation (3) appears only as a
product, so the evolution time scales inversely tob. Furtherbt

simplifications are possible. According to Ruden & Lin (1986),
the early nebula quickly adjusts itself to a unique structure.
This structure is computed by expanding the above equation
for large to obtainbt

2/3 3/2 �4J 2 exp (�4r /27 GMbt)0

S(r, t) p , (4)
7/6 4/3�81GM p r(bt) G7/3

which does not depend on the initial mass but is directlyM0

proportional to the initial angular momentum . Further sim-J0

plify equation (4) by using the values ofGM for the solar
nebula and the mass augmented angular momentumJ p0

M, AU2 yr�1 results in0.379

3/20.000109 exp (�2r /27pbt)
S(r, t) p . (5)

4/3�r(bt)

The surface density now depends only on the parameter , butbt
its value can be fixed using the augmented mass of the nebula
in Table 1. The analytical expression for the instantaneous mass
is , which, after substituting for , is ex-�1/3˙M (1 � 3M t/M ) M0 0 0 0

panded for large and becomes . Equating this quan-bt 0.01937bt
tity to the value 0.0199M, (the last entry in the last column
of Table 1 in terms of solar mass) shows that . (Thisbt p 0.969
value is sufficiently large so that the approximation resulting in
eq. [4] is still valid.) Values ofb quoted above imply that the
nebula is being modeled att ∼ 105–106 yr in its evolution. The
final universal surface density is taken as equation (5) withbt
as indicated. The cumulative mass is easily found by in-M(r)
tegrating over elementary surface areas. Such a curve superposed
on the planetary data is shown in Figure 1 as the solid line. This
is a reasonable average overall fit. (Note that other distributions
can be obtained if the total mass parameter is allowed to vary.)
Also note that the cumulative mass for the Hayashi power-law
nebula increases as the square root ofr.

Finally, Figure 2 summarizes the surface density (in cgs
units) from the three sources described above. They are com-
pared with empirical surface density data (circles and triangles)

from Cameron (1988) and Kusaka et al. (1970). The latter paper
used Cameron’s data but doubled the final surface density (Nep-
tune is an exception since it had a different annular surface
area) and included Pluto. Weidenschilling (1977) gives a range
of surface densities using vertical bars. The surface density
computed from the transcendental fit curve in Figure 1 is shown
as the long-dashed line in Figure 2. It indicates the distribution
to be relatively flat to about 5 AU, after which it decays rapidly.
The Hayashi minimum-mass nebula (dashed line) is actually
a moderately good power-law fit to this albeit imprecise data,
but overpredicts the surface mass in the inner nebula, under-
predicts it in the outer nebula, and, as previously mentioned,
does not have a finite disk mass. Overall, the distribution of
surface density is clearly not a power-law fit, and the nebula
seems to have a sharp edge. In this regard Levison et al. (2004)
postulate an abrupt edge to the Kuiper Belt at 48 AU. The
analytical curve from equation (5) (the solid line in Fig. 2) also
generally follows the transcendental curve with an inner region
decay rate ofr�1/2 and a subsequent exponential decay.

In summary, the simple formula of equation (5), being a
bone fide solution of the disk evolution equation, is a reasonable
alternative for use in protoplanetary disk investigations. Not
only is it shown to be a good representation of an approximate
solar nebula, but its full form represented by equation (3) may
be useful for extrasolar nebulae since the only parameters re-
quired are the disk’s initial angular momentum and the mass
of the central star.
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