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ABSTRACT

We have analyzed the magnetic effects that may occur in rapidly rotating core collapse supernovae. We consider
effects from both magnetic turbulence and the formation of magnetic bubbles. For magnetic turbulence we have
made a perturbative analysis for our spherically symmetric, core-collapse supernova model that incorporates the
buildup of magnetic field energy in the matter accreting onto the proto–neutron star shortly after collapse and
bounce. This significantly modifies the pressure profile and increases the heating of the material above the proto–
neutron star resulting in an explosion even in rotating stars that would not explode otherwise. Regarding magnetic bub-
bles, we show that a model with an initial uniformmagnetic field�108 G and uniform angular velocity of�0.1 rad s�1

can form magnetic bubbles due to the very nonhomologous nature of the collapse. It is estimated that the buoyancy
of the bubbles causes matter in the proto–neutron star to rise, carrying neutrino-rich material to the neutron star
surface. This increases the neutrino luminosity sufficiently at early times to achieve a successful neutrino-driven ex-
plosion. Both magnetic mechanisms thus provide new means for initiating a Type II core-collapse supernova.

Subject headinggs: gravitation — hydrodynamics — instabilities — stars: rotation — supernovae: general
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1. INTRODUCTION

In most supernova models with pure spherical symmetry,
after a massive star collapses due to the exhaustion of its nuclear
fuel, the neutrino luminosity from the proto–neutron star (PNS)
is too low to heat the in-falling material sufficiently to expel
matter from the star (e.g., Bruenn 1985, 1993; Burrows et al.
1995; Yamada et al. 1999; Fryer &Heger 2000; Rampp& Janka
2000, 2002; Liebendörfer et al. 2001; Mezzacappa et al. 2001;
Akiyama et al. 2003; Buras et al. 2003; Thompson et al. 2003;
Burrows 2005; Cardall 2004).

However, the Livermore supernova model (cf. Wilson &
Mayle 1988, 1993; Wilson & Mathews 2003) avoids this prob-
lem and is able to explode in spherical symmetry by inducing a
larger amount of neutrino heating soon after the core bounce.
For this reason it is important to examine any possible means to
induce additional heating above the proto–neutron star.

One important mechanism for such heating, for example, is that
the proto–neutron star can become hydrodynamically unstable a
few hundred milliseconds after the core bounce due to the so-
called neutron-finger instability (Wilson & Mayle 1988; Wilson
& Mathews 2003). This instability results from the buildup of
dense material with a large neutron-to-proton ratio near the sur-
face of the proto–neutron star. Sufficiently neutron-rich material
can overcome the buoyancy caused by the high entropy near the
surface. As surface material sinks downward, neutrino-rich ma-
terial rises to the surface. This enhances the neutrino luminosity
and produces enough heating of material behind the shock to
produce an explosion (cf. Wilson & Mathews 2003).

The fact that other models of Type II supernovae do not
exhibit this instability can be attributed to a number of possi-
bilities (e.g., Bruenn et al. 2004), such as differences in the equa-
tion of state employed, the detailed way in which convection is

treated, and/or the treatment of neutrino flow. Hence, this mech-
anism is controversial (Bruenn et al. 2004) as a means to induce
core-collapse supernovae. Therefore, in this paper we describe
first schematic calculations of some plausible, and perhaps more
compelling, alternatives to the neutron-finger instability to over-
come the lack of sufficient neutrino luminosity at early times in
the explosion. We have investigated two magnetohydrodynamic
(MHD) effects both above and below the rotating proto-star sur-
face that may be strong enough to enhance the neutrino lumi-
nosity and produce an explosion. These processes could either
increase the neutron-finger instability or replace it in models that
have no surface convection.

2. MODELS

The purpose of this paper is to make a schematic study of
the possible roles of magnetohydrodynamics in rotating core-
collapse supernovae. While the models we utilize are adequate
to illustrate the order of magnitude of these effects, we empha-
size that it will be necessary to do this MHD calculation in two
or three spatial dimensions to prove that the ideas presented
here are correct. Such calculations, however, present an ex-
ceedingly difficult computational challenge. For the purposes of
this schematic investigation, however, a much simpler model is
employed that involves the average spherical effects of the in-
herently multidimensional rotation and magnetic effects as a
perturbation on one-dimensional hydrodynamics. This is a rea-
sonable approximation as a means of exploring the parameter
space and extracting the essential physics as long as we are con-
sidering moderate rotation rates and relatively weak but real-
istic magnetic fields.

As we shall see, the main effects in our perturbation analysis
are buildup of magnetic turbulence and field energy above the
proto–neutron star shortly after collapse and bounce due to the
accretion of magnetized matter, and the formation of magnetic
bubbles and magnetic-driven convection below the surface of
the PNS. We demonstrate that both of these effects can signif-
icantly impact the explosion mechanism.
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2.1. Supernova Model

Details of the current version of the Livermore supernovamodel
have been described in Wilson &Mathews (2003). For complete-
ness, we here summarize the basic physics and the way in which
the effects of rotation andMHD are implemented. To begin with,
the metric for a spherical neutron star is written in Lagrangian
coordinates,

ds2 ¼� a2

�
1�

�
U

�

�2�
dt 2 � 2aU

�2
dr dt þ dr 2

�2

þ r 2(d�2 þ sin2�d�2); ð1Þ

where a is the inverse of the time component of four-velocity
a � 1/Ut. It is thus related to the gravitational redshift. The quan-
tity r is a distance coordinate with proper distance given by

proper distance ¼
Z

dr

�
; ð2Þ
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The quantityM is the gravitational mass interior to r as defined
below, andU 2 ¼ U rUr is the square of the radial component of
the four-velocity.

For the metric coefficient a the vanishing of the covariant
derivative T j�
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where mmax is the mass coordinate at the boundary of the nu-
merical grid. The quantity h � 1þ �þ P /� is the relativistic
enthalpy, and

b � 1

4�r 2�
: ð5Þ

The quantities �� andW� refer to the angle-integrated neutrino
flux and a nonthermal neutrino pressure correction factor, re-
spectively, as described in Wilson & Mathews (2003).

2.2. Matter Equations

For the present application, we write the radial four accel-
eration as
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As discussed below, effects of rotation and magnetic field
energy are absorbed into an effective pressure in the accelera-
tion equation; i.e., we write

PeA ¼ PM þ P� þ Prot þ Pmag; ð7Þ

where PM and P� are the usual contributions from matter in
thermal equilibrium and neutrinos that are nonthermal and must
be transported explicitly. The effective pressure perturbations
from rotation and magnetic field energy, Prot and Pmag, are de-
fined below in x 2.5.
The condition of baryon number conservation leads to aux-

iliary equations for the matter evolution:
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The gravitational mass is given by
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with
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The baryon rest mass of the star is then simply given by the
integral over the proper volume, d(Vol) ¼ 4�r 2dr /�,

M0 ¼ 4�

Z
r 2dr
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: ð13Þ

The matter internal energy evolves according to
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where PM is the matter pressure and �i are various neutrino
scattering and absorption source terms (Wilson & Mathews
2003). The neutrino transport is treated with appropriate flux-
limited diffusion.
The condition of lepton number conservation leads to an

expression for the change in the average electron fraction (or
charge per baryon) Ye due to weak interactions,
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where q � a�� , �� is the neutrino energy, and q is the energy a
neutrino would have if it was removed to infinity.

2.3. Magnetic Fields

Magnetic fields are easily added to the simulation via the elec-
tromagnetic stress-energy tensor,

T�� ¼ TCuid
�� þ TEM

�� ; ð16Þ

where

TEM
�� ¼ 1
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and as usual, the electromagnetic tensor F�� can be related to a
vector potential A� ,

F�� ¼
@A�

@x�
� @A�

@x�
: ð18Þ

In cylindrical symmetry the nonvanishing spatial components
of F�� are thus

Frz ¼ H�; Fr� ¼ @A�

@r
; Fz� ¼ @A�

@z
: ð19Þ

Then, from the assumption of perfect conductivity,U�F�� ¼ 0,
the space-time components can be obtained:

Ftr ¼ V zH� þ V�Fr�; ð20Þ

Ftz ¼ V�Fz� � V rH�; ð21Þ

Ft� ¼ �V rFr� � V zFz� ¼ @A�
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The time evolution ofH� can then be deduced fromMaxwell’s
equation

Frz;t þ Ftr; z þ Fzt; r ¼ 0; ð23Þ
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In this work we ignore the back reaction of the magnetic fields
on the matter fluid in the simulations but estimate their effects
below in x 3.

2.4. Initial Conditions

To evolve the matter equations of motion (6)–(15), we adopt
250 nonuniform radial zones. The grid extends to �170 zones
above the photosphere. For the magnetic evolution we adopt
30 angular zones in a 90� quadrant so that the size of each angu-
lar zone is 3�. In our calculations the region of magnetic-driven
turbulence extends over a region of �10–20 radial zones. This
resolution has been employed and tested in previous supernova
collapse and rotating star calculations (Wilson & Mathews 2003)
and should be adequate for the analysis here.

The initial MHD model assumes that the star is rotating with
a uniform angular velocity in the inner 5M� of the star. It is also
threaded by a uniform magnetic field in the direction of the axis
of rotation before the start of the dynamic core-collapse phase.
Various initial models have been explored. For most of themod-
els reported on here, the strength of the initial magnetic field is
chosen such that the final neutron star would have a surface
magnetic field of H �1012 G.

The initial rotational velocity in some models leads to a post-
collapse rotation period (P �1:4 ms). This is close to the shortest
possible Keplerian neutron star rotation period (PP1 ms; Burgio
et al. 2003) and is comparable to the minimum values in the
observed period distribution for pulsars (Phinney & Kulkarni
1994; Weber 1999; Manchester 2004). Observed young pulsars
(Manchester 2004) in supernova remnants have much longer
periods (�1 s) than that obtained in these calculations. However,
they also have large spin-down rates. Indeed, the stars modeled
here should also have a large spin-down rate. Since the poloidal
field threads the rapidly rotating neutron star, and we use a mas-

sive outer envelope of very low angular velocity, a very high
torque should develop between the spinning neutron star and
the outer star plus magnetic field. These torques are sufficient to
slow the neutron star down to well within the observed range by
the time it becomes an observable pulsar.

2.5. Magnetic Turbulence above the PNS

Above the proto–neutron star for a few tenths of a second after
bounce is a region below the bounce shock front and above the
almost static proto–neutron star radius where matter is slowly ac-
creting. At postbounce times of typically tpb �200 ms, the proto–
neutron star radius is �40 km and the shock radius is �170 km.
Later, at tpb � 300 ms, the proto–neutron star radius is 32 km and
the shock radius has contracted to 140 km. The Mach number in
the subshock region is <0.1.

In the subshock region, magnetic field generation is possible
for a rapidly rotating, magnetized collapsing star. To model the
evolution of the magnetic field, we follow the general principles
given in Balbus & Hawley (1998, hereafter BH98).

The work of BH98 has led us to examine the stability of the
accretion flow of matter in the waist region shortly after core
bounce. After bounce, a shock moves out above the proto–
neutron star. This produces a region of slowly moving (Mach
number <0.1) matter (see Fig. 1). For an initially uniformly
rotating iron core this subshock region has an angular velocity
profile of ! / r�1:8. While this velocity profile is different from
the Keplerian profile (! / r�3=2) studied in BH98, it is still
unstable to MHD flow. BH98 give a maximum growth rate of
k ¼ (r /2)(d! /dr) � 0:9!. We adopt this growth rate. Hence, we
write Ḣ ¼ kH .

BH98 treat accretion disks that are almost static and orbital
velocities that are close to Keplerian. However, in our super-
nova model the accretion is rapid and the angular velocity is not
Keplerian.

We assume that the turbulent magnetic field amplitude then
grows as

H̃(t) ¼ H0(r)e
I ; ð25Þ

where I is the integrated growth rate

I ¼
Z

kdt ¼ 0:9

Z
! dt ¼ 0:9

Z rsh

r

���� !v
����dr; ð26Þ

where rsh is the shock radius.
In the above equation, H0 is the ordered HZ , HR, and H� that

arises from the spherical inflow of the magnetized matter. The
transition to a turbulent magnetic field is assumed to be rapid on
the problem timescale. For the lowest initial angular velocity that
produced an explosion, ! ¼ 0:071 s�1; the integrated growth rate
was I � 30 at a postbounce time of tpb ¼ 0:14 s and increased to
I � 90 by tpb ¼ 0:25 s.

The initial field was selected so that the final neutron star field
will be �1012 G. The ordered field is thus taken to be H0 ¼
1012(10 km/r)2 G. As demonstrated in BH98, the field is as-
sumed to grow until near equipartition,

H 2
max

8��
� !2r 2

4
: ð27Þ

Energy is deposited in matter after the field surpasses the
Hmax. Hence, after H̃ ¼ Hmax, we let

�̇matter ¼ 2!H 2
max=8��: ð28Þ

RAPIDLY ROTATING MAGNETIC CORE-COLLAPSE SNe 337No. 1, 2005



The thermal matter pressure PM (�; �) above the PNS is thus
augmented by equation (28) through the increase in �matter.

In addition, however, there are contributions from rotation
and magnetic effects. In cylindrical coordinates the rotational
energy density is just

Erot ¼
1

2
�!2R2: ð29Þ

We note that r ¼ R sin (�) and deduce an effective isotropic
pressure due to rotational energy from an angular average of the
rotational energy,

Prot ¼
Erot

3
¼ 1

6
�!2r 2: ð30Þ

Similarly, the energy density due to the isotropic turbulent
magnetic field H̃ is

Ẽmag ¼
H̃ 2

8�
: ð31Þ

The average pressure is then a third of this, as is usual for an
isotropic massless field. However, we then reduce this by an-
other factor of 2 due to the solid angle of the directional flow of
the accreting material. Hence, we write

Prot ¼
H̃ 2

48�
: ð32Þ

Calculations were made with different initial angular veloc-
ities to find out how much rotation was needed to result in an
explosion. These conditions are summarized in Table 1.

Figure 1 illustrates the effects on a rotating collapse simu-
lation with and without effects of the magnetic turbulent pres-
sure contribution. For this example, the rejuvenation of the shock
due to magnetic field amplification above the PNS is clearly
demonstrated.

2.6. Magnetic Bubble–driven Explosion below the PNS Surface

The nonhomologous collapse of a uniformly rotating iron
core leads to differential rotation and the buildup of a toroidial
magnetic field (see Wheeler et al. 2002 for a general discussion
and references). The toroidial field builds up to large values and
produces a region unstable tomagnetic buoyancy and tension as
we now describe.

The magnetic bubble model assumes that the magnetic fields
evolve in matter that can be treated as having perfect conduc-
tivity. Also, the magnetic braking back reaction of the field on
the fluid is not explicitly included, although we estimate its
effect. We start with the 18 M� stellar progenitor model of
Woosley &Weaver (1995) at the time at which the iron core has

just become unstable to infall. While the hydrodynamics is
taken to evolve spherically, the magnetic field is assumed to
be axially symmetric and is evolved in cylindrical coordinates.
Therefore, in what follows, we need to simultaneously consider
quantities in both cylindrical and spherical coordinates. Hence,
we use capitalR; Z; and � to distinguish cylindrical coordinates,
while r, �, and � are used to denote for spherical coordinates. We
assign all the matter with an angular rotational velocity !0 about
the Z axis. A uniformmagnetic field in the Z direction is assumed.
Each mass shell is then zoned in the � direction for the calculation
of the magnetic fields and rotational motion.
The magnetic flux in the Z direction is taken as constant in �

for each (r; �) zone. Each mass shell rotates rigidly and pre-
serves its angular momentum. As described in x 3, these as-
sumptions lead to the following equation for the evolution of
the toroidal field:

Ḣ� ¼ H 0
Z!0

�
r0

r

�4
sin (�) cos (�)

�
dr0

dr

r

r0
� 1

�

� H�

r

@(rv)

@r
: ð33Þ

Note that the sin (�) cos (�) product implies a maximum rate of
field growth in a region inclined 45� from the rotation axis.
The poloidal field components then follow from flux

conservation,

ḢZ ¼ H 0
Z

�
r0

r

�2
sin2(�)

dr0

dr

r

r0
þ cos2(�)

� �
; ð34Þ

ḢR ¼ H 0
Z

�
r0

r

�2
sin (�) cos (�)

�
dr0

dr

r

r0
� 1

�
; ð35Þ

TABLE 1

Explosion Times

and Angular Velocities

!0

(s�1)

tpb
(ms)

0.20....................... 200

0.10....................... 250

0.0707................... 340

0.05....................... 1

Fig. 1.—Lowest curve shows the radius of the proto–neutron star as a func-
tion of time postbounce. The upper curves give the radius of the accretion shock
for models with an initial angular velocity of ! ¼ 0:071 s�1 with and without
magnetic turbulence as labeled. The upper curve clearly shows the effects of
magnetic field amplification on the shock front. The lower curve shows that rota-
tion alone has little effect for this particular model. [See the electronic edition of the
Journal for a color version of this figure.]
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where r0 is the initial radius of a mass shell and r is the shell
radius at a later time. Here H 0

Z is the initial uniform magnetic
field, and !0 is the initial angular velocity.

The initial angular rotational velocity was chosen to be large
enough that a toroidal field will build up to a size such that the
buoyancy will be large enough to overcome the stabilizing out-
ward increasing entropy gradient of the matter. Such buoyancy
will then cause matter to turn over by the quasi-Ledoux convec-
tion (Wilson&Mayle 1993;Wilson&Mathews 2003). This turn-
over then brings �-rich material to the surface. This enhances the
neutrino luminosity enough at early times to achieve a successful
explosion.

3. RESULTS

Here we present results for a plausible model in which the
initial precollapse magnetic field, HZ , was chosen to be 3:16 ;
107 G. This field magnitude was chosen because it was esti-
mated that the resulting neutron star would have a magnetic
field of the order of 1012 G. Several initial angular velocities
were tried in order to find the minimum amount of rotation re-
quired to produce an explosion. The minimum angular velocity
was found to be 0.3 rad s�1 for this magnetic field strength.

This angular velocity is rather high. Nevertheless, prelimi-
nary axially symmetric hydrodynamics calculations (R. Tipton
2004, private communication) of the collapse of a star with ! ¼
0:3 s�1 have found only a small distortion from sphericity for
the first 0.2 s after bounce, although a vortex would form unless
viscosity was included.

As noted above, this angular velocity leads to a rotation rate
that is comparable to the shortest observed period pulsars, is
near the maximum Keplerian limit on neutron star spin, and is
somewhat larger than the rotation rate observed in young pul-
sars (Manchester 2004). Nevertheless, massive stars are known
(e.g., Penny et al. 2004) to have high surface rotation velocities,
typically �200 km s�1. If these stars rotate uniformly, then
unless significant angular momentum transfer occurs during col-
lapse, they would form a neutron star near the maximum rotation
rate.

We also point out that lower spins are required if a higher
initial magnetic field is adopted. For example, a calculation was
made with a smaller initial rotation rate of 0.1 rad s�1 and a
higher precollapse magnetic field of 108 G. The final magnetic
field was correspondingly higher (3 ; 1012 G). A good explo-
sion resulted, and the final neutron star period increased by a
few microseconds. With this scaling a final field of 1013 G only
requires an initial rotation rate of 0.03 s�1. Field strengths of
�1013 G are comparable to those observed in a large number of
pulsars (Manchester 2004), e.g., the Crab pulsar for whichH �
8 ; 1012 G. Indeed, it is by now well established that magnetars
with fields as high as 1015 G exists. Such stars would require only
rather small rotation rates to induce a supernova.

As the inner core of the star collapses in our benchmark
model, the rotation and magnetic fields cause the collapse to be-
come very nonhomologous. Density in the inner region quickly
rises from � ��4 ; 109 to a bounce density of�5 ; 1014 g cm�3.
Above a baryonic mass cut of about 1.5M� the density rises very
slowly. This leads to large values of r0 /r and (dr0 /dr)(r /r0).
Hence, a large H� field is developed according to equation (33).
The componentsHR andHZ rise as well but not nearly asmuch as
H�. The azimuthal H� component thus becomes the dominant
field component in the proto–neutron star.

A key result from these simulations is that the principle field
energy density, H2

� /8�, forms two concentrated toroidal shaped
regions at about 45

�
from the rotation axis. Figure 2 compares

the magnetic tension H 2 /4� with the matter pressure along a
45

�
radius. The buoyancy and tension of these toroidal regions

will stir the matter and induce the transport of matter and neu-
trinos from the core to the surface. We here endeavor to provide
an estimate of the effects of this transport on the explosion.

The motion of material due to the combined effects of rota-
tion, magnetic buoyancy, and magnetic tension is exceedingly
complex and would require a fully three-dimensional MHD
code. Nevertheless, the essential features of this magnetic con-
vection can be deduced via a diffusion algorithm that obeys all
relevant conservation laws as it transports matter, radiation, and
neutrino properties. The same algorithm has been employed for
neutron-finger convection in the Livermore supernova model
(Wilson&Mathews 2003). This allows an easy comparisonwith
results from that mechanism.

The effect of the magnetic buoyancy and tension instability is
therefore modeled as follows. When the buoyancy of the mag-
netic field is sufficient to overcome the positive entropy gra-
dient, then a magnetic diffusion algorithm is initiated.

The problem of how the magnetic bubbles will rise and ex-
change energy, etc., with its surroundings is quite difficult to
solve directly. To model this effect we use the existing convec-
tion algorithm in the supernova models to transport energy, com-
position, and neutrinos. Dimensional analysis is used to set the
size of an effective diffusion coefficient; i.e., the effective diffusion
coefficient is taken as scaling with the product of a mixing length
times the characteristic magnetic velocity parameter:

D ¼ l

30

ffiffiffiffiffiffiffiffi
H 2

8��

s
; ð36Þ

where H is the maximum of the magnitude of the H� field, and

l ¼
r� � r; r < rH ;

r� � rH ; r � rH ;

	
ð37Þ

where rH is the radius at which the maximum ofH occurs and r�
is the radius of the neutrino photosphere. The factor of 30 in the

Fig. 2.—Magnetic tension (in units of 1030 ergs cm�3) and matter pressure (in
units of 1031 ergs cm�3) vs. radius along a line inclined at 45

�
to the rotation axis.

Note that the magnetic field is concentrated near the neutrino sphere, which for this
model is at 16.5 km. This figure represents the case of an initial magnetic field of
3:16 ; 107 G and a rotation rate of 0.3 rad s�1 at a time 0.6 s after core bounce. [See
the electronic edition of the Journal for a color version of this figure.]
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denominator was deliberately assumed to be large so as to be
conservative in our estimate of the size and behavior of the
magnetic convective cells. A smaller cell size implies a slower
convective lifetime. It should be noted that our calculation is
only good enough to show the scale of rotation and magnetic
field that can initiate an explosion.

As in the case of the neutron-finger instability (Wilson &
Mathews 2003), the magnetic convection brings up proton-rich
matter (compared to the deleptonized surface regions) as well as
neutrinos toward the surface of the proto–neutron star and re-
sults in an enhanced neutrino luminosity soon after bounce.

Figures 3–6 show some of the details of the calculation with an
initial field of 3:16 ; 107 G and a rotation rate of 0.3 rad s�1. In
Figures 7–9 these are compared to calculations with no convec-
tion and also those with neutron finger convection. As can be seen
in Figures 7–9, all three calculations give nearly the same be-
havior until a few tenths of a second after the core bounce.

In Figure 3 the neutrino photospheric radius r� and the proto–
neutron star average angular velocity !̄ are presented. The final
angular speed is very high, ! � 9 ; 103 rad s�1, corresponding
to a rotation period of P � 1ms. The star, however, will quickly
spin down. The surface field H� is very high, and it is anchored
in the massive nonrotating envelope. The magnetic torque
should be of order


H �
Z �

@H�

@R
HZ �

@H�

@Z
HR

�
Rr 2 dr: ð38Þ

Putting in numbers for H�; HR; and HZ from the simulations,
we obtain 
H � a few ; 1046 ergs. Then for a rotational moment
of inertia of the nascent neutron star of I � 1045 g cm2, one has

!̇

!
¼ 
H

I!
� a few ; 10�3 s�1: ð39Þ

Fig. 3.—Curve marked r� shows the neutrino photospheric radius in units of
102 km vs. time as the neutron star relaxes to a radius of �10 km. The curve
labeled !̄ shows the angular speed (in units of 104 rad s�1) of the proto–neutron
star averaged for matter inside r� as a function of time.

Fig. 4.—Curve HZ shows the maximum of the Z-component of the magnetic
field as a function of time in units of 1012 G. CurveH� shows the maximum value
of the �-component of the magnetic field as a function of time in units of 1016 G.

Fig. 5.—Radial velocity in units of 103 km s�1 at various indicated times
postbounce (from left to right) of 0.60, 0.63, 0.66, and 0.68 s for the model with
magnetic convection.

Fig. 6.—Entropy per baryon S vs. radius for the postbounce times (from left
to right) of 0.60, 0.63, 0.66, and 0.68 s for the model with magnetic convection.
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Hence, the magnetic torque should be able to slow the spin of the
neutron star considerably within several minutes. The maximum
values of the magnetic fieldsHZ and H� as a function of time are
shown in Figure 4. This figure shows that it only takes several
tenths of a second to get large magnetic fields.

Figures 5 and 6 show the radial velocity and entropy per
baryon, respectively, at various times for the mass shell with the
highest outward velocity in a model with magnetic convection
and no neutron-finger instability. Here it is apparent from the
expanding radii and increasing entropies that a good explosion
has resulted. When the entropy rises to about 80, the heating by
neutrino-electron scattering is equal to that of neutrino capture.
Hence, even though the luminosities are falling, the heatingwithin
the high-entropy bubble will remain substantial.

Figure 7 compares the electron neutrino luminosities as func-
tions of time for three runs: no convection, neutron-finger con-

vection, and magnetic-field driven convection. Here we see
that in the case of the neutron-finger convection, luminosity
comes on early but is eventually surpassed by the magnetic
luminosity. The entropy profiles in radius at a time of 0.68 s
postbounce seconds are shown in Figure 8. The entropy in the
magnetic case is only slightly less than that of the neutron-finger
case. From Figure 9 we see that the outward velocity for the
magnetic calculation is only slightly below the neutron-finger
velocity.

4. CONCLUSIONS

Although the Livermore supernovamodel with neutron-finger
convection is a viable description of core-collapse supernovae,
these calculations suggest an alternative to the neutron-finger in-
stability for initiating an explosion. If correct, this may provide
the long sought after insight as to how core-collapse supernovae
become sufficiently heated behind the shock to explode. An in-
teresting possible side effect of the magnetic field generation
that we studied is that an axial jet and/or a prolate bulge in the
mass distribution should arise independently of how the con-
vection is driven. Such features, for example, might be an ex-
planation of the observation that most remnants emit polarized
optical radiation.

It should be noted that both this magnetic turbulence effect
and the magnetic bubble formation below the proto–neutron
star surface will act together with neutron-fingers to induce an
explosion. Clearly, more detailed work utilizing two- and three-
dimensional MHD simulations is required to explore whether
the magnetic buoyancy effect described herein is sufficient to
induce an explosion. This is, however, a difficult and time-
consuming calculation. It is hoped that this work will stimulate
further effort to understand this possibly important contribution
to the complex paradigm of core-collapse supernovae.

Work at the Lawrence Livermore National Laboratory
performed in part under the auspices of the US Department
of Energy under contract W-7405-ENG-48 and NSF grant
PHY-9401636. Work at the University of Notre Dame is sup-
ported by the US Department of Energy under Nuclear Theory
Grant DE-FG02-95-ER40934. We acknowledge John Hawley
for suggesting that we look at the effects of magnetic turbulence

Fig. 7.—Electron neutrino luminosities in units of 1052 ergs s�1 as a function
of postbounce time for three calculations as labeled: no convection, neutron-
finger convection, and magnetic convection. Note that the early short-duration
shock break-out luminosity has been suppressed.

Fig. 8.—Entropy per baryon vs. radius at postbounce time of 0.68 s for the
cases of no convection, neutron-finger convection, and magnetic convection.

Fig. 9.—Velocity in units of 103 km s�1 at a postbounce time of 0.68 s for the
cases of no convection, neutron-finger convection, and magnetic convection.
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as a means to initiate a supernova explosion. The authors wish
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