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ABSTRACT

We study the effects of ellipticity in lens galaxies and external tidal shear from neighboring objects on the
statistics of strong gravitational lenses. For isothermal lens galaxies normalized so that the Einstein radius is
independent of ellipticity and shear, ellipticity reduces the lensing cross section slightly, and shear leaves it
unchanged. Ellipticity and shear can significantly enhance the magnification bias, but only if the luminosity
function of background sources is steep. Realistic distributions of ellipticity and shear lower the total optical depth
by a few percent for most source luminosity functions, and increase the optical depth only for steep luminosity
functions. The boost in the optical depth is noticeable (k5%) only for surveys limited to the brightest quasars
(L/L�k 10). Ellipticity and shear broaden the distribution of lens image separations but do not affect the mean.
Ellipticity and shear naturally increase the abundance of quadruple lenses relative to double lenses, especially for
steep source luminosity functions, but the effect is not enough (by itself ) to explain the observed quadruple-to-
double ratio. With such small changes to the optical depth and image separation distribution, ellipticity and shear
have a small effect on cosmological constraints from lens statistics: neglecting the two leads to biases of just
��M ¼ 0:00 � 0:01 and ��� ¼ �0:02 � 0:01 (where the error bars represent statistical uncertainties in our
calculations).

Subject headinggs: cosmology: theory — gravitational lensing

1. INTRODUCTION

A circularly symmetric gravitational lens is a useful theo-
retical construct that, most likely, will never be observed in a
cosmological setting.7 Every real cosmological lens will have
some small asymmetries either in its own mass distribution
(e.g., ellipticity) or in the distribution of objects near the line of
sight (leading to a tidal shear). In fact, it is well known that el-
lipticity and shear cannot be ignored in models of individual
observed strong-lens systems (e.g., Keeton et al. 1997; Witt &
Mao 1997).

Nevertheless, most analyses of the statistics of gravita-
tional lenses have used symmetric lenses. The statistical calcu-
lations offer enough intrinsic challenges that most authors have
stuck to idealized spherical lenses, such as the singular iso-
thermal sphere (SIS) or the generalized Navarro-Frenk-White
(GNFW; Navarro et al. 1997; Zhao 1996) profile (e.g., Narayan
& White 1988; Fukugita & Turner 1991; Kochanek 1995,
1996a; Maoz et al. 1997; Keeton & Madau 2001; Sarbu et al.
2001; Takahashi & Chiba 2001; Li & Ostriker 2002; Davis
et al. 2003; Huterer & Ma 2004; Kuhlen et al. 2004; Mitchell
et al. 2004). Conventional wisdom holds that the statistical
effects of ellipticity and shear are confined to the relative num-
bers of double and quadruple lenses, and that symmetric lenses

are adequate for applications such as deriving cosmological
constraints.
To our knowledge, this conventional wisdom is based on a

few studies in which the analysis of ellipticity and shear was
subordinate to practical applications of lens statistics. King &
Browne (1996), Kochanek (1996b), Keeton et al. (1997), and
Rusin & Tegmark (2001) all computed the relative abundances of
different image configurations as a function of ellipticity and/or
shear, for various assumptions about the luminosity function of
background sources. Along the way, they necessarily computed
the effects of ellipticity and shear on the lensing cross section
and magnification bias, but did not explicitly discuss them. Chae
(2003) included ellipticity in lens statistics constraints on cos-
mological parameters, but the effects were built into his statis-
tical machinery and not presented on their own.We believe there
is pedagogical value in isolating the statistical effects of ellip-
ticity and shear and studying them in detail. It would be useful to
lay out exactly how ellipticity and shear affect the lensing optical
depth, and how that may (or may not) lead to biases in cosmo-
logical constraints. Furthermore, at least two other issues de-
serve to be studied as well: the effects of ellipticity and shear on
the distribution of lens image separations, and the dependence
of the various statistical effects on the luminosity function (LF)
of the background sources. We will show that, while not wrong,
the conventional wisdom is somewhat limited and that there are
effects of ellipticity and shear on lens statistics that are subtle but
interesting.
We focus on lensing by galaxies, by which we mean systems

with a single dominantmass component that can be approximated
as an isothermal ellipsoid. The isothermal profile describes early-
type galaxies remarkably well on the 5–10 kpc scales relevant for
strong lensing (e.g., Rix et al. 1997; Gerhard et al. 2001; Rusin &
Ma 2001; Treu & Koopmans 2002; Koopmans et al. 2003; Rusin
et al. 2003). Lens statistics are rather different for groups and
clusters of galaxies modeled with GNFW profiles, and that par-
allel case has recently been studied by Oguri & Keeton (2004).
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2. METHODOLOGY

2.1. General Theory

The probability for a source at redshift zs to be lensed can be
written as

�(zs) ¼
1

4�

Z
dV

Z
d�

dn

d�

Z
de pe(e)

Z
d 2� p� (�; ��)

;

Z
mult

du
�src (L=�)

�src (L)
: ð1Þ

The first integral is over the volume of the universe out to the
source. The second integral is over the population of galaxies
that can act as deflectors. For isothermal lenses the important
physical parameter is the velocity dispersion, so the most useful
description of the galaxy population is the velocity dispersion
distribution function (dn/d�)d�, or the number density of galax-
ies with velocity dispersion between � and �þ d� (seeMitchell
et al. 2004). The third integral is over an appropriate distribution
pe for the internal shape (ellipticity) of the lens galaxy. (With-
out loss of generality, we can work in coordinates aligned with
the major axis of the galaxy, so we do not need to consider the
galaxy position angle.) The fourth integral is over an appropriate
distribution p� for the external tidal shear caused by objects near
the lens galaxy; this integral is two-dimensional because shear
has both an amplitude (�) and a direction (��). Finally, the fifth
integral is over the angular position u of the source in the source
plane and is limited to the multiply imaged region. In the last
integrand, � is the lensing magnification, �src(L) is the cumu-
lative number density of sources brighter than luminosity L in the
survey, and the factor �src(L /�) /�src(L) accounts for the ‘‘mag-
nification bias’’ that produces an excess of faint sources in a flux-
limited survey due to lensing magnification (Turner et al. 1984).
(The role of the limiting flux or limiting luminosity will be dis-
cussed in x 2.3 below.) The differential probability for having a
lens with image separation �� can be computed by inserting a
Dirac �-function in equation (1) to select the parameter combina-
tions that give separation��. In other words, we can think of the
(normalized) image separation distribution asp(��)¼��1@� /@��.

The lensing cross section A and the magnification bias fac-
tor B are often computed separately (see Chae 2003 for the most
recent example). According to equation (1), however, the two
quantities are closely linked. We prefer to keep them together
and compute the product

BA �
Z
mult

du
�src (L=�)

�src (L)
; ð2Þ

which we call the ‘‘biased cross section.’’ The biased cross sec-
tion depends on both the lens model parameters and the source
LF.

A convenient feature of isothermal lenses is that the physical
scale decouples from the lensing properties. All of the dependence
on zs, zl, and � is contained in the (angular) Einstein radius �E, so
when we work in units of �E nothing depends explicitly on these
parameters. As a result, the dimensionless biased cross section
BÂ � BA/�2E depends only on the ellipticity and shear (and im-
plicitly on the source LF). We can then rewrite equation (1) as

�(zs) ¼
1

4�

Z
dV

Z
d�

dn

d�
�2
E(zs; zl; �)

� �

;

Z
de pe(e)

Z
d 2� p� (�; ��)B Â(e; �)

� �
; ð3Þ

where the second factor depends only on the ellipticity and shear
distributions,while the first factor depends only on the source red-
shift and the deflector population. If we only want the change in
the optical depth produced by ellipticity and shear, then we can
simply write

�

�0
¼

Z
de pe(e)

Z
d 2� p�(�; ��)

BÂ(e; �; ��)

BÂ0

; ð4Þ

where BÂ0 and �0 are the biased cross section and the optical
depth for the spherical case.

Working in dimensionless units also simplifies the study of im-
age separations. Even if all galaxies are SISs, the distribution of
image separations will be fairly broad because there is a range of
lens galaxymasses and redshifts (see, e.g., Kochanek 1993).How-
ever, the dimensionless separation��̂ ¼ ��/�E is always��̂ ¼
2 for an SIS lens, so the dimensionless image separation distri-
bution p(��̂ ) is just a �-function when the ellipticity and shear
are zero. This means that studying p(��̂ ) is the simplest way to
identify changes to the image separation distribution caused by
ellipticity and shear. For fixed ellipticity and shear, the distri-
bution can be formally written as

p ��̂ j e; �; ��

� �
¼

Z
mult

du
�src (L=�)

�src (L)
� ��̂���̂(u; e; �; ��)
� �

;

ð5Þ

where��̂(u; e; �; ��) is the dimensionless image separation pro-
duced for a source at position u by a lens with the specified
ellipticity and shear. The full image separation distribution can
then be found by integrating over appropriate distributions of el-
lipticity and shear. Note that we do not actually need to integrate
over the masses and redshifts of the deflector population in order
to compute changes to the optical depth and the image separation
distribution.

2.2. The Isothermal Ellipsoid with Shear

Wefirst discuss isothermal ellipsoidswithout an external shear,
and then discuss properties of shear at the end of this subsection.

The projected surface mass density for an isothermal ellip-
soid, written in polar coordinates (r; �) and expressed in units of
the critical density for lensing, is

	 (r; �) ¼ �

�crit

¼ b

2r

1þ q2

(1þ q2)� (1� q2) cos 2�

� �1=2
; ð6Þ

where q � 1 is the axis ratio and the ellipticity is e ¼ 1� q.
(Recall that we are working in coordinates aligned with the
major axis of the galaxy.) The radius r and the parameter b both
have the dimensions of length and may be expressed as physical
lengths (e.g., kiloparsecs) or angles on the sky (radians or arc-
seconds); we work in angular units. The lensing properties of an
isothermal ellipsoid are given by Kassiola & Kovner (1993),
Kormann et al. (1994), and Keeton & Kochanek (1998).

The Einstein radius sets the lensing scale, so it is useful to
determine its value. Consider the deflection 
0(r) produced by
the monopole moment of the lens galaxy,


0(r) ¼
1

�r

Z r

0

dr 0
Z 2�

0

d� r 0 	(r 0; �) ¼ Mcyl(r)

�r�crit

; ð7Þ

whereMcyl(r) is the projected mass in a cylinder of radius r. The
Einstein radius is defined by 
0(�E) ¼ �E. This definition re-
duces to the standard Einstein radius in the spherical case, and
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it is the quantity that seems to be most relevant in models of
nonspherical lenses (e.g., Cohn et al. 2001). For the isothermal
ellipsoid, we find

�E
b

¼ 1

�
2(1þ q�2)
� �1=2

K 1þ q�2
� �

; ð8Þ

where K(x) is the elliptic integral of the first kind. For reference
we note that this function can be approximated by

�E(e)

b
¼ exp (0:89e)3

� �
; ð9Þ

which is accurate to<1% for e � 0:53 and to<4% for e � 0:9.
In practice, however, we use the exact result.

We must specify how to normalize the model, or how to
choose the parameter b. For a spherical galaxy, b simply equals
the Einstein radius and is related to the velocity dispersion by

b ¼ �E ¼ 4�
�

c

� �2 Dls

Dos

; ð10Þ

where Dos and Dls are angular diameter distances from the ob-
server to the source and from the lens to the source. For a non-
spherical galaxy the situation is less straightforward. If we seek
a dynamical normalization in terms of a measurable stellar ve-
locity dispersion, then we must worry about complications in-
volving the halo shape and projection effects (Keeton et al. 1997;
Keeton & Kochanek 1998; Chae 2003). Consider the dynamical
normalization shown in Figure 1 (following Chae 2003). At a
typical ellipticity e � 0:3, b could rise by 7% (compared to the
spherical value) if all halos are oblate, or fall by 7% if all halos
are prolate. Some dissipationless numerical simulations have pre-
dicted roughly comparable numbers of oblate and prolate halos
(Dubinski & Carlberg 1991; Jing & Suto 2002), which would
yield a b value less than 1% higher than the spherical value (for
e ¼ 0:3). However, the shape distribution is likely to be affected
by hydrodynamics (e.g.,Kazantzidis et al. 2004), so it is not under-
stood in detail (in simulations, let alone in reality). In other words,
the dynamical normalization appears to be small but uncertain,
and impossible to compute precisely.

An alternate approach is to fix the Einstein radius to be inde-
pendent of ellipticity (and shear; see below). This seems reason-
able, because the Einstein radii of observed lenses can generally
be determined in a model-independent way to a few percent ac-
curacy (e.g., Cohn et al. 2001; Muñoz et al. 2001), and because
it keeps the mass properties (the aperture mass) independent of
ellipticity and shear. This normalization is also shown in Fig-
ure 1, and it is the one we adopt. However, it is important to keep
inmind that there is an irreducible uncertainty of a few percent in
our analysis associated with the normalization.
Objects in the vicinity of the lens galaxy create tidal forces

that affect the lens potential. The contribution is often modeled
as an external shear whose contribution to the lens potential is

�shear(r; �) ¼ � �

2
r2 cos 2(�� ��); ð11Þ

where (r; �) are polar coordinates, � is the dimensionless shear
amplitude, and �� is the direction of the shear. As an example,
consider the shear produced by an isothermal sphere galaxy with
Einstein radius b0 that lies at polar coordinates (r0; �0) relative to
the lens galaxy; the shear amplitude would be � ¼ b0/(2r0) and
the shear direction would be �� ¼ �0. External shear does not
contribute to the local surface mass density, so it does not affect
the monopole deflection or the Einstein radius.

2.3. Source Luminosity Functions

The number density of sources with luminosity between L and
Lþ dL is given by the luminosity function [d�src(L) /dL]dL. The
quantity of interest for lens statistics (see eq. [1]) is the cumula-
tive number density of sources brighter than L, or

�src(L) ¼
Z 1

L

d�src(L
0)

dL0 dL0: ð12Þ

We consider model LFs appropriate to both radio and optical
surveys.
The simplest model LF is a featureless power law, �src(L) /

L��. In this case the biased cross section simplifies to

BA ¼
Z
mult

���1du �
Z

���1p (�)d�; ð13Þ

where p(�) is the distribution ofmagnifications for lensed sources.
Several points are worth mentioning. First, with � ! 1þ the
magnification weighting factor becomes unity and we recover the
simple lensing cross section with no magnification bias.8 Second,
because the magnification distribution generically has a power-
law tail p(�) / ��3 for �31 (see Schneider et al. 1992), the
integral diverges for � � 3 and the biased cross section is well
defined only for � < 3. Finally, a power law is featureless, so the
biased cross section does not depend on the particular flux or lu-
minosity limit of a survey. A power-law LF is a good model for
radio surveys. For example, the largest existing lens survey is the
JVAS/CLASS survey offlat-spectrum radio sources (Myers et al.
2003; Browne et al. 2003), and it has an LF that is well described
by a power law with � � 2:1 (see Rusin & Tegmark 2001; Chae
2003).
Future lens samples are likely to be dominated by optically

selected quasar lenses found in deep wide-field imaging surveys

Fig. 1.—Change in the isothermal ellipsoid b parameter as a function of
ellipticity. The two dashed curves show the dynamical normalization if all halos
are assumed to be oblate or prolate. The dot-dashed curve shows the case when
half of the halos are assumed to be oblate and half prolate. The solid curve shows
the result when the Einstein radius is fixed to be independent of ellipticity, which
is what we assume in this paper.

8 Wewrite� ! 1þ, meaning that� approaches unity from above, because for
� � 1 the cumulative LF integral (eq. [12]) formally diverges. Nevertheless, the
biased cross section integral (eq. [13]) remains well defined.
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(e.g., Kuhlen et al. 2004). While accurate determination of the
quasar LF is a long-standing problem, recent evidence favors the
double power law form proposed by Boyle et al. (1988),

d� (L; z)

dL
dL ¼ ��

½L=L�(z)��l þ ½L=L�(z)��h
dL

L�(z)
; ð14Þ

where the break luminosity L� evolves with redshift as (Madau
et al. 1999)

L�(z) ¼ L�(0)(1þ z)
 s�1 e
�z(1þ e
z� )

e
z þ e
z�
; ð15Þ

where the quasar spectral energy distribution is assumed to be a
power law, f� / ��
 s . With this LF, the biased cross section
clearly depends on the bright and faint slopes �h and �l, and also
on the limiting luminosity Lcut(z)/L�(z). It depends on source
redshift to the extent that these quantities depend on redshift. We
adopt the model from Fan et al. (2001) with bright-end slope
�h ¼ 3:43 at z < 3 and �h ¼ 2:58 at z > 3, and faint-end slope
�l ¼ 1:64 at all redshifts (Wyithe & Loeb 2002).

If we wanted to compute statistics for real quasar lens surveys,
we would need to adopt an appropriate limiting magnitude and
compute the limiting luminosity Lcut(z)/L�(z) as a function of
redshift. This would require specifying the passband, computing
K-corrections, and other details that would muddy the waters.
Since the goal is conceptual understanding of the effects, we be-
lieve that it is simpler and more instructive to work with a lumi-
nosity cut Lcut/L�. In this case, we do not need to specify the
parameters ��, L�(0), z�, �, and 
.

2.4. Numerical Techniques

We compute the integrals in equations (2)–(5) using Monte
Carlo techniques. First, for fixed ellipticity and shear we place
105–106 random sources in the source plane, in the smallest
circle enclosing the caustics. We solve the lens equation using
the gravlens software (Keeton 2001) to determine the number
of images and their positions and magnifications. We define the
image separation to be the maximal separation between any two
images in the system,�� � max jai � ajj; this is a convenient,
observable, and well-defined quantity that is independent of the
number of images.

We separate the lenses into three standard classes based on
the image multiplicity: ‘‘doubles’’ have two bright images, one
with positive parity and one negative, plus a faint central image
that is rarely observed; ‘‘quads’’ have four bright images, two
positive and two negative parity, plus a faint central image that
is rarely observed; and ‘‘naked cusps’’ have three bright images,
either two positive parity and one negative or vice versa.We use
the classifications directly only when studying the quadruple-
to-double ratio (x 5). The classification offers a fringe benefit:
we can identify numerical errors as systems that do not fit into
any of the classes (because, for example, the software failed to
find one of the images). We estimate that the numerical failure
rate is <10�4.

Next, where appropriate we integrate over distributions for
ellipticity and shear. For the ellipticity, we adopt the distribu-
tion of ellipticities measured for 379 early-type galaxies in 11
nearby clusters by Jørgensen et al. (1995). The distribution has
mean hei ¼ 0:31 and dispersion �e ¼ 0:18, and there are no gal-
axies with ek 0:8. Although the measured ellipticities describe
the luminosity while what we need for lensing is the ellipticity of

the mass distribution, this is probably the best we can do at the
moment. In any case, it seems reasonable to think that the ellip-
ticity distributions for the light and the mass may be similar (see
Rusin & Tegmark 2001). For the shear, Holder & Schechter
(2003) estimate that the distribution of shear amplitudes derived
from simulations of galaxy formation can be described as a log-
normal distribution with median � ¼ 0:05 and dispersion �� ¼
0:2 dex; this distribution is also broadly consistent with the shears
required to fit observed lenses. As a rule of thumb, a shear
� 	 0:1 is common for lenses in poor groups of galaxies, and the
shear can reach � 	 0:3 for lenses in rich clusters (e.g., Keeton et
al. 1997; Kundić et al. 1997a, 1997b; Fischer et al. 1998; Kneib et
al. 2000). We assume random shear orientations.

3. THE OPTICAL DEPTH

Before determining the effects of ellipticity and shear on the
lensing optical depth, it is instructive to consider first how they
affect the source plane. There is only a small change in the lens-
ing cross section. In fact, for isothermal galaxies shear has no
effect on the radial caustic and hence on the cross section.9 El-
lipticity (or any other internal angular structure) in isothermal
galaxies changes the caustics in such a way as to reduce the cross
section, as explained in theAppendix. Themain effect of increas-
ing ellipticity or shear is to lengthen the tangential caustic, which
enlarges the phase space for large magnifications and raises the
tail of the magnification distribution, as illustrated in Figure 2. In
particular, we see a sharp increase in the cross section for produc-
ing magnifications larger than the minimum magnification for a
quadruple lens (see caption).

We now examine the dependence of the biased cross section
BA on ellipticity (Fig. 3) and shear (Fig. 4). When the LF is a
power law with � ! 1þ there is no magnification bias, and
Figure 3 illustrates how ellipticity reduces the cross section.

Fig. 2.—Magnification distributions for spherical deflectors without shear
and with shear � ¼ 0:2. The curves are normalized so that the area under each
curve is the corresponding cross section in units of �2

E. For the shear case we
show the distributions for doubles and quadruples separately. Note that the
minimum magnification for doubles is �2;min ¼ 2/½(1þ 3�)(1� �)�, while for
quadruples it is �4;min ¼ 2/½�(1� � 2)� (Finch et al. 2002); so �2;min ¼ 1:56 and
�4;min ¼ 10:4 for the case � ¼ 0:2 shown here. The distributions asymptote to
A (�) / ��3 at high magnifications (Schneider et al. 1992).

9 Shear can affect the cross section only in the rare case that the tangential
caustic pierces the radial caustic to form naked cusps (e.g., Schneider et al. 1992).
For SIS+shear models, this happens only when the shear is large, � > 1

3
. In this

case, there is some (small) multiply imaged region outside the radial caustic.
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Even with magnification bias, ellipticities up to e 	 0:5 do not
affect the biased cross section bymore than 10%unless the source
LF is very steep (e.g., the very brightest quasars, Lcut/L�k 100
when �h ¼ 3:43). Figure 4 shows that shear causes a stronger
increase in the biased cross section, but we must remember that
realistic shears are �P 0:1 and that only lenses in clusters expe-
rience large shears of � 	 0:2 0:3. Thus, the typical change in
the biased cross section due to shear is again no more than 10%
unless the LF is very steep.

To compute changes in the full optical depth we integrate the
biased optical depth over appropriate distributions of ellipticity
and shear (see eq. [4]). The results are shown in Figure 5. With-
out magnification bias (� ! 1þ), ellipticity and shear reduce
the optical depth very slightly (by 	0.6%, although the statis-
tical uncertainty from our Monte Carlo calculations is 	0.3%).
With magnification bias and a shallow source LF, ellipticity and
shear can reduce the optical depth by up to	2.5% relative to the
spherical case. For power-law LFs, only when � � 2:2 is there
an increase in the optical depth, and wemust have � � 2:5 (� �
2:6) in order for the increase to be more than 5% (10%). For the
quasar LF, the increase exceeds 5% only if the bright end is

steep (�h ¼ 3:43) and the survey is limited to bright quasars
(Lcut /L�k 10).
In practice, these results mean that ellipticity and shear are im-

portant for the optical depth only in surveys that are restricted to
the brightest quasars. They are not very significant for the sorts of
deep optical surveys now underway that probe well beyond the
break in the quasar LF.

4. THE IMAGE SEPARATION DISTRIBUTION

We now turn to the distribution of lens image separations and
how it is affected by ellipticity and shear. First, we recall several
basic facts. Even in spherical models the distribution of dimen-
sioned image separations will have some natural spread because
of the range of galaxy masses and redshifts; but the distribution
of dimensionless separations ��̂ is a �-function at ��̂ ¼ 2. To
highlight changes in the separation distribution, it is therefore
useful to focus on the distribution of ��̂. Also, as discussed in
x 2.4, we define the separation to be the maximal distance be-
tween any pair of images.
Figure 6 shows the distribution of ��̂ for several values

of ellipticity (top) and shear (bottom). The distribution has an

Fig. 3.—Enhancement in the biased cross section caused by ellipticity. The shear is set to zero. Left : Results for different power law source LFs. Recall that with
� ! 1þ there is no magnification bias and that the CLASS radio survey has � � 2:1. Right : Results for the model quasar LF, for different values of the limiting
luminosity (Lcut /L�) and the bright-end slope (�h); the faint-end slope is fixed at �l ¼ 1:64. The jaggedness in the upper curves is due to statistical noise, because for steep
LFs the magnification bias is strong and the results are dominated by rare extreme-magnification systems.We estimate the statistical errors in the upper curves to be	3%,
and much smaller for the other curves.

Fig. 4.—Similar to Fig. 3, but for shear. The ellipticity is set to zero here. The statistical errors in the upper curves are 	10%, and much smaller for the other curves.
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interesting shape that peaks at the ends and is low in the middle.
It has a sharp cutoff at the high end, while at the low end it has a
sharp drop followed by a small tail to lower values. The peaks
correspond to sources near the minor and major axes of the lens
potential.

As the ellipticity or shear increases, the distribution of ��̂
broadens and its mean shifts. To quantify these effects, we com-
pute the mean separation h��̂i and the spread ���̂ ¼ (h��̂2i�
h��̂2)i1=2, and plot them as a function of ellipticity or shear in
Figure 7. The increase in the mean and scatter are small for all
ellipticities, and are both <20% for all but the strongest shears

(�k 0:3) felt by lenses in cluster environments. Nevertheless, it
is interesting that shear produces a net bias toward larger image
separations.

Finally, by averaging over the ellipticity and shear distribu-
tions we obtain the net image separation distribution shown in
Figure 8. The averaging has smoothed out the sharp features
seen in Figure 6 when the ellipticity and shear were fixed. The
net distribution is nearly Gaussian, with mean ��̂ ¼ 2:01 and
scatter ���̂ ¼ 0:18 for a power-law LF with � ¼ 2:1, or ��̂ �
2:01 and ���̂ � 0:19 for various cases of the quasar LF. In other
words, ellipticity and shear basically leave the mean image

Fig. 5.—Enhancement in the optical depth as a function of the luminosity function slope � for power-law LFs (left) or the limiting luminosity Lcut /L� for quasar LFs
(right). In the left panel, the solid line shows the fiducial result while the dotted lines indicate the statistical uncertainty from our calculation.

Fig. 6.—Histograms of the dimensionless image separation��̂ ¼ ��/�E, for two values of ellipticity (top) and shear (bottom). For a spherical lens the distribution is a
�-function at ��̂ ¼ 2, indicated by the vertical line. The histograms contain all image multiplicities (i.e., both doubles and quadruples). The results are shown for the
CLASS LF (a power law with � ¼ 2:1), but they are not very sensitive to this choice.
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separation unchanged but create an additional scatter of 10%,
and these results are insensitive to the source LF.

5. QUADRUPLE-TO-DOUBLE RATIO

We next consider how ellipticity and shear affect the number
of lenses with different image configurations. While an SIS lens
always produces two images, increasing ellipticity or shear leads
to increasing probability for configurations with four images.
Furthermore, large ellipticities (e > 0:606) or shears (� > 1

3
) can

lead to naked cusp configurations with three bright images (e.g.,
Keeton et al. 1997). Nearly all known lenses with pointlike im-
ages are doubles or quadruples; among 	80 known lenses there
is only one candidate naked cusp lens (APM08279+5255; Lewis
et al. 2002).

Figure 9 shows that the quadruple-to-double ratio rises mono-
tonically with ellipticity or shear. For the CLASS LF, the ratio is
	20% for typical ellipticities e 	 0:3 or shears � 	 0:1. Our
results agree well with previous analyses (e.g., Rusin & Tegmark
2001; Finch et al. 2002).

We can now estimate the expected number of quadruples
(and cusp triples) by averaging over our fiducial distribution of
ellipticity and shear. The results are shown in Figure 10 for both
the power-law LF and the quasar LF. For the CLASS LF (� ¼
2:1), the net quadruple-to-double ratio is about 0.35, while the
triple-to-double ratio is only about 0.01. The number of qua-
druple versus double systems in the CLASS statistical sample
is 5 versus 7; the ratio is twice as large as our prediction. We
therefore agree with Rusin & Tegmark (2001) in concluding that
ellipticity and shear alone cannot easily explain the high number
of quadruples. Additional effects are required, which are prob-
ably related to lens galaxy environments. Shear is only a low-
order approximation to the lensing effects of objects near the lens
galaxy. Recent studies have shown that including higher order
effects from satellite galaxies (Cohn & Kochanek 2004) or ex-
tended groups of galaxies (Keeton& Zabludoff 2004) around the
lens can significantly boost the quadruple-to-double ratio.
Figure 10 shows that surveys targeting lensed quasars are ex-

pected to have a low quadruple-to-double ratio unless the bright
end of the LF is steep (�h ¼ 3:43) and the survey is limited to
bright quasars (Lcut/L�k10). This prediction could, of course,
be an underestimate because we have neglected the higher order
effects from lens environments.

6. EFFECTS ON COSMOLOGICAL CONSTRAINTS

While the changes in the optical depth and image separation
distribution caused by ellipticity and shear seem mild, it is im-
portant to quantify how they affect one of the main applications
of lens statistics: constraints on cosmological parameters. One
approach would be to modify the analyses of real lens samples
to include the full effects of ellipticity and shear (building upon
the analysis of Chae 2003). Such an approach, however, would
be limited by Poisson uncertainties in current lens samples (e.g.,
CLASS has just 13 lenses), by systematic uncertainties where
models may or may not be correct (e.g., evolution in the lens
galaxy population; see Mitchell et al. 2004), and by systematic
effects that are known to be present in the data but have not yet
been studied (e.g., having multiple lens galaxies). We believe
that it is more instructive to create mock lens surveys that mimic
CLASS but allow us to isolate the effects of ellipticity and shear.
Specifically, we create surveys that include ellipticity and shear,
and then analyze them using standard spherical models in order
to uncover biases that result from neglecting ellipticity and

Fig. 7.—Mean and spread of the image separation distribution as a function
of ellipticity or shear. The image separations are in units of �E. As in Fig. 6, the
results are shown for the CLASS LF but are not very sensitive to this choice.

Fig. 8.—Net image separation distribution after averaging over ellipticity
and shear. The histogram is normalized to unit area. The results are again shown
for the CLASS LF but are not very sensitive to this choice. The distribution is
nearly Gaussian, with mean ��̂ ¼ 2:01 and scatter ���̂ ¼ 0:18.

Fig. 9.—Quadruple-to-double ratio as a function of ellipticity or shear, as-
suming the CLASS LF (a power law with � ¼ 2:1).
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shear. We create mock surveys with 1000 lenses in order to min-
imize Poisson uncertainties. We use a Monte Carlo approach,
drawing parameter values from appropriate probability distri-
butions (as indicated in eq. [1]). Specifically:

1. A subset of sources in the CLASS survey has a redshift dis-
tribution that can be treated as a Gaussian with mean hzsi ¼ 1:27
and width �z ¼ 0:95 (Marlow et al. 2000), and this is usually
taken as a model for the redshift distribution of the full survey
(e.g., Chae 2003). The Gaussian is modified by the redshift de-
pendence of the optical depth �(zs) to obtain the redshift distri-
bution of the lensed sources (see Mitchell et al. 2004).

2. The lens redshift is drawn from the distribution p(zl) /
(Dls/Dos)

2dV /dzl, where the factor of (Dls/Dos)
2 comes from the

factor of �2
E in the lensing cross section (see eq. [10]).

3. The velocity dispersion is drawn from p(�) / �4 dn/d�,
where the factor of �4 comes from �2E in the lensing cross section.
We use the velocity dispersion distribution function dn/d� de-
rived by Sheth et al. (2003) for early-type galaxies in the Sloan
Digital Sky Survey. For simplicity, we assume that the velocity
dispersion distribution does not evolve with redshift. We could
add evolution to both the creation and analysis of the mock sur-
vey (see, e.g., Mitchell et al. 2004), but that would just compli-
cate matters.

4. We use the ellipticity distribution from Jørgensen et al.
(1995), the shear amplitude distribution from Holder &
Schechter (2003), and random shear directions.

5. When drawing random source positions, we use mag-
nification bias appropriate to the CLASS survey (a power law
with � ¼ 2:1) since it is the most commonly used survey in
current lens statistic analyses.

Given the parameters we can compute the observables for each
mock lens: the source and lens redshifts and the image sepa-
ration. The other key observable is the total number of sources
in the survey. We use the optical depth to determine the number
of sources needed to obtain 1000 lenses, which is typically	8 ;
105. We distribute these sources in redshift using the Gaussian
given above.

We then analyze the mock survey with standard maximum
likelihood techniques. Assuming complete data—knowledge of

the image separation and the lens and source redshifts for lens
systems, and the redshift distribution of nonlensed sources—we
use the likelihood function

L ¼ (Npred)
Nobse�Npred

Nobs!
;
YNlens

i¼1

1

� (zs; i)

@ 2�

@zl; i@��i
: ð16Þ

The first term represents the Poisson probability for having Nobs

observed lenses whenNpred are predicted, while the second term
represents the probability that the lenses have the observed prop-
erties (e.g., observed lens redshift zl and image separation ��
given the source redshift zs). As mentioned above, we neglect
ellipticity and shear in the likelihood analysis because wewant to
understand the biases that may occur when spherical models are
used for lens statistic analyses. We hold the parameters in the ve-
locity dispersion function fixed at their input values since un-
certainties in these parameters have negligible effect (Mitchell
et al. 2004). Thus, the only variables in the model are the cosmo-
logical parameters�M and�� , which we adjust to maximize the
likelihood. We use input values of�M ¼ 0:3 and�� ¼ 0:7, and
study howmuch the recovered values differ. Asmentioned above,
using surveys with 1000 lenses should mitigate Poisson uncer-
tainties, but we always produce and analyze 10 independent sur-
veys to verify that the statistical noise in our results is negligible.

It is useful to begin by examining two toy models that focus
on how changes in the optical depth or image separation dis-
tribution can affect cosmological constraints. In the first case,
we imagine using spherical lens models but manually adjusting
the optical depth. This is equivalent to changing the total num-
ber of deflectors. In practice, it means adjusting the number of
sources in our mock survey (since we fix the number of lenses).
The crosses in Figure 11 show the errors in the recovered cos-
mological parameters if the difference between the actual (input)
optical depth and the spherical model is �20, �15, �10, �5, 0,
5, 10, 15, and 20 percent.We see that simply changing the optical
depth moves the cosmological parameters mainly along the line
corresponding to flat cosmologies, and the shift is fairly small:
��� ¼ 0:03 if the real optical depth is 10% larger than predicted
by the spherical model.

Fig. 10.—Quadruple-to-double ratio, as a function of the slope � of power-law LFs (left) or the limiting luminosity Lcut /L� for quasar LFs (right). The results are
obtained by averaging over the distributions of ellipticity and shear discussed in the text. In the left panel, we also show the ratio of triple (or naked cusp) lenses as the
dashed curve.
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In the second case, we again start with spherical models but
manually adjust the image separations. This is equivalent to shift-
ing the velocity dispersion distribution to higher or lower values,
and then adjusting the number of galaxies to keep the optical
depth fixed. The triangles in Figure 11 show the results of shifting
the image separations by �20, �15, �10, �5, 0, 5, 10, 15, and
20 percent. There is a large shift in the recovered cosmological
parameters, and it is almost orthogonal to the line of flat cosmol-
ogies. For example, if the real image separations are 10% larger
than predicted by spherical models, then there will be errors of
��M ¼ 0:12 and ��� ¼ 0:21 in the parameters recovered by
spherical models. These two cases are just toy examples, but they
illustrate the important principle that even small errors in the
model image separations can have a significant effect on cos-
mological constraints (even if small errors in the optical depth
do not).

Finally, we consider the case where we use the full effects of
ellipticity and shear on themock survey. Essentially, this amounts
to using the corrections to the optical depth from Figure 5 and
to the image separation distribution from Figure 8. The circle in
Figure 11 shows that neglecting ellipticity and shear in the likeli-
hood analysis causes errors of��M ¼ 0:00 � 0:01 and��� ¼
�0:02 � 0:01, where the error bars represent the statistical un-

certainties in our calculations. (We have achieved small Poisson
uncertainties but not eliminated them altogether.) That is the case
if we allow �M and �� to vary independently. If we restrict at-
tention to flat cosmologies (�M þ �� ¼ 1), then the bias is just
��M ¼ ���� ¼ 0:01 (with negligible error bars). This result
is consistent with our conclusions from the previous sections that
ellipticity and shear have little effect on the optical depth andmean
image separation. It is nonetheless valuable to have a careful val-
idation of the conventional wisdom that ellipticity and shear do
not significantly affect cosmological constraints derived from lens
statistics.

7. CONCLUSIONS

The effects of ellipticity and shear on strong-lensing statistics
have been swept under the rug in most analyses to date (a valiant
exception being Chae 2003). The reason for this is twofold:
(1) models with nonspherical deflectors introduce new, and some-
times poorly constrained, parameters and greatly complicate cal-
culations; and (2) conventional wisdom suggested that realistic
ellipticities and shears had little effect on anything but the image
multiplicities. We have stepped beyond the state of blissful igno-
rance to present a general analysis of how ellipticity and shear
enter into lens statistics.

Fig. 11.—Biases in constraints on cosmological parameters from analyses of lens statistics. We show the errors ��M ¼ �mod
M � �true

M and ��� ¼ �mod
� �true

� that
result from using simple models with spherical lenses that neglect shifts in the optical depth (crosses), image separations (triangles), or both. (See text for details.)
The statistical uncertainties are smaller than the size of the points.
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The effects depend strongly on magnification bias, which in
turn depends on the luminosity function of sources in a lens sur-
vey. If the LF is a power law /L��, as in radio surveys like
CLASS (with � � 2:1), ellipticity and shear generally decrease
or increase the lensing optical depth by only a few percent. The
increase is more than 5% only if the LF is steep (�k 2:5). For
optical quasar surveys, if the limiting luminosity is below the break
in the quasar LF then ellipticity and shear decrease the optical
depth by a few percent. There is a noticeable (>5%) increase only
for surveys limited to the brightest quasars (Lcut/L�k 10, if the
bright end slope is �h ¼ 3:43). Since ongoing and planned opti-
cal surveys are expected to reach to the faint end of the QSO LF
(Lcut/L�P 1), we do not expect ellipticity and shear to have a large
effect on the predicted number of lenses in future lens surveys.

Ellipticity and shear do not shift the mean of the distribution
of lens image separations, but they do introduce an additional
scatter of 	10%. They naturally affect the relative numbers of
double, quadruple, and triple lenses, but they cannot easily ex-
plain the high observed quadruple-to-double ratio. Ellipticity
has little effect on predictions for elusive central lensed images,
although it does lead to a segregation that quadruple lenses are
generally expected to have fainter central images than double
lenses (Keeton 2003).

Since ellipticity and shear produce only small changes in the
lensing optical depth and image separation distribution, they are
not very important in lensing constraints on cosmological param-
eters. Neglecting them leads to biases in �M and �� of <0.02.
Moreover, hydrodynamical N-body simulations tend to find sys-
tems that are more spherical than those in dissipationless simu-
lations (e.g., Kazantzidis et al. 2004). Therefore, the ellipticity
effects on lensing statistics found in this paper, while already
small, could even be an overestimate.

We conclude that for lens statistics problems other than im-
age multiplicities, ellipticity and shear have surprisingly little ef-
fect. Unless percent-level precision is needed, or a survey with

a particularly steep LF is being considered, ellipticity and shear
can probably be ignored. Their effects will become more impor-
tant as lens samples grow into the hundreds or thousands and
statistical uncertainties plummet (see, e.g., Kuhlen et al. 2004).
At that time it will be important to know the distributions of el-
lipticity and shear, and also to resolve questions about how to
normalize the lens models (see x 2.2).

There are systematics besides ellipticity and shear that may af-
fect strong lens statistics. They include mergers and evolution in
the deflector population (e.g., Rix et al. 1994; Mao & Kochanek
1994; Keeton 2002; Ofek et al. 2003; Chae & Mao 2003;
Mitchell et al. 2004), halo triaxiality (e.g., Oguri &Keeton 2004)
or other complex internal structure (e.g., Möller et al. 2003;
Quadri et al. 2003), compound lens galaxies (e.g., Kochanek &
Apostolakis 1988; Möller & Blain 2001; Cohn & Kochanek
2004), and lens galaxy environments (e.g., Möller et al. 2002;
Keeton & Zabludoff 2004). In order to bring lens statistics into
the realm of precision cosmology, each of these factors must be
addressed carefully. We have taken one step in that direction by
studying ellipticity and shear, finding that their effects are rela-
tively small and in principle easy to take into account.
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Space Telescope Science Institute, which is operated by the As-
sociation of Universities for Research in Astronomy, Inc., under
NASA contract NAS5-26555. C.-P. Ma is supported by NASA
grant NAG5-12173 and a Cottrell Scholars Award from the Re-
search Corporation.

APPENDIX

WHY IS A/A0 � 1?

In this appendix we derive the cross section for a generalized isothermal lens to explain the result from x 3 that ellipticity reduces the
cross section. The lens potential for a generalized isothermal model has the form �iso(r; �) ¼ r f (�), where f (�) is an arbitrary function
specifying the angular shape. Consider expanding the potential in angular multipoles,

�iso(r; �) ¼ �Er 1�
X1
m¼1

h
am cos (m�)þ bm sin (m�)

i( )
; ðA1Þ

where �E is the Einstein radius (as defined in x 2.2). The corresponding mass distribution then has the form

	iso(r; �) ¼
�E
2r

1þ
X1
m¼1

�m cos ½m(�� �m)�
( )

; ðA2Þ

where the amplitude �m and direction �m of the mass multipole are given by

�m ¼ (m2 � 1)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2m þ b2m

q
; ðA3Þ

�m ¼ 1

m
tan�1 bm

am
: ðA4Þ

In other words, we can think of this model as a multipole expansion of the surface mass density.
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The radial caustic—properly termed a pseudocaustic since a singular isothermal lens does not formally have a radial critical curve
(see Evans & Wilkinson 1998)—can then be written in parametric form as

ucaus(k) ¼ ��E cos kþ
X1
m¼1

h
(am cosmkþ bm sinmk) cos kþ m(am sinmk� bm cosmk) sin k

i( )
; ðA5Þ

vcaus(k) ¼ ��E sin kþ
X1
m¼1

h
(am cosmkþ bm sinmk) sin k� m(am sinmk� bm cosmk) cos k

i( )
: ðA6Þ

Although this form appears complicated, if we collect the two coordinates ucaus and vcaus into a vector ucaus then we can easily evaluate
the area inside the radial caustic:

A ¼
Z 2�

0

1

2
ucaus(k)

ducaus
dk

� �
dk ¼ ��2E 1� 1

2

X1
m¼1

(a2m þ b2
m)(m

2 � 1)

" #
: ðA7Þ

This is the lensing cross section (provided there are no naked cusps). The summand, and hence the sum, is manifestly nonnegative, so
the cross section for any nonspherical model is A < A0 � ��2E. This result is illustrated in Figure 12 for different multipole terms. It is
clear that asphericity deforms the caustics in such a way that the cross section is smaller than for the spherical case.
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