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ABSTRACT

The POINT-AGAPE collaboration surveyedM31with the primary goal of optical detection ofmicrolensing events,
yet its data catalog is also a prime source of light curves of variable and transient objects, including classical novae
(CNe). A reliable means of identification, combined with a thorough survey of the variable objects in M31, provides
an excellent opportunity to locate and study an entire galactic population of CNe. This paper presents a set of 440 neu-
ral networks, working in 44 committees, designed specifically to identify fast CNe. The networks are developed using
training sets consisting of simulated novae and POINT-AGAPE light curves in a novel variation on K-fold cross val-
idation and use the binned, normalized power spectra of the light curves as input units. The networks successfully
identify 9 of the 13 previously identifiedM31CNewithin their optimal working range (and11 out of 13 if the network
error bars are taken into account). The networks provide a catalogue of 19 new candidate fast CNe, of which four are
strongly favored.

Key words: galaxies: individual (M31) — methods: numerical — novae, cataclysmic variables —
stars: variables: other

1. INTRODUCTION

One of the greatest advances of modern experimental as-
trophysics is the automation of photometric surveys, which al-
lows massive amounts of data to be gathered systematically,
efficiently, and with the minimum need for human intervention.
Such surveys scour large regions of the sky, carefully searching
for a wide variety of rare objects and phenomena such as mi-
crolensing events (surveys like OGLE, MACHO, and EROS),
gamma-ray burst optical counterparts (ROTSE), extrasolar plan-
etary transits (SuperWASP), and near-Earth objects (NEAT). These
surveys have provided the scientific community with invaluable
information and resulted in many new discoveries, yet they have
also left us with a new (and very welcome) problem: how can we
sort through the vast data catalogs to reliably filter out objects of
interest?

The raw data produced by these surveys are simply collec-
tions of the light curves of the objects found in the survey’s field
of detection. Transient objects hold particular interest for a long
list of fields, including cosmology (SNe Ia), single and binary
stellar evolution (SNe and cataclysmic variables, respectively),
and dark matter studies (microlensing). They are generally rare
and have short lifetimes and so must be identified and studied
quickly. The sheer size of such data sets means that such tran-
sient objects are inevitably present in the catalogs; however,
there is still a pressing need to detect objects swiftly and reliably

for further study or follow-up. A number of researchers have ar-
gued that neural networks may provide a viable solution to this
problem (Wozniak et al. 2001; Belokurov et al. 2003, 2004; Brett
et al. 2004). Neural networks have already been proven to be use-
ful pattern-recognition tools in astrophysical applications such as
galaxy (Lahav et al. 1996) and stellar spectra (Bailer-Jones1997)
classification. They are highly adaptable, easy, and quick to use,
but perhaps their most relevant asset in this application is their
ability to attach a probability to their classification of an object,
thus allowing the user to prioritize their further study.
The contribution of this paper is to provide working neural

networks for the detection of classical novae (CNe). These
are close interacting binary stars, consisting of a white dwarf
primary and a cool red dwarf secondary. The secondary star
overflows its Roche lobe and loses mass to the primary. Very
occasionally, runaway thermonuclear burning of the degenerate
layer of hydrogen accreted by the white dwarf can cause a nova
outburst. The nova’s brightness rises rapidly to an absolute
magnitude of between�6 and�9 before slowly fading back to
quiescence. Much remains unknown concerning the abundance
and distribution of nova in galaxies because of the lack of
systematic surveys. So, there is a need for fully automated, and
less subjective, selection of candidate CNe so that more soundly
based conclusions concerning the nova rate and distributions
can be drawn. Darnley et al. (2004) have already devised one
possible systematic algorithm. Here we provide an alternative
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to the method of Darnley et al. using a novel application of neu-
ral networks.

The paper is organized as follows. In x 2, the data set through
which we search for CNe light curves is described. This is de-
rived from the POINT-AGAPE microlensing experiment toward
M31. Although the primary aim of this experiment is to find mi-
crolensing events, the data set of varying light curves is a rich re-
source for the study of variable stars towardM31 (An et al. 2004).
Section 3 discusses the properties of nova light curves and sum-
marizes previous work to find CNe inM31. Next, x 4 provides a
short introduction to neural networks for the astronomical user.
Section 5 describes the preprocessing and the architecture of neu-
ral networks to identify CNe, while x 6 describes the computa-
tions. The nova catalog obtained by the networks is presented in
x 7.

2. THE LIGHT-CURVE DATA SET

The data used in this paper were gathered by the POINT-
AGAPE collaboration working with the Wide Field Camera
(WFC) mounted on the 2.5 m Isaac Newton Telescope (INT)
on La Palma. The collaboration took images of the Andromeda
Galaxy (M31) over the course of three observing seasons (1999–
2001), searching for evidence of microlensing events (Aurière
et al. 2001; Paulin-Henriksson et al. 2002, 2003; Belokurov et al.
2005). For 1 hr of each observing night, the WFC was used to
take images of M31 over two fields to the north and south of
M31’s central bulge, with each field image formed using the four
4100 ; 2048 CCDs that make up theWFC (see Fig. 1 of An et al.
2004). The raw data produced by the POINT-AGAPE collab-
oration then consisted of light curves generated from the flux
gathered in three passbands by individual pixels in each field
image. The passbands used were denoted g, r, and i and are
similar to those used by the Sloan Digital Sky Survey. The M31
fields are mainly composed of unresolved stars, and the effects of
seeing from epoch to epoch are substantial. In order to build light
curves, we use the superpixel method to ensure that the same
fraction of flux falls within the window function, irrespective of
seeing (Melchior et al. 1999; Ansari et al. 1999; Le Du 2000).
This provides superpixel light curves (7 ; 7 pixels in size). Each
pixel is 0B33 on a side, so the 7 ; 7 superpixel is 2B3 on a side.
This matches the typically worst seeing at the INT site, which is
about 200. The superpixel light curves are then cleaned (for de-
tails, see Irwin & Lewis [2001] and An et al. [2004]); a mask of
the known CCD defects was constructed, together with regions
around all resolved stars detected in the reference frame. After
masking, 44,635 variable superpixel r-band light curves re-
mained, and this is the catalog throughwhichwe search for nova-
like light curves.

Although the collaboration produced a very large amount of
data and thus greatly increased the chances of discovering new
objects, there are two complicating factors that slightly reduce
the data’s quality and ease of analysis. First, the observations
were carried out over the course of three seasons. These seasons
correspond to the periods in which M31 was visible from the
Northern Hemisphere and mean that the light curves are sam-
pled in runs of�150 days, with�200 day gaps (see Fig. 1 for an
illustration of the sampling). Three other factors, the limited
mounting of the WFC, the limited scheduled observing time on
the INT, and the weather, result in the sampled runs consisting
of well-sampled periods typically lasting 1–2 weeks, separated
by very poorly sampled periods lasting 1–3 weeks. Second, the
large distance of M31 means that in most cases single stars are
not resolved by the INT. This means that the superpixel light
curves almost always consist of flux produced by more than one
star, which could result in very exotic light curves, hence lim-
iting our ability to classify objects.

3. CLASSICAL NOVAE IN M31

In CNe, the cool red dwarf secondary overflows its Roche lobe
and loses mass to the primary white dwarf. This mass builds up
in an accretion disk before falling onto the surface of the white
dwarf (see, e.g., Bode & Evans 1989). The main feature of nova
light curves is a single outburst,1 typically increasing the abso-
lute magnitude of the nova to between�6 and�9 before slowly
(compared to the initial rise) fading back to the quiescent state.
These CN outbursts are caused by the runaway thermonuclear
burning of the degenerate layer of hydrogen accreted by the
white dwarf. Once a critical amount of hydrogen has been ac-
creted, it begins to burn via the CNO cycle, precipitating ther-
monuclear runaway and resulting in the ejection of the accreted
layer on the white dwarf surface. This explosion and ejection are
accompanied by an intense brightening, followed by a gradual
decay back to quiescence.

The progress of the nova outburst depends on several pa-
rameters, including the mass accretion rate from the secondary
and the temperature and mass of the white dwarf (e.g., Prialnik
&Kovetz 1995). The outbursts therefore vary from system to sys-
tem, as shown by the rich variety of CNe light curves in Sterken&
Jaschek (1996). However, it is possible to divide novae into speed
classes according to the time (t2) taken to decline by 2 mag from
maximum light, the two main classes being fast (t2 < 80 days)

Fig. 1.—Left: Light curve of a slow nova inM31, as identified by Darnley et al. (2004; ID: PACN-00-02). Note the decay fluctuations in the declining part of the light
curve. Right: Light curve of a fast nova in M31, as identified by Darnley et al. ( ID: PACN-00-06) and An et al. (2004; ID: 77716).

1 CNe are required to have had only one major outburst in historic times. A
few CNe in quiescence show smaller outbursts, similar to those in dwarf novae,
caused by changes in mass flux through the accretion disk.
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and slow (t2 > 80 days) novae (e.g., Payne-Gaposchkin 1957).
Fast novae rise rapidly to maximum light, taking 1–2 days, and
generally have relatively smooth initial decays with only small
fluctuations in their early light curves. Slow novae, on the other
hand, can take much longer to reach maximum light and usually
have more erratic light-curve decays, with strong fluctuations ca-
pable of producing secondarymaxima of varying strengths during
initial decline. Furthermore, the maximum absolute magnitudes
of CNe are correlated to the rate of their decline, which, coupled
with their high luminosities, makes CNe potentially important
standard candles (Hubble 1929; Cohen 1985). Figure 1 shows
the light curves of a slow and fast nova, as previously found in
M31.

The light curves of CNe share many features with the light-
curve peaks of dwarf novae and recurrent novae. The main
distinguishing feature in the light curves of these objects is that
dwarf and recurrent novae undergo repeated outbursts. How-
ever, the periods between outbursts and the gaps in the POINT-
AGAPE sampling could lead to only one peak of a dwarf or
recurrent nova light curve being sampled. Hence, we may pick
up some stray dwarf or recurrent novae in our final catalog.
Dwarf nova outbursts are not detectable in M31. However, they
may be present in the POINT-AGAPE catalog as foreground
objects, although even this has a very low probability.

Dedicated nova searches of M31 have been carried out ever
since Hubble first did so in 1929 (see Table 1 of Darnley et al.
[2004] for a list of papers). Very recently, Darnley et al. (2004)
and An et al. (2004) have published CNe light curves from the
POINT-AGAPE catalog. Darnley et al. (2004) used a pipeline
(see Table 3 in their paper) to filter out novae independently
of any prior knowledge. This pipeline first selected only ob-
jects (defined to be resolved structures with fluxes significantly
higher than the local median) present in five consecutive ob-
servations, to remove rapid variations. The catalog was further
pruned by selecting against periodicity, requiring an adequately
sampled primary peak and any secondary peak to be an ac-
ceptable size. The remaining candidates were finally required to
fit data, rate of decline, color, and color-magnitude criteria be-
fore being accepted as nova candidates. An et al. (2004) were
primarily interested in the cataloging of the variable stars in the
POINT-AGAPE data set. They first constructed a catalog of var-
iable objects by selecting only (suitably cleaned, masked, etc.)
superpixel light curves with deviations from their baseline sig-
nificant enough in size and duration. Novae were then located
by looking for variable objects matching (within a 300 error cir-
cle) the positions of novae as published in IAU Circulars. Using
these methods, Darnley et al. (2004) gave 20 novae and An et al.
(2004) 12 novae light curves, with seven novae common to both
papers.

4. AN INFORMAL INTRODUCTION
TO NEURAL NETWORKS

This section is intended as a brief introduction to the basics
of neural network structure and use as they apply to this paper
(for more details, consult Bishop [1995] and MacKay [2003]).
Neural networks are pattern recognition tools composed of
neurons (or units) arranged in layers. Neurons come in three
types: input, hidden, and output. The structure of the networks
used in this paper is one layer of input units, one layer of hidden
units, and one layer of output units. The neurons in neighboring
layers are fully connected with each other, and these connec-
tions have assigned to them adaptive weights that are used to
calculate the response of a specific neuron to its inputs. The
input data are taken as the values of the input units, and the

value of each hidden unit is then given by the sum over all
connections of the activation value on each input unit, weighted
by the weight on the connection. These activation values are
calculated using an activation function acting on the value of
the unit. The values of the output units are calculated in a similar
fashion, except the sum is performed over all connections be-
tween the output unit in question and the hidden units. In this
paper, the activation function is chosen to be the logistic func-
tion, which allows the outputs to be interpreted as a posteriori
probabilities.
Before all this can happen, the network must be trained in or-

der to determine the weights. The weights are initially random-
ized, and the network is presented with a training set, made up of
sets of input values (called patterns) for which the desired out-
puts are known. The outputs produced by the randomly weighted
net are compared to the desired values, and the network per-
formance on all patterns is quantified using an error function,
namely, the cross entropy error (Bishop 1995; Belokurov et al.
2004). A learning function then uses these errors in conjunction
with the values of the hidden units and the hidden-to-output layer
weights in order to update the weights and hence reduce the
output errors. The errors are also propagated back up to the input-
to-hidden layer weights so as to update these weights with the
same goal in mind. This whole process, called back-propagation,
is carried out a number of times (called epochs) until the desired
network performance is reached. With most choices of learning
function, it is possible for the network to become overtrained on
the training set, with the result that performance on a more gen-
eral set of inputs is reduced. In this paper, a special learning func-
tion (see x 5.4) is used to avoid this problem.
The process behind training neural networks is the minimi-

zation of the error function (as applied to the training set) with
respect to the adaptive weights within the network. This error
function may not have just a global minimum in the multidi-
mensional weight space but could have a number of local min-
ima instead. In any case, networks trained using the exact same
training set for the same number of epochs but using different ini-
tial weights (and therefore different starting points in this space)
will converge to slightly different final weights. In the case of
multiple minima, this means that networks can follow different
error minimization paths into entirely separate minima, some of
which might classify the general set (as opposed to the training
set) much better than others. We can turn this fact to our advan-
tage by using network committees (see Bishop [1995], xx 9.6 and
10.7), produced by training groups of networks on the same train-
ing set but with initial weights randomly chosen from a range of
values. These networks therefore sample a region (rather than a
point) of the weight space around the error function minimum/a
and hence produce a range of results when classifying the final
test set. The results can then be averaged out over the committee
to take account of a whole range of network ‘‘opinions,’’ making
sure poor quality networks stuck in high-error minima do not
overly affect the results.

5. NETWORK PREPARATION

5.1. The Training Set

The ideal training set should contain examples of all forms of
stellar variability we expect the networks to encounter, along
with as many examples of nova light curves as possible. The
usual process is to build the training set from a comprehensive
selection of example nova and variable star light curves taken
from existing data catalogs. We do not do this for two reasons.
First, there are not enoughwell-sampled nova light curves in the

FEENEY ET AL.86 Vol. 130



g, r, and i bands in the standard catalogs for our purposes. There-
fore, we are obliged to simulate nova light curves from tem-
plates. Second, all of the other forms of variability needed for
the training set are already present in the POINT-AGAPE cat-
alog, and we can therefore use the data set itself to provide the
nonnova examples required to build the training set, using a var-
iation on a technique called K-fold cross validation (see below
and Bishop 1995, x 9.8.1).

InK-fold cross validation, the data set is first partitioned intoK
separate segments. A network is then trained using a training set
containing all of the data from K �1 segments before being
tested on the remaining segment. This process is then repeated,
each time choosing a different segment to be left out of the train-
ing set, until allK choices for the omitted segment have been cov-
ered. The test errors are then averaged out over all K results to
create a much more robust estimate of the network performance,
hence providing one of the two main advantages of using this
technique. The second advantage is that all of the examples in the
data set are used in both training and testing, in effect creating a
large training set without the need for any ‘‘external’’ data. The
major disadvantages are that the training processmust be repeated
K times, and that some or all of the training sets will contain nova-
type light curves present in the catalog falsely identified as non-
nova objects. We therefore use a new variation on the technique,
training networks using just one data segment before testing the
networks on the remaining K �1 segments. We believe this is
advantageous, as it reduces both processing time and the risk of
training set contamination while still retaining the benefits of
normal K-fold cross validation.

The final form for the training set is 1000 simulated nova
light curves, assigned desired output probabilities of 1, and
1000 randomly chosen POINT-AGAPE light curves, with de-
sired output probability 0. The decision to use exactly 1000
POINT-AGAPE light curves is a compromise: 1000 POINT-
AGAPE light curves should include a sufficient cross section of
the forms of variability while greatly reducing individual train-
ing times and keeping the number of falsely classified nova
examples down toO(1) per training set.2 The main drawback to
using 1000 POINT-AGAPE light curves is that the training
process must be repeated�40 times and is therefore quite slow.
The number of nova examples is chosen to overwhelm any
falsely classified novae and also to create networks biased to-
ward producing false positives rather than false negatives.
Overrepresenting the novae (as compared to their natural fre-
quency) in the training set increases the prior probability of
finding a nova in the set, and hence training using such sets
produces networks that are much more likely to misclassify
nonnovae as novae than vice versa (see x 6.2). This is exactly
the trend required considering that we are trying to locate a very
rare phenomenon. Of course, the drawback to permitting more
false positives than false negatives is that an additional algo-
rithm may be needed after the neural network search to root out
the contaminants.

5.2. Nova Templates

Six novae identified by An et al. (2004) (see Table 1) are
chosen as templates. They are selected as having well-sampled
peaks with intermediate decay timescales; their half-widths at
5% of maximum light (an indication of the total length of the
decay) are all in the range 40–100 days. Three other novae (An

et al. IDs 26277, 78668, and 83479) were also originally in-
cluded as templates, but their inclusion reduced the consistency
(in terms of both decay timescale and shape) of the simulated
portion of the training set and resulted in poor final network
performance. Note that, because of the limited timescales cov-
ered by the templates and the differences in the light curves of
CNe of different speed classes, we expect our networks to suffer
when asked to classify novae with much longer or shorter time-
scales. The template light curves are fitted using a model func-
tion consisting of a flat background, a steep linear rise, and a
function f (t) of the form shown below to match the decay:

f (t) ¼ A1 exp
�(t � tm)

�1

� �
þ A2 exp

�(t � tm)

�2

� �
þ B; ð1Þ

where Ai are the relative sizes of the exponentials, tm is the time
of maximum light, � i are the exponential decay timescales, and
B is the value of the background flux. Figure 2 shows an ex-
ample of such a model function.

To create the 1000 simulated novae, we repeat the following
procedure. First, a random template is selected, and its peak is
shifted randomly in time within the time limits of the POINT-
AGAPE measurements. A POINT-AGAPE light curve is then
chosen at random from the catalog, and its sampling times are
used to sample the newly shifted model function. At this point,
we require that there are at least 10 sampling times present in the
first 30 days after the peak time of the shifted model, to ensure
that enough of a signal is present.3 A small amount of Gaussian
noise is then added to the sampled, shifted model in order to
create simulated novae light curves that are as similar in form as
possible to the original novae (see Fig. 2).

5.3. Preprocessing and Network Inputs

The computational power required to use a network grows
quickly with each added input. It is therefore usual to prepro-
cess the light curves, that is, to extract a small number of fea-
tures from the data to use as inputs. In this paper, we reduce each
light curve to its power spectrum before binning and suitably
normalizing both the individual power spectra and the training
set as a whole (Belokurov et al. 2003, 2004).

The first reason for reducing the data to their power spectra
is that the features that distinguish the nova-type light curves
from the other forms of variability—i.e., the event timescales,
the singular nature of the eruptions, and the shape of the nova

3 Without this requirement, many of the simulated nova light curves have
very small peaks (or none at all). There was, therefore, a large constituent group
of the training set whose light curves were dominated by the random Gaussian
fluctuations we added, and so the networks simply learned to recognize these
light curves instead of the nova-like light curves.

TABLE 1

An et al. (2004) and Darnley et al. (2004) Identification Numbers

of the Template Novae, along with Estimates of Decay Time

An et al. ID Darnley et al. ID

Half-Width at 5% of Max. Light

(days)

25851....................... PACN-99-05 64.8

26021....................... PACN-00-04 59.8

26946....................... Not present 72.7

77324....................... PACN-01-06 99.6

77716....................... PACN-00-06 45.5

83835....................... Not present 42.0

2 There are �40,000 light curves in the catalog, with O(20) true nova ex-
amples present. Hence, choosing 1000 POINT-AGAPE examples per training set
gives �0.5 false nova-type light curves per set.
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peaks—all manifest themselves in the power spectrum. To see
this, consider a simplified nova eruption as a top-hat function of
width w. The Fourier transform of a top-hat function of width
w in positive frequency space is (half ) a sinc function, with a
central peak of half-width �/w. Hence, we expect that the power
spectra of our actual nova eruptions with decay timescales �
to be distortions of sinc functions with central peaks of widths
of the order of �/� . From this line of reasoning, we expect
the almost singular nature of the nova eruptions to make their
power spectra sinclike, with the individual timescales affecting
the widths of the sinc peaks and the shapes of the outbursts dis-
torting the power spectra as a whole. Some evidence for this can
be found in Figure 3, which shows that the nova power spec-
tra do indeed resemble sinc functions with roughly correct peak
widths.

A further reason for choosing the power spectrum is that the
features we wish to select against, such as periodicity or random
variations, should also manifest themselves in the power spectra
of the nonnova objects. The power spectrum is also invariant
under time translation of the initial light curve. Furthermore, the
power spectrum is easily binned, which allows for the reduction
in dimensionality to produce practical networks, although care
must be taken to ensure that too much information is not lost. Be-
cause of the uneven time sampling of the POINT-AGAPE light
curves, we used the Lomb-Scargle periodogram (Press et al.
1992) to calculate the power spectra. The power spectra are de-
termined in the frequency range 0–0.3 day�1, as this range of
values contains a significant number of CNe power spectrum
features. The power spectra are all binned into 50 constant width
bins, as this results in a manageable number of network inputs
but still retains the resolution of the original power spectra.

The next preprocessing technique is to normalize each in-
dividual binned power spectrum. This has two positive effects:
first, it ensures that all of the inputs are consistently drawn from
within the same range (from zero to one), and second, it reduces
the chances of the networks classifying two differently shaped
power spectra simply because they contain a similar size peak.
Normalizing the individual light curves helps the networks
classify objects by the shapes of their power spectra, rather than
the size of any peaks the power spectra contain. An example of a
binned normalized nova power spectrum as it appears at this
stage of preprocessing is shown in Figure 3.

The last preprocessing technique is to shift the first input of
each pattern in the training set by the mean of all the first inputs

and then scale it by dividing by the standard deviation of all of
the first inputs. This is repeated for each input, so that all of the
networks’ inputs are not only drawn from the same range but
also have comparable magnitudes, which forces the networks
into classifying the set using all of the inputs provided. As an
illustrative example, prior to the introduction of this technique,
the nova power spectrum typically has low-frequency bin pow-
ers a factor of 102 greater than its high-frequency bin powers
(see Fig. 3). Now we would consider a 10% variation in the
power in any bin to be equally important, but a 10% variation in
a high-frequency bin would appear to the networks to be much
less important than a 10% variation in a low-frequency bin. By
scaling the inputs as described, the networks classify using the
relative, and not absolute, sizes of bin power variations between
different objects.

5.4. Network Architecture

The networks used in this paper are all created using the
Stuttgart Neural Network Simulator4 and are made up of one
layer of 50 input units, one layer of 24 hidden units, and one
layer consisting of one output unit. (The reasons behind this
choice are given shortly.) The units in the hidden layer are fully
connected to both the input and output layers, and the value of
the output unit gives the a posteriori probability that the subject
light curve is a nova, given the weights and the inputs calculated
for the subject. Our networks use as a learning function resilient
back-propagation with adaptive weight decay (RpropMAP).
Particularly high adaptive weights correspond to very strong
pattern recognition and therefore tend to suggest overfitting of
the training set. During the training process, RpropMAP there-
fore automatically allows the highest weights to decay intelli-
gently so as to keep the network as generally applicable as
possible. Hence, when using RpropMAP, there is no need for
the validation process required by other learning functions. (A
much fuller explanation can be found in Bishop [1995], xx 9
and 10.)
The last choice to make is the number of units. Choosing

the number of input and output units is straightforward: these
numbers are simply determined by the number of inputs (in our
case, 50) and outputs (in our case, one) that the networks re-
ceive and produce, respectively. However, in tasks such as this,

4 See http://www-ra.informatik.uni-tuebingen.de/SNNS.

Fig. 3.—Binned, normalized power spectrum (prior to full training set
normalization) of a nova light curve. Higher bin numbers correspond to higher
frequencies.

Fig. 2.—Model function for template nova 26021, along with simulated light
curve.
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it is impossible to choose the required number of hidden units
NH theoretically. Instead, NH must be determined experimen-
tally, by examining the behavior of the errors produced by
networks of differing NH in classifying the training set and a
new test set (same form as the training set but totally new light
curves).

We expect both the training and test errors to decrease at first
with increasing NH . Low-NH networks are very simple, so in-
creasing the number of hidden units increases the network’s com-
plexity and hence ability to map the decision boundary between
the classes of object. However, for some values of NH , we ex-
pect the behavior of the training and test errors to diverge, with
the training error continuing to decrease but the test error either
leveling off or beginning to rise. This differing behavior occurs
because the networks have become complex enough to start to
overtrain on the training set. The final number of hidden units is
therefore chosen to be the value of NH at which the training and
test error behaviors diverge, as this gives the best general net-
work performance.

A plot of the mean errors produced by our networks in
classifying the training and test sets against NH is shown in
Figure 4. These results are produced by training committees of
10 networks for each value of NH , with each network given
initial weights drawn randomly from the range�3 to 3. The net-
works are trained for 1000 epochs, after which the final errors in
classifying the training set are recorded. The trained networks
are then each tested using the same test set. The training and test
errors are finally averaged out over each committee, thereby pro-
vidingmean values to represent more reliably the performance of
the different size networks. The standard deviations are also
computed to give some idea of the mean error spread.

The first feature to note in Figure 4 is that the test error values
are all significantly larger than their corresponding training er-
rors. This is because there are likely to be numerous light curves
in the test set of which there are no similar examples in the train-
ing set, because of the random selection of the POINT-AGAPE
light curves included in each set. This increases the risks of mis-
classification. The most important information to take from the
plot is the behavior of the errors. For small values of NH, the
behavior of both the training and test errors is very similar, as
expected. For NH between 20 and 25, however, the behavior of
the two errors begins to differ: the training error continues de-
creasing asymptotically, whereas the test error levels out within

its error bars. We therefore use 24 hidden units in the networks
to produce our final results.

6. PRODUCTION OF FINAL RESULTS

6.1. The Network Probabilities

Forty-four committees consisting of 10 networks, each with
50 input units, 24 hidden units, and one output unit, are created
with random initial weights. These networks are trained using
training sets as described in x 5.1 for 1000 epochs, taking care to
record the POINT-AGAPE light curves used and the 50 input
means and standard deviations (as described at the end of x 5.3)
for each training set. The trained networks are then used to clas-
sify two data sets, which are preprocessed in the same fashion
as the training set but are normalized using the input means and
standard deviations specific to each committee. The first data
set is the cleaned POINT-AGAPE catalog, and the second con-
sists of all of the novae identified by An et al. (2004) and Darnley
et al. (2004) missing from the catalog, as listed in Table 2. The
initial form of the results is therefore a set of 440 probabilities
for each POINT-AGAPE object and each previously identified
nova. Each object’s results are first averaged out over the 10
networks in each committee, producing 44 committee proba-
bilities and errors for each object, before these values are av-
eraged over the committees. The POINT-AGAPE objects’
probabilities and errors are averaged out over only those com-
mittees in whose training sets they did not feature, whereas
the previously identified novae’s values are averaged over all
44 committees.

6.2. Decision Boundary Determination

The final task is to set the decision boundary for classifica-
tion, that is, to determine the probability value an object must
exceed in order to be classified as a CN. This requires the net-
work’s performance to be quantified in terms of numbers of
false positives (POINT-AGAPEobjects with probabilities greater
than that of the decision boundary) and negatives (simulated no-
vae with probabilities less than that of the decision boundary) for
a range of decision boundary choices. The decision boundary is
chosen so as to optimize the rates at which these false classifi-
cations occur.

Fig. 4.—Errors in training and test sets for a range of numbers of hidden
units. (SSE stands for the sum of the squared errors of all outputs.) Note that test
set errors have been shifted down by 100 to aid comparison.

TABLE 2

Identification Numbers of the M31 Novae, as Identified

by Darnley et al. (2004), An et al. (2004), or Both,

Missing from Cleaned Data Set

An et al. ID Darnley et al. ID

10889................................................... PACN-99-01a

28862................................................... PACN-99-02a

82483................................................... PACN-99-03a

93392................................................... PACN-99-04a

49835................................................... PACN-99-07a

26946b ................................................. PACN-00-01b

83835b ................................................. PACN-01-02b

26277c ................................................. . . .

26285c ................................................. . . .

78668c ................................................. . . .
79136c ................................................. . . .

Note.—Ellipses indicate no ID available.
a Nova identified by Darnley et al. (2004).
b Nova identified by both Darnley et al. (2004) and An

et al. (2004).
c Nova identified by An et al. (2004).
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First, a test set is produced using 1000 new simulated novae
and the POINT-AGAPE light curves used to train one network
committee. The test set was then preprocessed and classified
by the other committees, and the results were averaged out in
the same way as the POINT-AGAPE catalog results in x 6.1.
The decision boundary probability pdb is set at different prob-
ability values between 0 and 1 and the numbers of false posi-
tivesNfp(test) and negativesNfn(test) for the test set determined.
The results are plotted in Figure 5.

If, in our catalog, the number of nonnova objects N tot
var(cat)

were approximately equal to the number of novae N tot
nov(cat),

the standard procedure would be to choose the decision bound-
ary such that the rates of false positives and negatives are
equal. In actuality, however, we expect N tot

var(cat)� 44;600 and
N tot

nov(cat)� 20. This means that if the decision boundary were
chosen to be the point at which the rates rfp(test) and rfn(test)
were equal (i.e., rfp(test) ¼ rfn(test)� 0:025), then the number
of expected false positives is �1100, much bigger than the
number of true novae expected. The choice of decision bound-
ary must therefore be taken to minimize the number of false
positives while ensuring that most novae are still detected. Ac-
cordingly, the decision boundary probability is fixed to be 0.95.
At this value, rfn(test)� 0:2 from Figure 5, so we expect 20% of
the true novae to bemissed. No value for rfp(test) is available for
this pdb (probably because the test set was too small to contain
any POINT-AGAPE objects with outputs as high as 0.95); how-
ever, an upper bound on the value can be found by taking the
last nonzero value, which is �0.001. For this decision bound-
ary, we therefore expect<45 false positives, a much more man-
ageable number comparable to the total number of true novae
expected.

7. THE NOVA CATALOG

The nova catalog comprises 47 objects classified by the net-
works as having probabilities greater than 0.95 of being novae
and is made up of nine previously identified novae (discussed in
x 7.1), 19 new nova candidates, and 19 probable contaminants
(all discussed in x 7.2).

7.1. Previously Identified Novae

The average probabilities produced for the 25 CNe previ-
ously identified by An et al. (2004) and Darnley et al. (2004) are
shown in Table 3. Also included in this table are two decay
timescales: the half-widths of the peaks at 1/e and 5% of max-

imum light (te and t5%, respectively), chosen to give an indi-
cation of the timescale of the initial (te) and overall (t5%) decay.
The networks trained in this paper correctly identify nine of the
novae (using the criterion from x 6.2), with three further novae
falling within their probability errors’ distance of the classifi-
cation cutoff. A plot of the probabilities assigned to the 25
novae against their 5% timescales is shown in Figure 6. Ex-
amination of this plot indicates two main trends in the data. The
first trend is that the novae that are classified with higher prob-
abilities also have much smaller probability errors than the mis-
classified novae. The poorly classified (probabilities of 0.7 and
lower) novae in particular are therefore classified much bet-
ter by some networks than others, which suggests that their
power spectra are being confused. The confusion could be be-
cause the power spectra of these objects are similar to those of
POINT-AGAPE objects present in only some networks’ train-
ing sets or because the networks have never seen this form of
nova before.
The second trend is that novae with t5% in the range 30–

140 days are generally classified much better than those outside
the range, apart from three exceptions in the range (IDs 10739,
14026, and 50100; specifically marked in Fig. 6) and one out-
side (ID 50081). On closer inspection of the exceptions within
the range, reasons for their misclassification become apparent.
The light curve of nova 50100 has a very significant second peak
and even some evidence for a third, as well as a confusing bump
in the later part of the light curve. We therefore do not expect to
classify this object well. Light curve 14026 actually has a much
slower decay than is indicated by its t5% value (the reason behind
this being its poorly sampled decay) and so should be located fur-
ther right in the plot. Its light curve also features a second bump
in the early stages of its decay. Light curve 10739 at first appears
to be ideal for our networks, but its peak is poorly sampled near
maximum. This seems to hinder the Lomb periodogram, as nova
10739’s power spectrumcontains large amounts of high-frequency
noise. These objects, therefore, should either really not be found
in this region of the plot or possess features that make them differ
from the template nova light curves our networks are trained to
recognize.
Discarding these objects, the networks correctly identify 8 out

of the 13 novae found in the preferred t5% range (�62% effi-
ciency). Allowing for the error bars on the network outputs, a
further three novae fall above the decision boundary (�92% ef-
ficiency). Therefore, the networks can be reliably used to rec-
ognize typical novae with timescales in the range 30 days <
t
5%P140 days but not outside this range. Note that this range
is actually slightly larger than the range of timescales used in
the template light curves (i.e., 40 days < t

5%
< 100 days), as

the networks can generalize to some extent. The rapid falloff
of the network’s response for novae with t5% much greater than
100 days is to be expected, as slow CNe are much more likely
than fast CNe to have decay fluctuations and secondary peaks
and hence be significantly different to the template novae. The
low-t5% falloff of the network’s response is also expected, as it
corresponds to the power spectrum range becoming too small to
fit in themain features of the novae’s sinclike power spectra (see
x 5.3). These falloffs mean that in order to recognize novae with
t5% values outside of the preferred range, we will have to alter
the preprocessing techniques.
Additionally, one further nova outside the preferred time-

scale range is detected. We note that the positive classification
of light curve 50081 is highly inconsistent with the results for
other slow novae. Its light curve is well sampled and clearly
belongs to a very slow nova, and yet its power spectrum appears

Fig. 5.—Rates of false positive and negative classifications for a range of
decision boundary probability values.
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to be recognizable to the neural networks. We currently have no
explanation as to why the networks should pick it up, as nothing
comparable to it appears in the training set, but as it appears in a
region where little response is expected, it is more of an added
bonus than a troubling anomaly.5

7.2. New Nova Candidates

The nova catalog also contains 19 light curves, which, on
inspection, are either recognizable as novae or exhibit some nova
characteristics and hence can be classified as candidates for
newly discovered novae. The IDs, locations, and probabilities of
these 19 candidates are listed in Table 4, while their light curves
are displayed in Figure 7.

The candidates can be roughly separated into four groups
according to which nova features they exhibit. The first group
consists of 1430, 42808, 50177, and 74935. Their light curves
contain most or all of the desired features and hence make ex-
cellent nova candidates. The second group has light curves in
which only the first fewmeasurements of a rise toward a peak are
present (IDs 58826, 66538, 73732, 80951, and 92933), with no
sampling of the decay. The third group has light curves with sam-
ples present that suggest some form of decay from a peak but no
measurements of the rise or peak itself (IDs 2973, 86283, 88205,
89701, 93095, and 95935). The fourth group has light curves that
feature prominent, sharp peaks but not much clear evidence for
the characteristic nova rise or decay (IDs 6251, 39995, 42075,
and 86234) and which could therefore be very fast novae or sim-
ply instrumental defects. It is difficult to say for certain that ob-
jects in these three groups are novae without more data. The
locations of the 19 candidates in Table 4, together with the nine
candidates in Table 3, are shown in Figure 8, superposed on the
optical isophotes of M31. These are all the candidates with a
network probability >0.95.

The difference images of all 19 candidates have been ex-
amined, and the point-spread functions (PSFs) constructed. If

Fig. 6.—Nova probability vs. 5% timescale for the 25 previously identified
novae. The region within which the highest nova sensitivity is reached is in-
dicated with dashed lines.

TABLE 3

Probability Values Assigned to Novae Previously Located by Darnley et al. (2004), An et al. (2004), or Both

Object’s An et al. ID Object’s Darnley et al. ID

Half-Width at 1/e of Max. Light

(days)

Half-Width at 5% of Max. Light

(days) Averaged Network Response

10889................................ PACN-99-01ae 10.8 99.3 0.863 � 0.061

28862................................ PACN-99-02ae 55.9 291.1 0.253 � 0.106

82483................................ PACN-99-03ae 13.2 38.3 0.849 � 0.073

93392................................ PACN-99-04ae 24.3 267.6 0.423 � 0.124

25851b .............................. PACN-99-05b 7.8 64.8 0.977 � 0.012c

10739................................ PACN-99-06a 13.2 54.0 0.611 � 0.152

49835................................ PACN-99-07ae 28.6 178.5 0.710 � 0.160

26946b .............................. PACN-00-01b 19.2 72.7 0.961 � 0.017c

50081................................ PACN-00-02a 72.4 433.9 0.977 � 0.008c

24225................................ PACN-00-03a 13.6 87.8 0.963 � 0.016c

26021b .............................. PACN-00-04b 26.8 59.8 0.901 � 0.066d

50100................................ PACN-00-05a 37.3 108.8 0.482 � 0.170

77716b .............................. PACN-00-06b 10.6 45.5 0.984 � 0.008c

87092................................ PACN-00-07a 25.3 135.5 0.976 � 0.011c

81539b .............................. PACN-01-01b 79.5 159.7 0.394 � 0.156

83835b .............................. PACN-01-02b 7.7 42.0 0.993 � 0.003c

14026................................ PACN-01-03a 60.3 103.0 0.690 � 0.153

82840................................ PACN-01-04a 18.1 81.7 0.917 � 0.056d

1881.................................. PACN-01-05a 23.9 94.7 0.985 � 0.008c

77324b .............................. PACN-01-06b 27.6 99.6 0.986 � 0.008c

26277e .............................. . . . 13.5 93.3 0.887 � 0.064d

26285e .............................. . . . 5.0 5.1 0.625 � 0.183

78668e .............................. . . . 10.1 336.5 0.258 � 0.117

79136e .............................. . . . 0 (1-point peak) 0 0.022 � 0.007

83479e .............................. . . . 3.8 16.0 0.788 � 0.068

Note.—Ellipses indicate no ID available.
a Nova identified by Darnley et al. (2004).
b Nova identified by both Darnley et al. (2004) and An et al. (2004).
c Object definitely classified as a nova by our networks.
d Object just misclassified (i.e., whose probabilities plus errors overlap the decision boundary).
e Nova identified by An et al. (2004).

5 A duplicate of 50081, namely, 50153, is also detected. However, it is
removed from the list of new nova candidates by human intervention.
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TABLE 4

The IDs, Right Ascension and Declination, Network Probabilities, Decay Timescales (Where Possible),

and Nova Features of the 19 New Nova Candidates

Object ID

R.A.

(J2000.0)

Decl.

(J2000.0)

Half-Width at 1/e of Max. Light

(days)

Half-Width at 5% of Max. Light

(days) Network Probability Nova Features

1430............... 00 44 36.564 41 27 24.159 47.7 91.6 0.966 � 0.016 M

2973............... 00 44 30.446 41 18 13.510 9.6 �25 0.959 � 0.041 D, F

6251............... 00 44 05.978 41 22 19.384 11.0 17.0 0.975 � 0.012 P, F

39995............. 00 44 33.854 41 37 27.775 5.0 5.8 0.971 � 0.018 P, F

42075............. 00 44 29.306 41 35 42.513 1.5 15.1 0.975 � 0.012 P, F

42808............. 00 44 22.572 41 29 50.579 31.9 89.5 0.955 � 0.020 M

50177............. 00 43 15.816 41 29 12.045 29.3 64.8 0.955 � 0.011 M

58826............. 00 42 05.645 41 02 49.409 No decay No decay 0.986 � 0.005 R

66538............. 00 41 46.976 40 45 28.867 No decay No decay 0.984 � 0.005 R

73732............. 00 43 33.160 41 06 44.146 No decay No decay 0.954 � 0.020 R

74935............. 00 43 18.538 41 09 48.496 36.7 84.4 0.954 � 0.009 M

80951............. 00 42 31.148 41 14 25.462 No decay No decay 0.961 � 0.017 R

86234............. 00 43 41.720 41 01 04.352 No decay No decay 0.989 � 0.014 P, F

86283............. 00 43 44.186 41 01 48.806 6.0 6.0 0.968 � 0.016 D, F

88205............. 00 43 27.490 40 57 16.057 �3 �10 0.980 � 0.009 D, F

89701............. 00 43 12.483 40 54 05.979 3.0 107.8 0.953 � 0.026 D, F

92933............. 00 42 48.081 40 57 20.327 No decay No decay 0.954 � 0.023 R

93095............. 00 42 44.604 40 57 04.521 3.6 52.1 0.979 � 0.008 D, F

95935............. 00 42 24.705 41 02 12.578 �3 �10 0.977 � 0.015 D, F

Note.—Units of right ascension are hours, minutes, and seconds, and units of declination are degrees, arcminutes, and arcseconds. For nova features, M =most or all,
R = rise only, D = decay only, P = peak only, and F = possible fake, as judged by examination of the image frames.

Fig. 7.—Light curves of the 19 new nova candidates. The r-band flux in ADU s�1 is plotted against time in JD� 2; 451; 392:5. The four strong candidates are 1430,
42808, 50177, and 74935.



the PSF is not roundish with a size controlled by the seeing, then
this suggests that the candidates may be fakes. Performing this
test yields the result that perhaps 10 of the candidates are spu-
rious (2973, 6251, 39995, 42075, 86234, 86283, 88205, 89701,
93095, and 95935). Reassuringly, we note that none of these
are classified as having most nova features in Table 4. Finally,
the nova catalog also contains 19 contaminants that appear to be
true variable objects and are primarily made up of the light
curves of superpixels covering periodic stars such as Miras and
Cepheids, although many light curves exhibit some other su-
perposed form of variability.

8. CONCLUSIONS

This paper has presentedworking neural networks for the iden-
tification of fast CNe. The use of K-fold cross validation and the
choice of preprocessing techniques (i.e., reducing the light curve
to a suitably binned and normalized power spectrum) has pro-
duced a set of neural networks capable of detecting the fast CNe
present in the POINT-AGAPE survey. This conclusion is borne
out by the consistently high nova probabilities assigned to the pre-
viously identified novae with 30 days < t

5%P140 days, the de-
tection of four strong new nova candidates in the POINT-AGAPE
catalog, and a further 15 possible candidates. This adds further
weight to the claims by a number of authors (Wozniak et al. 2001;
Belokurov et al. 2003, 2004; Brett et al. 2004) that neural net-
works offer a promising solution to the problem of light-curve
identification in massive variability surveys.

The variation of K-fold cross validation used in this paper is
new and particularly well adapted to the search for rare objects in
a large data set. Usually, inK-fold cross validation, the data set is
first partitioned into K separate sets. A network is then trained
using a training set containing all of the data from K � 1 seg-
ments and tested on the remaining data. Our variation on this
technique is to train the networks using just one POINT-AGAPE
data segment before testing the networks on the remainingK � 1
segments. This is beneficial, as the processing time is substan-
tially reduced. In many circumstances, there would be a risk of
training set contamination using this variation on K-fold cross
validation. However, CNe are very scarce in the POINT-AGAPE
data set. So, the POINT-AGAPE light curves themselves can be
used for the nonnova examples in the training set with little risk
of contamination. The nova examples produced in the training
set must be produced with templates. This method, therefore, can
be used to find any rare light curves in a massive variability sur-
vey, provided suitable templates exist.

Nonetheless, the networks cannot be used in their current
form to obtain a nova rate for M31. Very fast novae are miss-
ing because the POINT-AGAPE sampling rate is just not good
enough to detect them. As demonstrated by Figure 6, the
networks also do not detect enough slow, bumpy novae. Fur-
thermore, these novae are more often than not assigned high
probabilities, yet these probabilities fall below the classification
cutoff because the networks produce too many false positives.
The difficulty here is that artificial templates for slow novae are

Fig. 8.—Locations of the 19 candidates in Table 4 plus the nine previously identified novae from Table 3. This is the entire sample of candidates with a network
probability >0.95.
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harder to construct, as they exhibit a greater morphology in the
declining part of the curve. The best way to overcome this is to
use known examples of slow CNe as part of the training set.
Unfortunately, there are very few such light curves available in
the g, r, and i passbands of the POINT-AGAPE survey. This,
however, may become possible in the future using transformed
colors. The extension of the networks to slow novae may also
require modifications to the preprocessing technique, as the
power spectra of slow novae are different ( less sinclike) from
those of fast novae.

Finally, it is worth mentioning that the limiting factor for
detection of fast novae is actually the temporal sampling of the

POINT-AGAPE data set. As fast CNe are the brightest CNe,
they are still easy to detect even against the bright bulge ofM31.
Although we have not carried out a full efficiency analysis, it is
clear that the networks successfully detect the CN types on
which the system was trained, up to the limit imposed by the
temporal sampling.
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