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ABSTRACT

We present distribution functions and mark correlations of the shapes of massive dark matter halos derived from
Hubble volume simulations of a �CDM universe. We measure both position and velocity shapes within spheres that
encompass a mean density 200 times the critical value and calibrate small-N systematic errors using Poisson
realizations of isothermal spheres and higher resolution simulations. For halos more massive than 3 ; 1014 h�1 M�,
the shape distribution function peaks at (minor/major, intermediate/major) axial ratios of (0.64, 0.76) in position and
is rounder in velocity, peaking at (0.72, 0.82). Halo shapes are rounder at lower mass and/or redshift; the mean minor-
axis ratio in position follows hc/ai(M ; z) ¼ c15;0½1� � ln (M /1015 h�1 M�)�(1þ z)��, with c15;0 ¼ 0:631 � 0:001,
� ¼ 0:023 � 0:002, and � ¼ 0:086 � 0:004. Position and velocity principal axes are well aligned in direction, with
median alignment angle 22�, and the axial ratios in these spaces are correlated in magnitude. We investigate mark
correlations of halo pair orientations using two measures: a simple scalar product shows �1% alignment extending
to 30 h�1 Mpc, while a filamentary statistic exhibits nonrandom alignment extending to scales �200 h�1 Mpc,
10 times the sample two-point correlation length and well into the regime of negative two-point correlation. Shapes of
cluster halos are little affected by the large-scale environment; the distribution of supercluster member minor-axis
ratios differs from that of the general population at only the few percent level.

Subject headinggs: cosmology: theory — galaxies: clusters: general — large-scale structure of universe

Online material: color figures

1. INTRODUCTION

Clusters of galaxies signal the largest gravitationally bound
dark matter halos in the universe. They are mildly aspherical
systems that tend to be aligned by mergers directed by inter-
connecting filaments in the cosmic web.

Since the early days of extragalactic astronomy, it has been
apparent that clusters are generally elongated on the sky. Flatten-
ing of these clusters due to rotation was ruled out (Illingworth
1977), and many assumed that the flattening was due to grav-
itational instabilities expected in the ‘‘top-down’’ scenario of
Zel’dovich (1978) and Doroshkevich et al. (1978). The ground-
breaking work of Carter & Metcalfe (1980) showed that the
aspherical shape of a cluster was connected with the velocity
anisotropy of the orbits of cluster galaxies. Binney & Silk (1979)
proposed that this anisotropy was due to tidal distortion from
neighboring large-scale structure.

Binggeli (1982) was the first to investigate alignments of close
cluster pairs. He studied 44Abell clusters and found that galaxies
separated by less than 30Mpc show a strong alignment with each
other and that the orientation of a cluster was dependent on the
distribution of surrounding clusters. Other observational claims
of cluster alignments have been made, both with nearest neigh-
bors and with other clusters in the same supercluster (West
1989a, 1989b; Rhee et al. 1992; Richstone et al. 1992; Plionis
1994).

With some exceptions (e.g., Struble & Peebles 1985 or Rhee
& Katgert 1987), most work in the literature (de Theije et al.
1995; West et al. 1995; West 1989a; Rhee et al. 1992; Onuora &
Thomas 2000) confirms Binggeli’s original results.West (1989a)
uses 48 Abell superclusters and finds a tendency for clusters
within 60 h�1 Mpc to be aligned. Plionis (1994) measures align-
ments for 637 Lick clusters and finds strong alignments up to
15 h�1 Mpc, with weaker alignments out to 60 h�1 Mpc. West

et al. (1995) finds a marked anisotropy for Einstein clusters ex-
tending out to 10 h�1 Mpc.

Simulations have shown that spatial alignments, intrinsically
predicted from the top-down model (Zel’dovich 1970), are
also seen in bottom-up (cold dark matter [CDM]) scenarios, in
which halos form by mergers of smaller structures organized
along filaments (Struble & Ftaclas 1994;West et al. 1991, 1995).
Simulations also show that the orientation of the major axis of
a galaxy cluster is aligned with the direction of the last major
merger event (van Haarlem & van de Weygaert 1993; Splinter
et al. 1997). Since cluster alignments appear to be a generic out-
come of gravitational instability, their use as a discriminant of cos-
mological models requires careful calibration (Onuora & Thomas
2000).

In the halomodel description of nonlinear structure (Cooray&
Sheth 2002), all matter is contained in bounded, spatially cor-
related regions (the halo population) that span a spectrum of
sizes. Most instances of this model assume spherically sym-
metric halos, but more precise versions will need to take into
account the spectrum of halo shapes, including detailed internal
structure (Jing & Suto 2002), as well the spatial correlation of the
shapes of neighboring halos (Jing 2002; Faltenbacher et al.
2002).

In this paper, we report measurements of shape statistics, in-
cluding spatial (or ‘‘mark’’) correlations of alignments, derived
from large samples of massive dark matter halos extracted from
Hubble volume simulations. We investigate two flat-metric cos-
mologies (�CDM and �CDM) dominated by vacuum energy
and dark matter, respectively. We focus on the former, more em-
pirically satisfying model but show results for the latter for com-
parative purposes. Section 2 provides details of the simulations
and describes our method of finding principal axis orientations
and magnitudes for mass-limited halo samples. In x 3, we use
Poisson realizations of isothermal spheres to estimate systematic
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error in mean shape measurement due to shot noise. We then
present axial ratio distribution functions for mass-limited sam-
ples and characterize the dependence of halo shape on mass and
redshift. Section 4 presents mark correlations of �CDM cluster
alignments and briefly examines the role of supercluster mem-
bership on shape. A final section reviews our conclusions.

Unless explicitly stated otherwise, the halo mass M used
throughout this paper is a critically thresholded, spherical over-
density mass (M200) expressed in units of 1015 h�1 M�, with
h ¼ H0/100 km s�1 Mpc�1.

2. CLUSTER SHAPES FROM SIMULATIONS

We use two sets of simulations to investigate dark matter halo
shapes. The large Hubble volume (HV) simulations provide
statistical power but poor mass resolution, while higher resolu-
tion, but smaller volume, Virgo simulations are used for reso-
lution tests.

2.1. Simulations

The HV simulations are a pair of gigaparticle N-body simu-
lations created using a parallel version of the HydraN-body code
(Macfarland et al. 1998). Random realizations of two cosmol-
ogies with flat spatial metric are produced: a �CDMmodel with
�m ¼ 0:3, �� ¼ 0:7, and power spectrum normalization �8 ¼
0:9 and a �CDM model with �m ¼ 1, �� ¼ 0, and �8 ¼ 0:6.
The dark matter structure is resolved by particles of mass 2:2 ;
1012 h�1 M� within periodic cubic volumes of length 3000 and
2000 h�1 Mpc, respectively (see Table 1).We analyze z ¼ 0 and
combined sky survey samples of galaxy cluster halos published
in Evrard et al. (2002). The reader is referred to that paper for
details of the simulations, including the process of sky survey
creation.

For resolution tests, we employ the 2563-particle Virgo sim-
ulations of Jenkins et al. (1998). These simulations have order-
of-magnitude improvedmass resolution butmuch smaller samples
than the HV simulations.

2.2. Halo-Finding Algorithm

We define dark matter halos with a spherical overdensity (SO)
group finder that identifies as a halo the set of particles lying
within a sphere of size r200, centered on a particle that represents
a local density maximum filtered on a scale of 2 ; 1013 h�1 M�.
The size measure r200 is the radius of the sphere within which the
mean density is 200�c(z), with �c(z) being the critical density at
redshift z. The total massM200 lying within r200 is the basic order
parameter of the halo sample. As a result of ongoing merging
activity, roughly 7.5% of halos are found to have overlapping
r200 spheres. When overlapping spheres are removed from the
samples, the mean minor-axis ratio hc/ai increases by 0.005 and
the dispersion increases by the same amount. Since this is a small
effect, we retain both members of an overlapping pair in the halo
sample.

2.3. Sky Surveys

In addition to the traditional mode of fixed proper-time output,
sky survey samples, consisting of data collected along the past
light cone of hypothetical observers located within the compu-
tational volume, were also generated by the HV simulations. We
use two octant surveys (PO and NO) that cover �/2 sr and extend
to zmax ¼ 1:46 for �CDM and 1.25 for �CDM, as well as two
full-sky surveys (MS and VS) that reach zmax ¼ 0:57 for�CDM
and 0.42 for �CDM. The octants sample structure over the last
74% (�CDM) and 71% (�CDM) of the age of the universe,
approximately a 10 Gyr look-back time. Halos in these surveys
are defined using the SO method described above.

2.4. Cluster Shapes

Given the modest resolution of the HV data, we take a simple
approach and estimate the shape of a halo using the moments of
the material within r200. With respect to the center of the halo
(defined by the local gravitational potential minimum), we com-
pute the 3 ; 3 symmetric tensor

Mjk ¼
1

Nh

X
�

x� jx� k ; ð1Þ

where x� j is the j th component of the displacement vector of
particle� relative to the halo center andNh is the number of (equal
mass) particles in the halo. We diagonalize to find eigenvalues kj
and unit eigenvectors. The sorted eigenvalues (k1 > k2 > k3) and
vectors define principal axes a, b, c, with semimajor axis a ¼
(k1)

1/2, intermediate b ¼ (k2)
1/2, and c ¼ (k3)

1/2 of a triaxial el-
lipsoid that approximates the halo. We refer to the corresponding
unit vector directions as â, b̂, and ĉ.
Velocity moments are solved for in a similar way, using a

mean defined as the center-of-mass velocity of the material
within r200. For compactness of notation, we define intermediate
and minor axial ratios as follows:

b̃ � b=a; ð2Þ

c̃ � c=a: ð3Þ

We have confirmed that the halo population is oriented ran-
domly with respect to the Cartesian coordinates of the simula-
tion, as required by the cosmological principle.

3. HALO SHAPE STATISTICS

We begin this section by estimating the error on shape determi-
nations due to shot noise. From Monte Carlo realizations of dis-
torted isothermal spheres, we find that population mean values
of c̃ and b̃ are accurate to a few percent if Nhk100. We then
present the joint distribution function p(c̃; b̃) at z ¼ 0 and inves-
tigate joint position and velocity shape statistics. We follow with
the mass and redshift dependence of the minor-axis ratio.

3.1. Resolution Tests

To calibrate the error in mean shape due to the small numbers
of particles used to resolve clusters in the HV, we carry out the
following resolution test. Halo models are created using a set of
Nh particles with an initially spherical, isothermal profile. To
simulate the mean ellipticity of the HV cluster samples discussed
below, each cluster is then compressed along the (x; y)-axes by
fixed amounts (0.65, 0.8). The particle moments are calculated
and used to estimate the shape of each cluster in the samemanner
as for the HV clusters (see x 2.4). Generating ensembles at

TABLE 1

Model Parameters

Model �m �� �8 zinit

La

(h�1 Mpc)

mb

(1012 h�1 M�)

�CDM................. 0.3 0.7 0.9 35 3000 2.25

�CDM................. 1.0 0.0 0.6 29 2000 2.22

a Cube side length.
b Particle mass.
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several values of Nh, we calibrate the bias in mean cluster shape
as a function of mass resolution.

The results for an ensemble of 10,000 clusters at each Nh are
presented in Figure 1. Mean axial ratio values hc̃i and hb̃i are
presented in Table 2 for Nh ranging from 40 to 2560 particles. In
Figure 1, the measured shape distribution function has a dis-
persion ranging from 0.09 at Nh ¼ 40 to 0.01 at Nh ¼ 2560, and
the mean is offset from the input values by a bias that scales
inversely with particle number 0:024(Nh/100)

�1. We use this
calibration to bias-correct the mass-dependent shapes presented
in x 3.4.

Note that we employ all particles for the shape calculation in
these tests. We do not attempt to employ a spherical cutoff to the
particle distribution, as is done for the actual N-body halos.
Although one might be concerned about surface effects poten-
tially biasing the results, we show below that there is good agree-
ment between the HV shapes corrected using our approach and
the shapes determined from the higher resolution Virgo runs.

3.2. Shape Distributions

To ensure a mean shape measurement biased by less than 2%,
we impose a mass limit M200 � 3 ; 1014 h�1 M�, correspond-

ing to 133 particles in the HV simulations. We note that Jing
(2002) also finds that 160 particles are sufficient for percent-level
shape measurement. To keep the corrections small while main-
taining amoderate sample size, the Virgo data are cut at a mass of
1014 h�1 M�, equivalent to 1467 particles for the �CDM case
and 440 particles for the �CDM case. The numbers of halos in
each sample are listed in Table 3.

The distribution of axial ratios at z ¼ 0 for 82,967 (�CDM)
and 87,121 (�CDM) halos are given in Figure 2. The top panels
show the distributions in position space, while the bottom panels
show velocity space. The location of the mean axial ratios (hc̃i,
hb̃i) is depicted by a cross for HVand an asterisk for Virgo data.

Consistent with previous studies, we find galaxy cluster halos
to be mostly prolate in shape, and somewhat rounder in velocity
compared to position space. Table 4 summarizes the z ¼ 0 shape
data. The �CDM HV simulation has modal values (c̃; b̃)Ppeak ¼
(0:64; 0:76) and (c̃; b̃)Vpeak ¼ (0:72; 0:82) in position and veloc-
ity, while the �CDM model halos are more strongly ellipsoidal,
with values (c̃; b̃)Ppeak ¼ (0:59; 0:72) and (c̃; b̃)Vpeak ¼ (0:70; 0:80).

The frequency distribution of minor-axis ratio c̃, computed by
integrating the joint probability density function (pdf ) along the

Fig. 1.—Estimates of the effect of Poisson noise on the measurement of
minor (c̃) and intermediate (b̃) axis ratios. Halos must lie in the upper left por-
tion of the plot, with spherical objects at (1, 1), oblate halos tending to b̃ ¼ 1,
and prolate halos lying near the diagonal b̃ ¼ c̃. Contours show 68% confidence
regions of axial ratios measured from 10,000 random realizations of isothermal
spheres distorted to mean shape (0.65, 0.80), shown by the cross, and resolved
by ( from outer to inner contours) 40, 160, 640, and 2560 particles. Histograms
in the lower right give frequency distributions of the minor-axis ratio c̃. As
resolution degrades, the mean is biased to lower values and the dispersion
grows.

TABLE 2

Resolution Test Values

Nh hc̃i �c̃ hb̃i �b̃

40............................. 0.584 0.089 0.777 0.095

160........................... 0.635 0.051 0.794 0.061

640........................... 0.647 0.026 0.799 0.032

2560......................... 0.649 0.013 0.799 0.016

TABLE 3

Halo Samples at z ¼ 0a

Model

Mmin

(h�1 M�) Ncl

�CDM-HV..................................... 3 ; 1014 82967

�CDM-Virgo ................................. 1014 353

�CDM-HV..................................... 3 ; 1014 87121

�CDM-Virgo.................................. 1014 703

a Mass-limited samples, M200 > Mmin.

Fig. 2.—Contours of the joint probability density of axial ratios p(c̃; b̃)
shown with the minor-axis frequency distribution p(c̃) in the same format as
Fig. 1. Left and right panels show the �CDM and �CDMmodels, respectively,
while upper and lower panels give position and velocity space distributions,
respectively. Contour levels in the joint pdf are drawn at the 10th, 50th, and 95th
percentiles of the enclosed distribution. Gaussian fits to the frequency distri-
bution of c̃ are shown for the HV simulations, while histograms show c̃ values
derived from the Virgo simulations. Crosses and asterisks mark the locations
(hc̃i; hb̃i) of the mean shapes for the HV and Virgo models, respectively.
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b̃ axis, is well fit by a Gaussian for the HV samples. Distributions
of c̃ derived from the Virgo simulations, shown as histograms in
Figure 2, are generally in good agreement with the HV data. The
distribution of �CDM minor-axis ratios for position is centered
on 0.635 and has measured dispersion 0.086.When corrected for
Poisson error, the estimated mean is slightly larger, hc̃i ¼ 0:647,
and the intrinsic dispersion is estimated to be 0.076. While the
statistical uncertainty in the mean is in the third significant digit,
the level of systematic uncertainty is certainly larger.

A crude estimate of systematic error is given by the 0.012
Poisson bias correction for the mass-limited sample. However, at
the level of 0.01, a number of other effects on axial ratio come
into play. Foremost among them is the detailed definition of
a halo: its location, scale, and geometry. We use the common
spherical overdensity (SO) definition of halos as spherical regions
centered on local density peaks. Other viable approaches, such
as friends-of-friends grouping or use of an ellipsoidal boundary,
can systematically shift shape measurements by many percent
(Warren et al. 1992; Jing& Suto 2002).We leave it to future work
to address such systematic effects in detail.

The finding that halos are rounder in velocity space may be at
least partly due to the effects of ongoing mergers. Mergers will
scatter in velocity space first, followed by mixing and relaxation
of particle positions. Another factor pushing in the same direc-
tion is that the gravitational potential that drives the velocity field
is rounder than the density distribution.

We do not attempt to formally fit the joint probability distri-
bution p(c̃; b̃), as doing so would require a full deconvolution of
the effects of shot noise. However, to give an indication of the
joint pdf shape, we locate the peak in the intermediate-axis con-
ditional probability

p(b̃jc̃) ¼ p(c̃; b̃)

p(c̃)
ð4Þ

and record the modal intermediate-axis ratio b̃mod as a function
of minor-axis ratio c̃. The lines in each panel of Figure 2 show
fits b̃mod(c̃) ¼ rc̃þ s, with fit parameters given in Table 5.

3.3. Position-Velocity Major-Axis Alignment

Since elongated orbits drive both position and velocity an-
isotropy, a correlation between both position and velocity major

axes is both expected and measured in simulations (Tormen
1997). We quantify the alignment between position and velocity
in a halo through the scalar product of its major-axis eigenvectors

cos �PV ¼ jâ P = âV j: ð5Þ

Figure 3 shows cumulative probability functions of this sta-
tistic for the �CDM HV and Virgo models.
We find a strong alignment signal: half of all halos have po-

sition and velocity major axes aligned to better than 22
�
for the

HV�CDMmodel (21
�
for �CDM). The higher resolution Virgo

runs show even stronger position-velocity alignment, with me-
dian values of 15� for�CDM and 14� for the �CDM simulation.
When the same analysis is carried out using only strongly el-
lipsoidal clusters (c̃ < 0:635), the results do not significantly
change. Our results are consistent with a higher resolution study
of Tormen (1997), who finds from simulations of nine dark mat-
ter halos resolved by 20,000 particles that the position-velocity
alignment angle is approximately 30�.
To further define the relationship between position and ve-

locity space, we show the joint distribution of minor-axis ra-
tios (c̃ P; c̃V ) in Figure 4. The likelihood is well fit by a Gaussian
in an ellipsoidal coordinate r, where r 2 ¼ (cþ/�þ)2 þ (c�/��)

2

and c� ¼ (1/
ffiffiffi
2

p
)½(c̃ P � hc̃ Pi) � (c̃V �hc̃V i)� are principal com-

ponent directions centered on the one-component means of the
distribution. This fit is shown by the dotted lines in Figure 4.
The measured dispersions for �CDM are �þ ¼ 0:096 and �� ¼
0:069. The bold contour shows the median of the enclosed
distribution.
Since essentially all cluster detection methods use some

power of projected mass density as a defining signal, the spatial-
velocity alignments examined here will introduce an orientation
bias in estimates of velocity dispersions for clusters lying close
to the sample detection threshold. The magnitude of this effect
will depend on the specific sample in question, but the general

TABLE 4

Mean Halo Shapes at z ¼ 0a

Model-Space (c̃; b̃)peak hc̃i �c̃ hb̃i �b̃

�CDM-P ..................... (0.635, 0.760) 0.635 0.086 0.776 0.096

�CDM-V .................... (0.719, 0.823) 0.704 0.080 0.818 0.088

�CDM-P ..................... (0.593, 0.719) 0.600 0.087 0.754 0.102

�CDM-V..................... (0.698, 0.802) 0.686 0.077 0.814 0.086

a Mass-limited samples of Table 3.

TABLE 5

Intermediate-Axis Modal Ridge Line b̃mod(c̃)
a

Model Component r s

�CDM................. Position 0.81 � 0.02 0.24 � 0.01

Velocity 0.84 � 0.03 0.20 � 0.02

�CDM................. Position 0.79 � 0.02 0.25 � 0.01

Velocity 0.79 � 0.03 0.25 � 0.02

a Fit to b̃mod(c̃) ¼ rc̃þ s.

Fig. 3.—Cumulative distributions of the alignment angle between the position
and velocitymajor axes for the�CDMHV clusters withM200 � 3 ; 1014 h�1 M�
(solid line) and �CDM Virgo clusters with M200 � 1014 h�1 M� (dashed line).
Half of the clusters in the�CDMHV simulations have an alignment angle smaller
than 22�.
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trend will be for the line-of-sight dispersion to overestimate its
isotropic counterpart, by a fractional amount that could be�10%
for small samples of moderate signal-to-noise ratio detections.
Estimating the effect for particular observational surveys is best
done using Monte Carlo sample realizations, such as those per-
formed for the 2MASS (TwoMicron All Sky Survey; Kochanek

et al. 2003) and SDSS (Sloan Digital Sky Survey; Miller et al.
2005) samples.

3.4. Mass and Redshift Dependence

Because mergers are directed along large-scale filaments in
the cosmic web, the birth of dark matter halos is an inherently
asymmetric process. As a merger evolves, dynamical relaxation
will tend to drive a halo closer to isotropy. One then expects that
dynamically younger clusters will be more strongly ellipsoidal
than older ones. Equating dynamical age with elapsed time from
a halo’s formation epoch (defined, for example, using the mass
accretion history by Wechsler et al. 2002), we expect high-mass
halos at a given epoch to be more elongated than those of lower
mass. Similarly, at fixed mass, high-z halos should be more el-
lipsoidal than their low-z counterparts of the same mass.

With the large number of clusters in the z ¼ 0 sample, we first
investigate the mass dependence at the present epoch. The mi-
nor axis only is examined for the sake of brevity. Following
previous work, we do not include the intermediate-axis ratio due
to the relatively modest extra information it contributes. Figure 5
shows the dependence of mean minor-axis ratio shapes in po-
sition ( filled symbols) and velocity (open symbols) on halomass,
using bins of width 0.1 dex. Error bars on the points give the
uncertainty in the mean assuming Gaussian statistics. Circles
show the HV data, while squares show the Virgo data. Small
symbols show the raw mean shape measurements, while large
symbols correct for the bias in mean shape calibrated in x 3.1.
There is generally good agreement between the bias-corrected
mean shapes of the HVmodels and the values measured directly
from the higher resolution Virgo runs.

The mass dependence favors more ellipsoidal halos at higher
mass. Themeanminor-axis ratios of both the position and velocity
shapes vary by only �5% as the mass changes by a factor of 10.
For the �CDM model, a fit to a logarithmic mass dependence

Fig. 4.—Joint probability density of the position c̃ P and velocity c̃V minor-
axis ratios. Solid contours show the 16th, 50th, 84th, and 99th percentiles of
the enclosed distribution, while dotted contours show the same for the ellip-
soidal Gaussian fit described in the text. The heavy solid contour highlights
the median of the joint distribution.

Fig. 5.—Dependence of mean minor-axis ratio on mass for halo samples at z ¼ 0 of the (a) �CDM and (b) �CDM models. The upper curve with open symbols
gives velocity shapes, while the lower curve with filled symbols shows position. Small symbols show measures uncorrected for small-N effects, while larger symbols
have Poisson corrections applied, as discussed in the text. Circles and squares are HV and Virgo model results, respectively, and the vertical dotted line marks the
3 ; 1014 h�1 M� resolution limit of the HV models. Solid lines show the weak logarithmic dependence on mass [eq. (8)], with parameter values given in Table 6.
Higher mass clusters are more strongly ellipsoidal than low-mass clusters in both position and velocity. [See the electronic edition of the Journal for a color version
of this figure.]
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using HV data above 3 ; 1014 h�1 M� and Virgo data below
yields

hc̃ Pi ¼ (0:631 � 0:001) 1� (0:023 � 0:002)lnM½ �; ð6Þ

hc̃V i ¼ (0:704 � 0:001) 1� (0:021 � 0:001) lnM½ �; ð7Þ

where M is the halo mass measure M200 expressed in units of
1015 h�1 M�. Although these expressions are good fits to the
shape dependence over 2 orders of magnitude in mass, the limit
c̃ 	 1 requires that the shape at masses approaching M200P
106 h�1 M� must deviate from this form. Simulations of smaller
scale structure will be needed to probe this regime.

The �CDM model halos are more ellipsoidal and display
somewhat weaker mass dependence than their �CDM counter-
parts. More vigorous growth of linear perturbations in the �CDM
model drives a higher frequency of halo mergers in this model
(Lacey & Cole 1994), and this may explain why the �CDM
halos have a mean c̃ that is�0.03 smaller than the �CDM value.
The velocity shapes of the �CDMmodel present a more puzzling
result , in that the logarithmic slope 0:012 � 0:001 is signifi-
cantly shallower that the �CDM mass behavior. We suspect that
our correction for Poisson noise may be inadequate for the ve-
locities in this case (the mass resolution in the �CDM Virgo run
is poorer than that of the �CDM Virgo run, so corrections are
larger for this model). The flat behavior of velocity shape for the
few most massive HV clusters also drives down the slope. The
slopes of position and velocity shapes for the �CDM model are
consistent; massive halos in this model have a fixed ratio of
minor-axis shapes c̃ P/c̃V ¼ 0:896 � 0:003.

The behavior at z ¼ 0 motivates the following form for the
behavior of the mean minor-axis ratio at arbitrary redshift:

hc̃i(M ; z) ¼ c̃15(z)(1� � lnM ): ð8Þ

Parameters at z ¼ 0 are listed in Table 6.
Turning to the redshift behavior, we first use the sky survey

data to verify that the mass slope � does not depend on redshift.
Binning clusters in two broad redshift intervals, from z ¼ 0 to
0.5 and 0.5 to 1, we fit the mass dependence of the mean minor-
axis ratio and find consistency with the present-epoch slope. For
example, the �CDM position minor-axis ratio has � ¼ 0:024 �
0:003 and 0:025 � 0:003 for the lower and higher redshift ranges,
respectively, both of which are consistent with the z ¼ 0 value
� ¼ 0:023 � 0:001.

We characterize the redshift behavior of shape by fitting the
mass intercept at 1015 h�1 M� to a power law in expansion
factor

c̃15(z) ¼ c̃15;0(1þ z)��: ð9Þ

In the sky survey samples, each halo of massM and minor-axis
shape c̃ (bias-corrected for Poisson noise) at redshift z contrib-
utes c̃/(1� � lnM ) to the estimate of c̃15(z). We use values of
� measured at z ¼ 0.

Figure 6 shows the results derived from the combined sky
survey samples (PO, NO, MS, and VS) of halos with M200 >
3 ; 1014 h�1 M�, binned in �z ¼ 0:1 intervals. A total of
44,122 (�CDM) and 19,813 (�CDM) halos are above the mass
limit. Filled symbols in Figure 6 are position, while open sym-
bols show velocity shapes. Lines give fits to equation (9), and the
fit parameters are listed in Table 7.
The trend in redshift confirms the expectation that high-

redshift halos are slightlymore ellipsoidal than their counterparts
today. The redshift dependence is typically weak, � � 0:05
0:09, with the strongest trend exhibited by the position minor axis
of the �CDM model.
The present-epoch mean shapes at 1015 h�1 M� are measured

independently from the z ¼ 0 and sky survey data sets. The cor-
respondence between c̃15(0) and c̃15;0 to nearly three significant
digits implies that our statistical uncertainties are well under-
stood and that there are no systematic differences at this level
between the light-cone output used to generate the sky surveys
and the more common output produced at fixed proper time.

3.5. Comparisons to Previous Work

Our shape results are generally consistent with previous work,
but different techniques for identifying halos, different shapemea-
surement conventions, and variations in assumed cosmology com-
plicate attempts at detailed comparison. In the resolution tests of

TABLE 6

Mass Dependence of Halo Minor-Axis Ratio
a

Model Component c̃15(0) �

�CDM.................. Position 0.631 � 0.001 0.023 � 0.002

Velocity 0.704 � 0.001 0.021 � 0.001

�CDM.................. Position 0.599 � 0.001 0.017 � 0.001

Velocity 0.692 � 0.001 0.012 � 0.001

a From z ¼ 0 halo samples.

Fig. 6.—Redshift dependence of cluster shapes, expressed in terms of the
characteristic shape at 1015 h�1 M�, derived from the combined HV sky survey
outputs of the �CDM (circles) and �CDM (triangles) models. Filled and open
symbols show position and velocity values, respectively. Lines are fits to eq. (9),
with parameters given in Table 7.

TABLE 7

Redshift Dependence of Halo Minor-Axis Ratio
a

Model Component Ncl c̃15;0 �

�CDM............. Position 44,122 0.633 � 0.001 0.086 � 0.004

Velocity 44,122 0.701 � 0.001 0.053 � 0.003

�CDM............. Position 19,813 0.600 � 0.001 0.058 � 0.007

Velocity 19,813 0.691 � 0.001 0.042 � 0.006

a From combined sky survey samples.
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x 3.1, the halo overdensity is measured using a spherical aperture.
A bias due to the use of a spherical boundary is present, but the
magnitude of this effect is not large, as demonstrated by the good
agreement between our mean shapes and those of Jing & Suto
(2002), who used an elliptical aperture.

The most recent work that is well aligned with our study is
the N-body and particle hydrodynamics simulations of �CDM
structure by Suwa et al. (2003). Their cosmological model has
slightly higher normalization, �8 ¼ 1, but is otherwise identi-
cal to that assumed in the HVand Virgo �CDM runs. They use
a spherical halo definition of somewhat larger radius (defined
by an interior density contrast of 200 with respect to the mean,
not critical, mass density) and find an average minor-axis ratio
hc̃i ¼ 0:62 for clusters more massive than 2 ; 1014 h�1 M�.
Their mass resolution is an order-of-magnitude improvement
over the HV simulations, but their sample contains only 66 ob-
jects. Floor et al. (2003) use an annulus method to define pro-
jected shapes of halo from several hydrodynamical and N-body
simulations. They find an average projected axis ratio of 0.77 at
z ¼ 0, a value consistent with the mean intermediate-axis ratio
we find in three dimensions.

Other published works employ an ellipsoidal region when
defining halo shapes. Warren et al. (1992) applied this technique
to ground-breaking, massively parallel simulations and found a
distribution of minor-axis ratios for galactic-scale halos that
peaked at c̃ ’ 0:6, with dispersion �0.1. Thomas et al. (1998)
analyze four Virgo simulations, including the two used here, and
find a mean minor-axis ratio of 0.50 with dispersion�0.15 for a
sample of 300 halos with mass limit 2 ; 1014 h�1 M� in low-�m

cosmologies. This shape result is significantly more ellipsoidal
than our mean value of 0.64. The difference lies in the shape
definition; we use moments of material within a sphere, while
they use moments of material defined using a percolation algo-
rithm on a set of particles whose local densities lie above a crit-
ical threshold. The boundary constraint of our method will tend
toward rounder measures, while the latter method, because of the
directional nature of the percolation process and the pruning in
local density, will allow more strongly ellipsoidal values. The
degree of difference between the two methods can be large in
extreme cases. For the same �CDMVirgo simulations, the most
extreme position axis ratio measured by Thomas et al. (1998) is
<0.2, while the minimum value we derive is a factor of 2 larger,
0.4. Note that the effect in the mean is much smaller, �20%.

Amore complete analysis involvesmeasuring differential shapes
as a function of some scale parameter. Warren et al. (1992) used
an iterative scheme that began within spheres of fixed physical
radius and found a high degree of correlation in direction and
shape between 10 and 40 h�1 Mpc in a sample of galactic halos.
With much higher resolution simulations, Jing & Suto (2002)
employ a sophisticated approach that first measures a local den-
sity using a spherical kernel (as in smoothed particle hydrody-
namics methods; Evrard 1988; Hernquist & Katz 1989), then fits
ellipsoids to particles within some narrow range of local density.

From 5123-particle simulations of a �CDM cosmology, Jing &
Suto (2002) measure the distribution of minor-axis shapes at a den-
sity of 2500�c (corresponding to a radial scale of roughly r200/3)
in a sample of 2494 halos more massive than 6 ; 1012 h�1 M�.
They find a mean hc̃i ¼ 0:54 and a dispersion of 0.11 at z ¼ 0.
From analysis of 12 high-resolution individual halo simulations,
they find axial ratios that are rounder at lower densities, with
c̃ � (�/�c)

�0:052. Using this relation to roughly scale to the radius
used in this work, �/�c ¼ 80 (equivalent to a mean interior den-
sity contrast of 200 for a � / r�2:5 profile), results in hc̃i ¼ 0:65
for their mass-limited sample. However, our measurement of the

mass dependence of shape implies that a second correction must
be made in order to infer their expectations at our mass limit of
3 ; 1014 h�1 M�. Using equation (8), the result is an expected
mean hc̃i ¼ 0:56. That the HV sample mean of 0.64 is signifi-
cantly larger may again simply reflect the different geometries
being used in the two approaches, but this hypothesis remains to
be tested. Note that the scaled Jing & Suto (2002) result is 0.05
larger than the mean derived by Thomas et al. (1998) for halos
more massive than 2 ; 1014 h�1 M�.

Clearly, there is not a unique measure of absolute halo shape,
and future work is needed to establish quantitative relationships
between the measurements of shapes derived from different ap-
proaches.Decisions on how to define the halo boundary, the spec-
ified weighting scheme (mass or volume), and choice of center
are each likely to affect shape values at the few percent level, per-
haps even higher. We therefore caution the reader not to over-
interpret the small statistical errors on our mean shape values.
The central values from a different technique may differ from our
means by many sigma.

The trends with mass and redshift of the mean minor-axis ra-
tio presented in Figures 5 and 6 are in qualitative agreement
with Jing & Suto (2002). They find that halos of higher mass
(at fixed epoch) and higher redshift (at fixed mass) tend to be
more elongated. Their fit to the mass dependence is equivalent
to a value of � ¼ 0:02, in good agreement with our finding of
0:023 � 0:002.

Regarding observed trends of cluster shape with redshift, both
Plionis (2002) using 903 clusters and Melott et al. (2001) using
several optical and X-ray cluster samples find trends toward
higher ellipticity at increasing redshift. However, Plionis et al.
(2004) find a trend of shape with cluster size that is opposite that
seen in simulations. From 1168 groups in the UZC-SSRS2 gal-
axy group catalog, Plionis et al. find that poorer groups are more
elongated than richer groups, with 85% of poor groups having
b̃P0:4. The discrepancy with themodels may be due to biases in
the optical group catalogs, or it may have a physical origin, such
as galaxies not fairly sampling the dark matter in low-mass sys-
tems. Simulated cluster samples derived from mock galaxy cata-
logs, such as those employed byMiller et al. (2005), will be useful
for investigating these issues.

4. SHAPE AND LARGE-SCALE STRUCTURE

For the linear initial density field, a connection between clus-
ter shapes and large-scale structure was established by Bond
et al. (1996), who showed that peaks separated by distances of
order the mean interpeak separation or smaller are likely to have
strong connecting filaments. By directing mergers occurring on
opposing ends, filaments serve as a source of alignment for halo
shapes. Simulations show that this alignment persists into the
nonlinear regime (van Haarlem & van de Weygaert 1993).

In this section,we presentmark correlations of shape, using two
measures employed previously by Faltenbacher et al. (2002). We
also examine whether clusters that are members of superclusters
have shapes that differ from the general population. For the sake of
brevity, we present results for the �CDM case only.

4.1. Spatial Correlations of Shapes

Several observational studies have probed the significance
and length scale of spatial shape correlations of galaxy clus-
ters. Plionis (1994), using galaxy positions in 637 Abell clusters,
presents evidence for nearest neighbor alignment extending to
separations of 15 h�1 Mpc at �2.5 � significance, with weaker
alignment to 60 h�1 Mpc. Fuller et al. (1999) used the brightest
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cluster galaxies (BCG) in poor MKW and AWM clusters and
found significant alignments for BCG-cluster pairs and BCG–
nearest cluster pairs.

Simulations demonstrate that alignments are to be expected.
Using a sample of several hundred clusters more massive than
1:8 ; 1014 h�1 M� derived from a 5123-particle �CDM simu-
lation, Onuora & Thomas (2000) detect an alignment signal for
pairs extending to 30 h�1 Mpc, with the strongest signal for
nearest neighbors. Like the position-velocity alignments of Fig-
ure 3, they note that the signal is persistent and changes little
when only strongly elongated halos are used.

Faltenbacher et al. (2002; hereafter F02) examine 3000 clus-
ters more massive than 1:4 ; 1014 h�1 M� from a �CDM sim-
ulation of a 500 h�1 Mpc region. They introduce the use of mark
correlations to measure the behavior of alignment as a func-
tion of radial scale and find positive signal extending to 15 and
100 h�1 Mpc for two different alignment measures. Hatton &
Ninin (2001) measure spatial alignments of halo pair angular
momenta that extend to similar scales.

Following F02, we quantify orientation alignment with two
different measures. Consider an ensemble of cluster pairs, each
with members i and j that have comoving spatial separation rij
between r and r þ dr. A basic alignment measure [termed A(r)
by F02] uses the scalar product of major-axis directions â,

u(r)¼
�
jâi = âjj

�
; ð10Þ

where angle brackets denote an ensemble average over pairs
of separation r.

A second, ‘‘filamentary’’ measure [F (r) of F02] compares
halo major-axis orientation to pair separation direction,

w(r) ¼ 1

2
(jâi = r̂ijj þ jâj = r̂ijj)

� �
: ð11Þ

For random halo orientations, both measures have expectation
value u(r) ¼ w (r) ¼ 0:5. We therefore use the deviations from
this expectation �u(r) ¼ u(r)� 0:5 and �w (r) ¼ w (r)� 0:5 as
a measure of pairwise alignment.

Figure 7 shows the �CDM position-space alignment signals
at z ¼ 0 for the sample of 83,000 halos with masses M200 �
3 ; 1014 h�1 M�. Open circles show �u(r), and filled circles give
�w (r). Error bars are the uncertainty in the binned mean values.
For comparison, squares show the two-point spatial correlation
function 	(r) of the mass-limited sample with correlation length
22 h�1 Mpc (Colberg et al. 2000). Filled squares show positive
spatial correlations, while open squares show j	(r)j in the region
of negative correlations ½	(r) < 0�. The inset shows u(r) andw (r)
on a linear scale.

The basic measure shows excess alignment out to scales
�30 h�1 Mpc. The filamentary statistic shows nonrandom halo
orientations extending to scales 200 h�1 Mpc, nearly 10 times
the correlation length and well into the anticorrelated regime of
the two-point function. In both cases, the excess alignment signal
is well fit by a power law at large radii that saturates at small r.
The basic alignments follow

�u(r) ¼ 0:065 1þ r

14 h�1 Mpc

� ��2:3

; ð12Þ

while the filamentary alignment is well fit by

�w(r) ¼ 0:175 1þ r

24 h�1 Mpc

� ��2:3

: ð13Þ

Our findings are generally consistent with those of F02, but
our improved statistics and larger linear scale allow the first
detailed fits to the effect. Although an analytic foundation for the
specific form of equations (12) and (13) is not yet in hand, we
speculate that a solution may be found by applying the theo-
retical machinery describing peaks in Gaussian random noise
fields (Bardeen et al. 1986; Bond & Myers 1996).
F02 note that the filamentary signal remains strong in pro-

jection, but their analysis is optimistic in that it assumes perfect
knowledge of three-dimensional halo separations, as well as the
projected three-dimensional halo shapes. A more appropriate
treatment will require analysis of galaxy cluster samples derived
frommock catalogs (Kochanek&White 2003;Miller et al. 2005).
The alignments that we measure in the nonlinear regime are

evolved versions of shape correlations built into the initial linear
density field (Catelan et al. 2001; Crittenden et al. 2001). The
form of ellipticity correlations calculated by Crittenden et al. is
similar to the shape correlations of Figure 7, with a constant core
region and a power-law fall-off at large separations. However, it
is difficult to make meaningful connections between the two
approaches. The core radius of the linear field correlation is set
by the imposed filter scale, whereas the nonlinear core radius is
of the order of the correlation length. The outer slope in the linear
field case is /	2(r), while the nonlinear correlations follow a
power law that differs from this; in fact, the power law extends
into the regime where 	(r) changes sign. More work on under-
standing the relations between linear and nonlinear shapes needs
to be done before more meaningful conclusions can be drawn.

4.2. Supercluster Members

One might reasonably expect local cluster environment to
play a role in determining halo shapes. In particular, since super-
clusters—groups of cluster-mass halos—tend to have strong
filamentary morphology, one might anticipate that the formation

Fig. 7.—Mark correlation of cluster orientations as measured by the mean
excess basic alignment �u (open circles) and themean excess filamentary alignment
�w ( filled circles) for the HV �CDM sample with M200 � 3 ; 1014 h�1 M� at
z ¼ 0. Solid lines show the fits to eqs. (12) and (13). Filled squares show the
sample’s spatial correlation function in the regime where 	(r) > 0, while open
squares show j	(r)j in the anticorrelated regime. The dotted line is a rough fit of
	(r) ¼ (r/22 h�1 Mpc)�2:8 within the range r � 20 60 h�1 Mpc.
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dynamics of supercluster members may lead to a distribution of
shapes that is biased toward more elongated systems.

To address this question, we identify superclusters in the z ¼
0 HV halo population by applying a percolation algorithm
with linking length 23 h�1 Mpc, one-third the 69 h�1 Mpc
mean intercluster spacing of the sample mass limited at 3 ;
1014 h�1 M�. We further require that each supercluster have
five or more halo members above the mass cutoff. This selects
the 8% most strongly clustered halos.

Figure 8 shows the distribution of minor-axis ratios in position
and velocity for the supercluster members and the general pop-
ulation. The axial ratios of the supercluster population have a
nearly Gaussian distribution with means and dispersions pre-
sented in Table 8.

Comparing supercluster members to the general population
(Table 4), we find no difference in mean values at the level of
0.01 in axial ratio; both have (hc̃i; hb̃i) ¼ (0:64; 0:78) in position
and (0.70, 0.82) in velocity. A two-sided Kolmogorov-Smirnov
test, however, indicates that the two distributions differ at
>99.9% confidence. This finding mostly reflects the statistical
richness of our samples, since the maximum absolute difference
in the two integral distributions is only 0.033 (density) and 0.038
(velocity). The intensity of shape lends further support to the
picture in which the halo formation history is largely indepen-
dent of large-scale environment (Bower 1991; Sheth & Tormen
1999, 2004).

5. CONCLUSIONS

We use dark matter halo samples from 109-particle N-body
simulations to measure statistical properties of halo shapes. The
main �CDM samples consist of 83,000 halos at z ¼ 0 and

44,000 halos from sky survey output with masses M200 � 3 ;
1014 h�1 M�. For each halo, a moment analysis of density and
velocity structure within r200 is used to define the principal axes
of an equivalent ellipsoid. Higher resolution simulations and
random realizations of isothermal spheres demonstrate that sys-
tematic errors due to discreteness are less than 0.02 in mean axial
ratio for the main HV samples.

Massive halos have a Gaussian distribution of axis ratios, with
intrinsic dispersion�0.08 and ameanminor-axis ratio hc̃i(M ; z) ¼
c̃15;0(1� � lnM )(1þ z)� that tends weakly toward rounder sys-
tems at lower mass and redshift (� � 0:02 and � � 0:09 for
position; see Tables 6 and 7).

Halos are rounder in velocity than in position space, a finding
that likely reflects more efficient scattering in velocity space and
the rounder nature of the gravitational potential compared to the
density field. The principal axes in position and velocity are
strongly correlated; 50% of halos have alignment angles smaller
than 22

�
. We also provide a Gaussian fit to the joint probability

density of minor-axis ratios in position and velocity.
We investigate mark correlations of cluster shape using two

statistics introduced by Faltenbacher et al. (2002). We measure
significant excess alignment of halos extending to 30 h�1 Mpc
for the basic measure and to 200 h�1 Mpc for the filamentary
statistic. The latter is well fit as a function of scale by �w (r) ¼
0:175½1þ (r/24 h�1 Mpc)��2:3

. Thefilamentary alignment should
be detectable in large galaxy cluster surveys such as SDSS, but
precise comparison between theory and observation will require
a careful study of the connections between clusters observed in
redshift/color space and the underlying halo population. We also
find that the distribution of halo shapes in supercluster regions is
indistinguishable from that of halos in general, showing that shape
is largely independent of large-scale environment.

The statistics presented here can be used to extend approxi-
mate methods for creating nonlinear representations of the mat-
ter distribution based on the halo model description (Scoccimarro
& Sheth 2002) by incorporating an ensemble of ellipsoidal halos
with correlated orientations and aligned position and velocity
ellipsoids.
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