
EVOLUTION OF A PROTOBINARY: ACCRETION RATES OF THE PRIMARY AND SECONDARY

Yasuhiro Ochi,
1, 2

Kanako Sugimoto,
1,2

and Tomoyuki Hanawa
1, 3

Received 2004 August 6; accepted 2005 January 4

ABSTRACT

We reexamine accretion onto a protobinary based on two-dimensional numerical simulations with high spatial
resolution. We focus our attention on the ratio of the primary and secondary accretion rates. Fifty-eight models are
made for studying the dependence of the accretion rates on the specific angular momentum of infalling gas jinf , the
mass ratio of the binary q, and the sound speed cs. When jinf is small, the binary accretes the gas mainly through
two channels (type I ): one through the Lagrange point L2 and the other through L3. When jinf is large, the binary
accretes the gas only through the L2 point (type II ). The primary accretes more than the secondary in both the cases,
although the L2 point is closer to the secondary. After flowing through the L2 point, the gas flows halfway around
the secondary and through the L1 point to the primary. Only a small amount of gas flows back to the secondary, and
the rest forms a circumstellar ring around the primary. The boundary between types I and II depends on q. When jinf
is very large, the accretion begins after several rotations (type III ). The beginning of the accretion is later when jinf
is larger and cs is smaller. Our result that the primary accretion rate is higher for a large jinf is qualitatively different
from results of earlier simulations. The difference is mainly due to limited spatial resolution and large numerical
viscosity in the numerical simulations thus far.

Subject headinggs: accretion, accretion disks — hydrodynamics — methods: numerical — stars: formation —
stars: pre–main-sequence

1. INTRODUCTION

Stars acquire most of their mass through accretion in the
protostellar phase (see, e.g., Hartmann 1998; Larson 2003).
The accretion is most likely through a circumstellar disk, since
each component star has an accretion disk in most young binary
systems (see, e.g., Mathieu et al. 2000). The accretion disk is
most likely to be replenished by accretion from a circumbinary
disk. In fact, circumbinary disks are observed in some young bi-
nary systems as molecular rings (see, e.g., Roddier et al. 1996;
Duvert et al. 1998; Close et al. 1998). If gas is accreted from the
circumbinary disk to the circumstellar disk, the accretion rate
will be nearly equal to the accretion rates of the primary and sec-
ondary stars in the long term. In other words, the accretion from
the circumbinary disk controls the accretion of each component
star.

The accretion in a protobinary system has been studied by
Bate & Bonnell (1997) with hydrodynamic simulations. They
assumed a binary system having a circular orbit and computed
the accretion using a three-dimensional smoothed particle hy-
drodynamics (3DSPH) code. In their simulations the secondary
accretes more gas than the primary when the accreting gas has a
moderately large specific angular momentum. This result is also
consistent with the earlier ballistic models (Artymowicz 1983;
Bate 1997) and was explained by the fact that the secondary has
a larger orbit than the primary. Artymowicz & Lubow (1996)
obtained a similar conclusion for eccentric orbits.

If the secondary accretes more, the mass ratio increases and
the system approaches being an equal-mass binary. Nevertheless,

the mass ratio distribution is flat in the range of q � 0:2 except
for the detection bias (see, e.g.,Woitas et al. 2001;White &Ghez
2001; Patience et al. 2002). There is no evidence that the secondary
tends to have a larger accretion rate. In order to study this appar-
ent contradiction, we have reexamined accreting protobinaries
on the basis of two-dimensional hydrodynamic simulations with
high resolution.
When the gas has a moderately large angular momentum, the

gas flows into the binary system through L2, the Lagrange point
close to the secondary. However, it does not flow directly into
the secondary in our new computations. It flows halfway around
the secondary from L2 to L1, where L1 denotes the Lagrange
point between the primary and secondary. Then it flows around
the primary and forms a circumstellar ring. Only a small amount
of the gas flows back to the secondary through the L1 point. Con-
sequently, the secondary has a less massive circumstellar ring.
This difference comes mainly from the large numerical viscos-
ity of earlier numerical simulations. We have confirmed that the
secondary accretes more when the spatial resolution is low and
hence the numerical viscosity is large.
This paper is organized as follows. Our model and numerical

methods are given in x 2. Numerical results are shown in x 3. A
part of the results are shown in the frame corotating with the
binary. The corotation frame helps our understanding, since the
flow is quasi-stationary and a particle has a constant of motion,
the Jacobi integral. We discuss the dependence of the accretion
rate on the specific angular momentum of the infalling gas in x 4.
We also discuss implications of our numerical simulations on
the distribution of the mass ratio in x 4. A brief summary is given
in x 5.

2. MODEL AND METHOD OF COMPUTATION

We consider a pair of protostars that have been formed
through collapse and fragmentation of a single molecular cloud
core. They are still embedded in the molecular cloud and accrete
gas from the infalling envelope. For simplicity we assume that
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the protostars rotate around the center of the gravity with circular
orbits. The infalling envelope is assumed to be coplanar with the
orbits.

We approximate the accretion from the infalling envelope
by the two-dimensional flow in the orbital plane. The accreting
gas is assumed to be isothermal and to have constant sound
speed, cs. Then we solve the two-dimensional hydrodynamic
equations,

@�

@t
þ:= (�v) ¼ 0; ð1Þ

and

@v

@t
þ (v =: )vþ c2s: ln�þ:� ¼ 0; ð2Þ

where �, v, and � denote the surface density of the gas, the
gas velocity, and the gravitational potential, respectively.

The self-gravity of the accreting gas is ignored for simplicity.
We also ignore the increase in the mass of stars through accre-
tion for simplicity. Thus, the masses of the primary and sec-
ondary are set constant atM1 andM2, respectively. The primary
and secondary are assumed to rotate circularly with angular
velocity

! ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G M1 þM2ð Þ

a3

r
; ð3Þ

where G and a are the gravitational constant and the separation
between the primary and secondary, respectively. The gravita-
tional potential is evaluated to be

�(r; t) ¼
X

i¼1

2
�i(r; t); ð4Þ
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2R3
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� �
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where ri and Ri denote the position and the effective radius of
each star, respectively. We set R1 ¼ R2 ¼ 0:2a in most mod-
els. This artificial softening barely affects our results as long as
the effective radii are appreciably smaller than the Roche lobe
radius.

The hydrodynamic equations are solved on a Cartesian grid
with a second-order–accurate finite-difference scheme.Our differ-
ence scheme is based on the total variation diminishing (TVD)
scheme of Roe (1981). We achieved second-order accuracy us-
ing MUSCL (see, e.g., Hirsch 1990).

The Cartesian grid covers the square region of �L � x,
y � L, and the value of L is taken to be 5.12a in most compu-
tations. The Cartesian grid contains 2048 ; 2048 square cells in
most models and 4096 ; 4096 square cells in high-resolution
models. The center of the grid coincides with the center of
gravity.

At the initial stage (t ¼ 0), the surface density is set to be

� ¼
1 for

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
> Rout;

0:01 for
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
� Rout;

(
ð6Þ

where Rout denotes the radius of the effective outer boundary
and is set to be Rout ¼ 5:10a in most models. The initial velocity
is set to be

v0 ¼
jinf
R2
out

�y

x

� �
� vinfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p x

y

� �
; ð7Þ

vinf ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2GM

Rout

� j2inf
R2
out

s
; ð8Þ

where vinf and jinf are model parameters specifying the radial
infall velocity and the specific angular momentum of the in-
falling gas, respectively. We regard jinf as the model parameter.
The radial infall velocity is set so that the total specific energy,

E ’ 1

2
v2inf þ

j2inf
R2

out

� �
� GM

Rout

¼ 0; ð9Þ

vanishes. Equation (9) means that the gas is accreted very far
from the binary. The surface density and velocity are kept at the
initial values in the region of r � (x2 þ y2)1

=2 � Rout. Thus, we
have a constant inflow from the boundary of r ¼ Rout at the rate
of Ṁinf ¼ 2�Rout vinf .

We show our numerical simulations in the same nondimen-
sional units as those in Bate & Bonnell (1997). Namely, the unit
length is the separation (a) and the unit frequency is the angular
velocity (!). In most models we compute the flow for 15 ro-
tation periods, i.e., from t ¼ 0 to 30�.

3. RESULTS

We show our results in the following order. Model 6-16 (q ¼
0:6, jinf ¼ 1:6, and cs ¼ 0:25) is shown as a typical example in
x 3.1 The dependence of accretion on jinf is described in x 3.2.
The dependence on q is shown in x 3.3. The dependence on cs is
shown in x 3.4. We focus our attention on sporadic variation in
the accretion rate in x 3.5. Table 1 summarizes the average ac-
cretion rates of the primary and secondary, as well as their ac-
cretion rate ratios, for all the models we have computed.

3.1. Typical Model

As a typical example we describe model 6-16 in this sub-
section. The model parameters are set to be q ¼ 0:6, jinf ¼ 1:6,
and cs ¼ 0:25. We followed accretion onto the binary from t ¼
0 to 40�, as shown in Figure 1.

Figure 1a denotes the central region around the binary at the
initial stage (t ¼ 0). The surface density is quite low (log� ¼
�2:0) in all the regions shown in the figure. The curves denote
the contours of the Roche potential.

The accreting gas forms a thin circumbinary ring at t ¼ 2:0�
as shown in Figure 1b. The radial velocity is close to zero in the
ring. The accreting gas is decelerated by the centrifugal force
and forms a shock wave. The circumbinary ring consists of the
post-shocked gas. If we approximate the gravity by the point
mass gravity, �GM /r, the infall velocity should vanish at

rc ¼
j2inf
2

a: ð10Þ

Substituting jinf ¼ 1:6, we obtain rc ¼ 1:28. This rough esti-
mate is consistent with the radius of the circumbinary ring.
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TABLE 1

Model Parameters and Average Accretion Rates of the Primary and Secondary over the Period 20� � t � 30�

Model q jinf cs Cells L Ṁ1d Ṁ2d Ṁ1d /Ṁ2d

2-12 ............................... 0.2 1.2 0.25 61442 5.12a 4.84 4.12 1.17

2-13 ............................... 0.2 1.3 0.25 61442 5.12a 4.78 2.57 1.86

3-12 ............................... 0.3 1.2 0.25 61442 5.12a 5.18 3.39 1.53

3-13 ............................... 0.3 1.3 0.25 61442 5.12a 4.55 2.05 2.22

4-13 ............................... 0.4 1.3 0.25 20482 5.12a 3.98 4.58 0.871

4-14 ............................... 0.4 1.4 0.25 20482 5.12a 3.74 4.66 0.803

4-15 ............................... 0.4 1.5 0.25 20482 5.12a 2.51 1.29 1.94

4-16L............................. 0.4 1.6 0.20 20482 5.12a 3.36 1.34 2.51

4-16 ............................... 0.4 1.6 0.25 40962 5.12a 1.88 0.774 2.44

4-16H ............................ 0.4 1.6 0.30 20482 6.63a 1.43 0.424 3.37

4-17 ............................... 0.4 1.7 0.25 20482 5.12a 2.11 0.701 3.01

4-18 ............................... 0.4 1.8 0.25 20482 5.12a 0.625 0.279 2.24

4-19 ............................... 0.4 1.9 0.25 20482 5.12a 0.241 0.129 1.87

5-13 ............................... 0.5 1.3 0.25 20482 5.12a 5.17 2.59 2.00

5-14 ............................... 0.5 1.4 0.25 20482 5.12a 4.39 2.43 1.81

5-15 ............................... 0.5 1.5 0.25 20482 5.12a 3.41 1.82 1.87

5-16 ............................... 0.5 1.6 0.25 20482 5.12a 2.44 0.982 2.49

5-17 ............................... 0.5 1.7 0.25 20482 5.12a 1.89 0.656 2.88

5-18 ............................... 0.5 1.8 0.25 20482 5.12a 0.729 0.295 2.68

5-19 ............................... 0.5 1.9 0.25 20482 5.12a 0.394 0.155 2.54

6-13 ............................... 0.6 1.3 0.25 40962 5.12a 5.20 2.59 2.01

6-14 ............................... 0.6 1.4 0.25 20482 5.12a 5.99 2.98 2.01

6-15 ............................... 0.6 1.5 0.25 20482 5.12a 3.31 1.84 1.80

6-16L............................. 0.6 1.6 0.20 40962 5.12a 2.84 1.46 1.94

6-16 ............................... 0.6 1.6 0.25 40962 5.12a 2.24 1.21 1.85

6-16a ............................. 0.6 1.6 0.25 61442 5.12a 2.51 2.98 0.841

6-16b ............................. 0.6 1.6 0.25 81922 5.12a 2.38 1.95 1.22

6-16c ............................. 0.6 1.6 0.25 20482 5.12a 1.46 0.803 1.81

6-16H ............................ 0.6 1.6 0.30 41282 6.60a 2.17 1.23 1.77

6-17 ............................... 0.6 1.7 0.25 20482 5.12a 2.00 0.733 2.73

6-18 ............................... 0.6 1.8 0.25 20482 5.12a 0.825 0.305 2.71

6-19LL .......................... 0.6 1.9 0.18 40962 5.12a 0.778 0.432 1.80

6-19L............................. 0.6 1.9 0.20 40962 5.12a 0.594 0.144 4.11

6-19ML ......................... 0.6 1.9 0.23 20482 5.12a 0.491 0.238 2.07

6-19 ............................... 0.6 1.9 0.25 40962 5.12a 0.577 0.200 2.88

6-19MH......................... 0.6 1.9 0.27 20482 5.12a 0.452 0.810 5.59

6-19H ............................ 0.6 1.9 0.30 40962 6.63a 0.317 0.130 2.44

7-14 ............................... 0.7 1.4 0.25 20482 5.12a 6.19 3.65 1.69

7-15 ............................... 0.7 1.5 0.25 20482 5.12a 4.23 1.75 2.42

7-16 ............................... 0.7 1.6 0.25 20482 5.12a 2.05 0.407 5.03

7-17 ............................... 0.7 1.7 0.25 20482 5.12a 1.00 0.359 2.80

7-18 ............................... 0.7 1.8 0.25 20482 5.12a 1.05 0.307 3.41

7-19 ............................... 0.7 1.9 0.25 20482 5.12a 0.571 0.244 2.34

8-15 ............................... 0.8 1.5 0.25 20482 5.12a 3.10 0.942 3.29

8-16 ............................... 0.8 1.6 0.25 20482 5.12a 2.30 0.717 3.20

8-17 ............................... 0.8 1.7 0.25 20482 5.12a 0.796 0.267 2.98

8-18 ............................... 0.8 1.8 0.25 20482 5.12a 0.793 0.284 2.79

8-19 ............................... 0.8 1.9 0.25 20482 5.12a 0.495 0.271 1.83

9-15 ............................... 0.9 1.5 0.25 20482 5.12a 3.07 3.10 0.992

9-16 ............................... 0.9 1.6 0.25 20482 5.12a 2.88 1.94 1.49

9-17 ............................... 0.9 1.7 0.25 20482 5.12a 0.711 0.700 1.02

9-18 ............................... 0.9 1.8 0.25 20482 5.12a 0.723 0.352 2.05

9-19 ............................... 0.9 1.9 0.25 20482 5.12a 0.403 0.313 1.29

10-15 ............................. 1.0 1.5 0.25 20482 5.12a 2.09 1.39 1.51

10-16 ............................. 1.0 1.6 0.25 20482 5.12a 1.02 1.02 0.994

10-17 ............................. 1.0 1.7 0.25 20482 5.12a 0.587 0.311 1.89

10-18 ............................. 1.0 1.8 0.25 20482 5.12a 0.693 0.652 1.06

10-19 ............................. 1.0 1.9 0.25 20482 5.12a 0.396 0.432 0.915
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Fig. 1.—Time evolution of gas accretion for model 6-16. Each panel denotes the surface density distribution by color and the velocity distribution by arrows. The
color scale is shown in the right of (b). The velocity scale is shown below (a). The curves are the contours of the Roche potential. These panels denote the stages of
t ¼ 0, 2:0�, 8:0�, 14:0�, 24:0�, and 40:0�. The primary and secondary are located at (x; y) ¼ (0:375; 0:0) and (�0.625, 0.0), respectively, at all the stages shown
above.
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Note that the circumbinary ring passes L2, i.e., the Lagrange
point close to the secondary.

Figure 1c shows the stage of t ¼ 8:0�. The circumbinary
ring has two spiral arms, and one of them reaches the L2 point.
The binary accretes gas mainly through the L2 point. Note that
not only the secondary but also the primary has a circumstellar
ring. The circumprimary ring is more massive than the circum-
secondary ring.

Figures 1d, 1e, and 1 f show the stages of t ¼ 14:0�, 24.0�,
and 40.0�, respectively. Both the circumprimary and circumsec-
ondary disks grow in mass. The gas is supplied mainly through
the L2 point and partly through the L3 point. In the following
we call the gas stream through the L3 point channel A and that
through L2 channel B. The mass supply through channel B is
continuous, while that through channel A is intermittent. One of
the spiral arms reaches the L2 point persistently, while the other
reaches the L3 point only occasionally. The surface density is
very low near the L4 and L5 points. These low surface density
regions shrink in area as the time passes. Although the circum-
primary and circumsecondary disks accrete onto the primary
and secondary, the accretion is due to numerical viscosity. The
circumprimary and circumsecondary disks are supported against
the gravity mainly by the centrifugal force. The gas pressure is
much smaller than the gravity since the sound speed is low.

Figure 2 shows the surface density distribution at t ¼ 8:0�
for the whole computation box. The circumbinary disk has an
outer radius of r ’ 4 and an inner radius of r ’ 1:5. The spiral
arms wind roughly 2� from the L2 and L3 points to the outer
edge of the circumbinary disk. The outer edge extends with the
time. The gas is accumulated in the circumbinary disk.

The spiral arms corotate with the binary as shown in Figure 1.
Thus, these arms are waves similar to those seen in spiral gal-
axies. To examine the dynamics of the spiral waves we denote
the velocity measured in the corotation frame in Figure 3 for the
stage of t ¼ 14:0� which is also shown in Figure 1d. The gas
flow is not along the spiral arms. The gas circulates counter-
clockwise inside the Roche lobe, while it goes clockwise out-
side the Roche lobe. The gas is decelerated on the spiral arms
and accretes into the Roche lobe through the L2 point and
occasionally also through the L3 point.

Figure 4 shows the streamlines (thin solid lines) around
the secondary and the surface density distribution (gray scale)
at t ¼ 6:0�. The thick solid circle denotes the effective radius
of the secondary. The streamlines are constructed from the
velocity field measured in the corotation frame. There are two
stagnation points: one near the L1 point and the other near the
L2 point. The flow bifurcates from the circumbinary disk near
the L2 point and flows into the Roche lobe. After circulating
halfway around the secondary, it enters into the primary lobe
and circulates around the primary. The flow around the primary
as well as that around the secondary is counterclockwise in the
corotation frame. The flow from the secondary lobe collides
with that from the primary lobe near the L1 point. After the
collision, only a minor fraction of the gas flows toward the
secondary.

Fig. 2.—Entire region of computation for the stage of t ¼ 8:0� for model
6-16. The same stage is shown in Fig. 1c. The gray scale and contours denote the
surface density. The circumbinary ring has inner and outer radii of r ’ 1:5 and
4, respectively. It has two spiral arms that stem from the L2 and L3 points.

Fig. 3.—Same as Fig. 1d but for the velocity. The arrows denote the ve-
locity measured in the corotation frame. When measured in the corotation
frame, the gas rotates clockwise outside the Roche lobe.

Fig. 4.—Streamlines (solid lines) are overlaid on the surface density dis-
tribution (gray scale) at t ¼ 6:0� in model 6-16. The thick circle denotes the
effective radius of the secondary. The plus sign and cross denote the L2 and L1
points, respectively.
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Note that the gas streaming into the Roche lobe does not
intersect the spiral shock. Since the flow is nearly stationary in
the corotation frame, the Bernoulli constant,

" ¼ v0j j2

2
þ �� !2 rj j2

2
þ c2s ln�; ð11Þ

should be constant along the streamline. The last term in equa-
tion (11) denotes the Gibbs free energy. We have confirmed that
" is constant along the streamline connecting the L2 and L1
points. This implies that the numerical energy dissipation is
negligibly small.

To measure the accretion we evaluate the circumprimary disk
mass, M1d , from the gas contained within a circle having the pri-
mary at the center for simplicity. The radius of the circle is taken to
be the distance between the L1 point and the center of the primary.
This circle is somewhat larger than the circumprimary disk, and
hence our disk mass is a little overestimated. A part of the gas
contained in the circle is not gravitationally bound to the primary.
Similarly, we evaluate the circumsecondary disk mass,M2d .

Figure 5 denotes M1d (solid curve) and M2d (dash-dotted
curve) as a function of time. Both M1d and M2d increase with
time while oscillating appreciably. The oscillation is in part due
to our definition ofM1d andM2d . An appreciable amount of the
gas crosses the circles, and the disk masses increase (or de-
crease) temporarily. The average accretion rate is larger for the
primary than for the secondary, Ṁ1d > Ṁ2d . It is Ṁ1d ¼ 1:014
and Ṁ2d ¼ 0:305 over the period 2:0� � t � 12:0�. These
numbers are obtained from the least-squares fit toM1d andM2d .
The change in the mass ratio is computed to be

q̇ ¼ � q

M1d

Ṁ1d �
Ṁ2d

q

� �
: ð12Þ

This accretion decreases the mass ratio, since Ṁ1d > Ṁ2d /q.
We denote Ṁ2d /q by the dotted curve in Figure 5 to easily
assess the change in the mass ratio.

The accretion rate increases appreciably around t ’ 14�. The
average accretion rate is Ṁ1d ¼ 2:24 for the primary and Ṁ2d ¼
1:21 for the secondary over the period 20:0� � t � 30:0�. The
mass ratio also decreases in this period.

Themass accretion from the outer boundary is Ṁinf ¼ 17:4 in
model 6-16. Since it is much larger than Ṁ1d and Ṁ2d , the gas
inflow from the boundary remains mainly in the circumbinary
disk.

3.2. Dependence on jinf

We showmodels 6-13, 6-14, 6-15, 6-17, 6-18, and 6-19 in this
subsection to examine the dependence on the specific angular

Fig. 5.—Time evolution of the circumstellar disk masses in model 6-16. The
ordinates denote the time in units of �. The solid curve denotes the disk mass for
the primary (M1d) and the dash-dotted curve does that for the secondary (M2d).
The dashed curve denotes the total of the primary and secondary disk masses
(Md � M1d þM2d). The dotted curve denotes M2d /q for evaluating the change
in the mass ratio by comparing with M1d .

Fig. 6.—Same as Fig. 3 but for model 6-13.

Fig. 7.—Same as Fig. 5 but for model 6-13.
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momentum of infalling gas, jinf . All these models have the same
model parameters, q ¼ 0:6 and cs ¼ 0:25. Only the specific an-
gular momentum of the accreting gas, j inf , is different. Each
model number denotes 10q and 10 j inf . These models are clas-
sified into three groups: models having a small jinf (6-13 and 6-
14), those having a medium jinf (6-15, 6-16, and 6-17), and those
having a large jinf (6-18 and 6-19).

First we show model 6-13, in which the infalling gas has
j inf ¼ 1:3. The infalling gas forms a circumbinary ring at t ’
2:0� as in model 6-16. However, the ring radius is smaller than
in model 6-16, since j inf is smaller (see eq. [10]).

Figure 6 shows the surface density distribution at t ¼ 14:0�
for model 6-13. The arrows denote the velocity measured in the
corotation frame. The binary accretes gas appreciably not only
through channel B but also through channel A. The two spiral
arms have comparable surface densities. They are less wound in

model 6-13 than in model 6-16. The circumprimary and cir-
cumsecondary disks are more massive in model 6-13 than in
model 6-16.
Figure 7 shows the masses of the circumprimary and cir-

cumsecondary disks as a function of time. The accretion rate is
nearly constant in model 6-13, while it increases appreciably in
model 6-16 (see Fig. 5). The average accretion rate is Ṁ1d ¼
5:18 for the primary and Ṁ2d ¼ 3:34 for the secondary over the
period 2:0� � t � 30:0�. This accretion decreases the mass
ratio a little, since Ṁ1d is only slightly larger than Ṁ2d /q.
Model 6-14 is qualitatively similar to model 6-13. The ac-

cretion through channel A is steady in both models 6-13 and
6-14.
Next we show models 6-18 and 6-19, both of which have a

large jinf . Figure 8a shows the surface density distribution at
t ¼ 6:0� in model 6-19 ( jinf ¼ 1:9). Gas accretes little during

Fig. 8.—Time evolution of gas accretion in model 6-19. Each panel denotes the surface density and velocity measured in the rest frame by gray scale and arrows,
respectively, at a given stage. The curves are the contours of the Roche potential.
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the first several rotations in models of jinf � 1:8. The circum-
binary disk’s inner edge is at r ’ 2:1 at this stage. The gas in the
circumbinary disk still has a large specific angular momentum
and does not yet accrete on either the primary or the secondary.
The circumstellar rings at this stage consist of low surface den-
sity gas filled in r < Rout at the initial stage. The initial low sur-
face density gas has a low specific angular momentum and thus
accretes on a dynamical timescale. The circumprimary and cir-
cumsecondary disks have M1d ¼ 1:23 and M2d ¼ 0:647, re-
spectively, at t ¼ 6:0�.

Figure 8b is the same as Figure 8a but for the stage at t ¼
12:0�. The circumbinary disk has a spiral arm extending toward
the L2 point. The tip of the spiral arm is, however, still detached
from the circumsecondary disk. Figures 8c and 8d show the
stages at t ¼ 18:0� and 30:0�, respectively. The circumbinary
disk has two spiral arms, one of which is connected with the
circumsecondary disk near the L2 point and the other of which
extends toward the L3 point. The binary accretes gas through
the L2 point at these stages.

Figure 9 shows M1d and M2d as a function of time. The ac-
cretion rate increases by a factor of 4.89 for the primary and 4.37
for the secondary around t ’ 13�. The average accretion rate of
the primary is Ṁ1d ¼ 7:01 ; 10�2 in 0 � t � 4� and 5:59 ; 10�1

in 16� � t � 30�. That of the secondary is Ṁ2d ¼ 4:07 ; 10�2

in 0 � t � 4� and 1:73 ; 10�1 in 16� � t � 30�. The accretion
rate is fairly constant in 16� � t � 30�. The ratio of the accre-
tion rates is Ṁ1d /Ṁ2d ¼ 3:22. Again the primary accretes more
and the accretion decreases the mass ratio, q.

Model 6-18 is qualitatively similar to model 6-19. Also in
model 6-18, the accretion rate is small in 0 � tP 12�. The
duration of the early very low accretion rate phase is longer for a
larger jinf . When jinf is larger, it takes more time for gas to lose
its angular momentum. The early very low accretion rate phase
does not exist when jinf � 1:7.

Models 6-15 and 6-17 are qualitatively similar to model 6-16.
The gas accretes onto the binary mainly through channel B, i.e.,

through the L2 point in these models. The accretion sets in
around t ’ 2�.

As shown above, models of q ¼ 0:6 are classified into three
groups according to jinf . When jinf P 1:45, the gas accretes onto
the binary through both channels A and B. We call such ac-
cretion type I. When jinf k 1:75, the gas accretion is little in the
first several rotations. The gas accretion begins after a spiral arm
extending from the circumbinary disk reaches the L2 point. It is
only through channel B. We call such accretion type III. When
jinf is intermediate (1:45P jinf P 1:75), the gas accretes mainly
through channel B. We call such accretion type II.

Figure 10 shows the average accretion rate in 20� � t � 30�
as a function of jinf . The crosses denote the ratio of total ac-
cretion rate of the binary to the accretion rate from the outer
boundary, Ṁd /Ṁinf . The total accretion rate is lower for a larger
jinf in general, although it does not decreases monotonically
with increasing jinf . The open circles and open triangles denote
Ṁ1d /Ṁinf and Ṁ2d /Ṁinf , respectively. The accretion rate of the
primary is larger than that of the secondary in all the models
shown in the diagram. The filled triangles denote Ṁ2d /(qṀinf )
to evaluate the change in the mass ratio from comparison with
Ṁ1d /Ṁinf . The latter is slightly larger than the former, and thus
the mass ratio decreases in all the models.

3.3. Dependence on the Mass Ratio q

In this subsection we examine dependence on the mass ratio,
q, by comparing models having various q and jinf .

Figure 11 shows the surface density distribution at t ¼ 24:0�
for models 4-16, 7-16, and 9-16. These models, as well as
model 6-16, have the same jinf ¼ 1:6 but different q. All these
models are qualitatively similar; they show type II accretion,
and the primary accretes more gas than the secondary.

Fig. 9.—Same as Fig. 5 but for model 6-19. Fig. 10.—Accretion rate as a function of the specific angular momentum of
the accreting gas, jinf . The mass ratio and the sound speed are fixed at q ¼ 0:6
and cs ¼ 0:25. The accretion rate is measured over the period 20� � t � 30�,
during which it is nearly constant in a model. It is normalized by the accretion
rate from the outer boundary, Ṁinf . The open circles denote the accretion rate of
the primary, Ṁ1d , and the open triangles denote that of the secondary, Ṁ2d . The
crosses denote the sum of them, Ṁd , and the filled triangles denote Ṁ2d /q.
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Fig. 11.—Surface density distributions at t ¼ 24:0� for models 4-16, 7-16,
and 9-16. These models have the same model parameters except for the mass
ratio, q. The arrows denote the velocity measured in the corotation frame. The
curves denote the contours of the Roche potential. Fig. 12.—Same as Fig. 5 but for models 4-16, 7-16, and 9-16, respectively.



Figure 12 shows the time evolution of the circumstellar disk
masses for models 4-16, 7-16, and 9-16. The circumprimary
disk is more massive than the circumsecondary disk in all the
models. The accretion rate increases twice in all the models.

See Table 2 for the average accretion rates in the early phase
(Ṁ1d;early and Ṁ2d;early) and those in the late phase (Ṁ1d;late and
Ṁ2d;late). These values are obtained by the piecewise best linear
fit to M1d and M2d . The epoch of the increase in the accretion
rate (t break) is evaluated from the crossing of the two piecewise
best fits. As shown in Table 2, the epoch (t break) is later for a
larger q both for the primary and for the secondary.

We find, however, quantitative differences between thesemod-
els. The mass ratio decreases in models 4-16 and 7-16, since
M1d kM2d /q. The mass ratio changes only a little in model 9-16
since M1d ’ M2d /q.

Figure 13 shows the accretion rate of the primary, Ṁ1d , as a
function of q and jinf . The height of each bar denotes the ac-
cretion rate for given jinf and q. It is shown in units of the ac-
cretion rate from the outer boundary. The left panel shows the
accretion rate in the early phase, 2� � t � 12�, while the right
panel shows that in the late phase, 20� � t � 30�. Both in the
early and late phases, the accretion rate is higher for a smaller
jinf but depends a little on q. The accretion rate is higher in the
late phase than in the early phase. The increase in the accretion
rate is prominent when jinf is large.

The left panel of Figure 14 shows the ratio of the accretion
rates, Ṁ1d /Ṁ2d , for various jinf and q. The ratio is evaluated
from the average accretion rates in the late phase. It ranges from
0.80 to 5.03 and is larger than unity in most models. In other
words, the primary accretes more in most models.

The right panel of Figure 14 is essentially the same as the left
panel but shows qṀ1d /Ṁ2d � 1. It is proportional to the change
in the mass ratio, �q̇. The bars with black tops denote mod-
els having a positive q̇. The mass ratio decreases in the other
models.

Note that Figures 13 and 14 show both systematic and spo-
radic variations in the accretion rate as a function of q and jinf .
We discuss the origin of the sporadic variation in x 3.5.

The total accretion rate, Ṁ1d þ Ṁ2d , is less than 0.545Ṁinf in
all the models. The majority of the gas is accumulated in the
circumbinary disk.

Figure 15 summarizes the type of accretion in the q� jinf
plane. The double circles denote the models in which accretion
through channel A is also appreciable in more than the half of
the total accretion period (type I). The circles denote those in
which accretion through channel B is dominant for the total
accretion period and the accretion through channel A is inter-
mittent (type II ).

The triangles denote those in which gas accretion is little
(Ṁ < 0:02 Ṁinf ) in 2� � t � 12� (type III ). All the models of
jinf � 1:8 show type III accretion. The boundary between type I
and II depends on q. When q is larger, type I accretion takes
place for a larger jinf . When q ¼ 1, type II accretion vanishes
since the L2 and L3 points are identical. For later discussion we
plot the specific angular momentum of a particle corotating with
the binary at the L3 point, j(L3), with the dotted curve. The
solid curve denotes j(L3)þ 0:11. It is a good approximation to
the boundary between type I and II. We plot the specific angular
momentum of the particle corotating at L2 point with the
dashed curve for comparison.

TABLE 2

The Average Accretion Rates of the Primary and Secondary

Primary Secondary

Model tbreak Ṁ1d;early Ṁ1d;late t break Ṁ2d;early Ṁ2d;late Ṁinf

4-16 ............................ 13.00� 1.058 2.100 10.83� 0.307 0.802 17.40

7-16 ............................ 15.44� 1.177 2.058 13.26� 0.350 0.633 17.39

9-16 ............................ 20.20� 1.041 2.787 20.19� 0.884 1.940 17.39

Fig. 13.—Dependence of accretion rate of the primary on the mass ratio q and specific angular momentum of the accreting gas, jinf . The accretion rate is the
average over the period 2� � t � 12� (left) and 20� � t � 30� (right). Accretion rate of the primary is normalized by the accretion rate from the outer boundary,
Ṁinf . The gray scale denotes jinf .
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3.4. Dependence on the Sound Speed cs

In this subsection we show models 6-19H, 6-19L, and 6-
19LL. All these models, as well as model 6-19, have the same
parameters, q ¼ 0:6 and jinf ¼ 1:9, but different sound speed,
cs. The sound speed is cs ¼ 0:30, 0.25, 0.20, and 0.18 in mod-
els 6-19H, 6-19, 6-19L, and 6-19LL, respectively. Compari-
son of these models provides us dependence on cs in type III
accretion.

Figure 16 shows the surface density at t ¼ 10:0� in models 6-
19H, 6-19, 6-19L, and 6-19LL. In model 6-19H the binary
accretes gas appreciably at this stage, while it does not in the
other three models. The circumbinary disks are detached from
the binary in the latter three models. The spiral arms are thicker
and more tightly wound in a model of a lower sound speed. This
is reasonable, since the pitch angle of the spiral wave should be
proportional to the ratio of the sound speed and rotation velocity
(see, e.g., Roberts et al. 1975; Kennicutt 1981).When the sound
speed is lower, the accreting gas spirals into the binary after a
larger number of revolutions. The circumbinary disk is more
extended and less dense in a model with a higher sound speed.
The left panel of Figure 17 shows the mass of the circum-

primary disk as a function of time for models 6-19H, 6-19, 6-
19L, and 6-19LL. The onset of the accretion is later in a model
with a lower sound speed. This is because the spiral arms are
tightly wound and the accreting gas comes close only a little by
each rotation when the sound speed is low. After the onset, the
accretion rate is nearly the same in all the models except for the
very late phase in model 6-19LL.
The right panel of Figure 17 is the same as the left panel but

for the mass of the circumsecondary disk. In the early phase, the
accretion rate of the secondary is slightly higher in model 6-
19H. In the late phase, however, it is high in model 6-19LL. The
accretion onto the secondary begins around t ’ 12� in models
6-19, 6-19L, and 6-19LL.
Figure 18 summarizes the average accretion rate after the

onset for models having q ¼ 0:6 and jinf ¼ 1:9. Although the
accretion rates of the primary and secondary disperse, they
depend little on the sound speed.

3.5. On the Sporadic Variation

We examine the sporadic variation, which implies an uncon-
trolled process. A possible origin of the sporadic variation is poor
resolution; our numerical solutionsmight contain numerical noise
due to insufficient resolution.
As a convergence test, we have reexamined model 6-16 with

different resolutions: 10242, 20482, 30722, and 40962 grids. All
the numerical solutions have converged in the early phase.

Fig. 14.—Dependence of the ratio of accretion rate Ṁ1d=Ṁ2d on q and jinf (left). The evolution of the mass ratio �q̇ ¼ Ṁ2d=M1 �1þ qṀ1d=Ṁ2d

� �
is shown

(right). Note that the bar height denotes the value of �1þ qṀ1d=Ṁ2d . Both panels denote the average accretion rates over the period 20� � t � 30�. The cross-
hatching denotes jinf .

Fig. 15.—Classification of models on the mass ratio (q) and specific angular
momentum of gas ( jinf ) diagram. Type I accretion takes place in the models
marked by the double circles, while type II accretion does in thosemarked by the
single circles. Type III accretion takes place in the models marked by the tri-
angles. See text for the definitions of types I, II, and III.
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Figure 19 compares the masses of the circumprimary and cir-
cumsecondary disks as a function of time for different resolu-
tions. The masses are independent of resolution over the period
t � 2:8�. The circumprimary and circumsecondary disks start
accretion at t ¼ 2:4� and 2.6�, respectively.

At t ¼ 3�, the mass of the circumprimary disk is slightly
lower in the model with 10242 cells than in the others. On the
other hand, the mass of the circumsecondary disk is slightly
higher in the model with 10242 cells. These differences are due
to numerical viscosity, which is larger in the computation of
fewer cells. An appreciable fraction of the gas accretes from
the circumbinary disk through the L2 point and directly onto the
circumsecondary disk in the computation with 10242 cells. The
direct accretion onto the circumsecondary disk is further en-
hanced in the computation of 5122 cells, where the numerical

viscosity is larger. Thus, this direct accretion is due to the nu-
merical viscosity. The numerical viscosity is estimated to be
� � �x2 /�t. Then the Reynolds number is evaluated to be

Re ¼ ‘v

�

� a

�x

v�t

�x

� 30
N

1024

� �
; ð13Þ

since the typical length scale is half of the binary separation,
0:5a, in the Roche lobe and the Courant number is v�t /�x ¼
0:6. The flow is likely to be inviscid in our computations of

Fig. 16.—Dependence of accretion on the sound speed of gas, cs. The panels denote the surface density and velocity measured in the rest frame at t ¼ 10� for
models 6-19H, 6-19, 6-19L, and 6-19LL. The sound speed is cs ¼ 0:30, 0.25, 0.20, and 0.18, respectively.
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N � 2048 (see Fig. 19). The masses of the circumprimary and
circumsecondary disks depend little on the resolution except
in the computation with 10242 cells over the period t � 4�.

Figure 20 is the same as Figure 19, but for the period of
0 � t � 30�. The mass of the circumprimary disk is apprecia-

bly lower in the computation of 10242 cells after tk 14�. This
decrease is due to the numerical viscosity. The masses of the
circumprimary and circumsecondary disks begin oscillation in
the computation of 40962 cells around t ’ 20�. The oscillation
ofM1d anti-correlates with that ofM2d . The oscillation is due to
instability of the stagnation point located near the L1 point. A
small change in the stagnation point results in a large change in
the destination of the flow, since the L1 point is the saddle point
of the Roche potential. Thus, a large change in the circum-
primary disk mass comes out from a small change in the stag-
nation point.
Figure 21 compares the computations of 20482 and 40962

cells for the flow near the L1 point at t ¼ 18:0� and 20.0�, re-
spectively. The solid curves denote the streamlines and the plus
signs indicate the stagnation point. The stagnation point at t ¼
20:0� is located at (x; y) ¼ (�0:16; 0:04) and (�0.20, 0.23) in
the computations of 20482 and 40962 cells, respectively. The
stagnation point is relatively stable in the computation of 20482

cells, while it is not in that of 40962 cells.
The instability of the stagnation point and the oscillation of

the flow is explained as follows. The stagnation point moves
by the balance between the dynamic pressures of the flows from
the primary lobe and from the secondary lobe. When the flow
from the primary lobe has a larger dynamic pressure, the stag-
nation point moves toward the secondary and the flow from
the secondary lobe to the primary lobe diminishes. A smaller
supply of gas from the secondary lobe lowers the dynamic pres-
sure of the flow from the primary. As a result, the flow from
the secondary lobe reopens and enters into the primary lobe
through the L1 point. After rotating around the primary, the gas
comes back to the L1 point. The period of oscillation is �t ’
2:4�.
The average accretion rates are almost the same in the

computations of 20482, 30722, and 40962 cells. The amplitude
of the oscillation is the largest in the computation of 40962 cells,
in which the Reynolds number is the highest. We suppose that
the oscillation is damped numerically in the computation of a

Fig. 17.—Solid, dashed, dotted, and dot-dashed curves denote M1d (left) and M2d (right) for models 6-19LL, 6-19L, 6-19, and 6-19H, respectively. Only the
sound speed cs is different between these models. The mass ratio and the specific angular momentum of the gas are the same (q ¼ 0:6 and jinf ¼ 1:9).

Fig. 18.—Dependence of the disk accretion rates on the sound speed, cs. The
mass ratio and the specific angular momentum of the accreting gas are fixed at
q ¼ 0:6 and jinf ¼ 1:9. The accretion rate is the average over the period 14� �
t � 24�. The open circles denote the accretion rate of the primary, Ṁ1d , and the
open triangles do that of the secondary, Ṁ2d . The crosses denote the sum of
them, Ṁd , and the filled triangles denote Ṁ2d /q.
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lower Reynolds number. The accretion rate shown in x 3 may
suffer from the oscillation.

4. DISCUSSION

As shown in the previous section, the accretion rate varies
both systematically and sporadically depending on the model
parameters, jinf , q, and cs. We discuss the origins of these de-

pendences and then compare our simulations with the earlier
simulations and observations thus far.

4.1. Dependence on jinf

First, we discuss the increase in the accretion rate with time.
The increase is remarkable especially in the models of jinf � 1:8
(see Fig. 13). The increase in the accretion rate is stepwise (see

Fig. 19.—Dependence of the circumprimary disk mass, M1d (left), and the circumsecondary one, M2d (right), on the numerical resolution. The solid, dotted,
dashed, and dash-dotted curves denote the disk masses for the grids 40962, 30722, 20482, and 10242, respectively. The mass ratio, the specific angler momentum, and
the sound speed of gas are the same (model 6-16 ).

Fig. 20.—Same as Fig. 19 but for 0� � t � 30�.
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Fig. 9). This implies two components in the gas accretion. One
is absent in models of jinf � 1:8, while the other appears in all
the models but only in a late phase. We call the former and latter
the fast and slow components, respectively. The increase in the
accretion rate is ascribed to the spiral arms in the circumbinary
disk in the models of jinf � 1:8. The spiral arms transfer angular
momentum outward and increase the accretion rate of the bi-
nary. This implies that the fast component of the accretion is due
to another angular momentum transfer mechanism, i.e., the grav-
itational torque of the binary, while the slow component is due to
the spiral waves.

The above argument is supported by a particle simulation.
Nariai (1975) computed particles escaping from the L2 point
with a small initial velocity and measured the specific angular
momentum at the final state. The particles escaping from the
L2 point have a specific angular momentum of jesc ’ 1:7 inde-
pendently of q, and the initial small velocity assumed. This final
specific angular momentum ( jesc) coincides with the critical
specific angular momentum for the fast component of accretion
( jinf � 1:7). If the time is reversed, an escape particle is con-

verted into an accreting particle. Thus, particles of jinf ¼ 1:7
can reach the L2 point by gravitational force alone, since the
particle orbit is time-reversible. Remember that this critical
specific angular momentum is slightly larger than that for a
particle corotating with the binary at the L2 point (see Fig. 15).
The difference is ascribed to the angular momentum extraction
by the gravitational torque. If we apply this argument to the L3
point, gas should accrete through the L3 point (channel A)
when the specific angular momentum of infalling gas is slightly
larger than that for a particle corotating at the L3 point, jinf <
j(L3)þ �, where � is nearly equal to 0.1. This argument is also
consistent with Figure 15. The accretion onto the binary is dis-
criminated into types I, II, and III at these two critical specific
angular momenta.

4.2. Ratio of the Accretion Rates

As shown in the previous section, accretion through channel
B (i.e., through the L2 point close to the secondary) is dominant
over that through channel A in all the models of jinf � 1:3.
However, the accretion rate of the primary is larger than that of

Fig. 21.—Streamlines (solid curves) overlaid on the surface density distribution (gray scale) near the L1 point. The left panels denote the stage of t ¼ 18:0� for
model 6-16, while the right panels denote that of t ¼ 20:0�. The spatial resolution is 20482 for the top panels and 40962 for the bottom panels. The plus sign denotes
the stagnation point in each panel. The dashed curves denote the contour of the Roche potential passing through the L1 point.
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the secondary (Ṁ1d > Ṁ2d) in all the computed models except
for models 4-13 and 4-14 (see Fig. 14, left panel ). The ratio of
the accretion rates, � � Ṁ1d /Ṁ2d , is smaller than the inverse
of the mass ratio, 1/q , in most models (see Fig. 14, right panel ).
Then the gas accretion decreases the mass ratio in such models.

Our result is very different from that of Bate & Bonnell
(1997); accretion increases the mass ratio in their simulations
when jinf > 1:0. They adopted a 3DSPH code to compute the ac-
cretion rate and assumed that all the injected gas particles have a
given specific angular momentum, jinf . When 1:2 � jinf � 1:6,
gas accretes through the L2 point to the secondary irrespective of
the mass ratio in their simulations.

We suppose that the accretion onto the secondary is due to the
large numerical viscosity employed. When accreting gas flows
near the L2 point, it should have an appreciable amount of en-
ergy and angular momentum, as shown in the previous section. It
should loose energy and angular momentum before accreting
onto either the primary or secondary. The sum of the Jacobi in-
tegral and the Gibbs free energy should be constant along the gas
stream (Bernoulli’s theorem; eq. [11]), if the flow is stationary in
the corotation frame. The Gibbs free energy is much smaller than
the Jacobi integral when the flow is cold. Thus, the Jacobi inte-
gral should be nearly constant along the streamline and for a given
gas element. Unless energy is lost effectively, a gas element can-
not accrete directly from the L2 point to the secondary, since the
potential energy difference is very large compared with the ther-
mal energy. We have confirmed that gas is also directly accreted
onto the secondary in our simulations when the grid is coarse and
hence the numerical viscosity is large (see x 3.5).

Our model is different from that of Bate & Bonnell (1997) at
some points. Some of the differences other than the numerical vis-
cosity might be responsible for the difference in the result. One of
them is the treatment of the gas flow near the primary and sec-
ondary. Bate & Bonnell (1997) eliminated SPH particles when
they fall within the accretion radius of the primary or secondary,
whereas we have used the softened gravitational potential. The
accretion radius is 5% of the binary separation (racc ¼ 0:05a)
in their simulations, while our model gravitational potential is
softened in the regions of r � r1j j < 0:2a and r � r2j j < 0:2a.
The large softening radius might affect the flow inside the Roche
lobe, although the inflow from the L2 point does not directly im-
pact those softened regions in our simulations.

In order to assess the possible effects of large softening ra-
dius, we have made comparative models of R1 ¼ R2 ¼ 0:15a
for model 6-16 with 61442 cells (model 6-16a) and 81922 cells
(model 6-16b). The mass ratio, the specific angular momentum
of the infalling gas, and the sound speed are set equal to those of
model 6-16. The flow outside the Roche lobe is almost the same
among models 6-16, 6-16a, and 6-16b. The average accretion
rates of the primary and secondary differ from model to model.
They are Ṁ1d ¼ 2:51 and Ṁ2d ¼ 2:98 in the model 6-16a over
the period 20� � t � 30�, whereas they are Ṁ1d ¼ 2:38 and
Ṁ2d ¼ 1:95 in the same period in model 6-16b. The accretion
rate of the secondary is appreciably higher in model 6-16a than
inmodel 6-16b. This is due to relatively large viscosity inmodel
6-16a. Since the effective radii are small in models 6-16a and 6-
16b, the maximum velocity is larger than in model 6-16 and the
time step (�t) is taken to be shorter. Consequently the numer-
ical viscosity is large in model 6-16a despite the very high
resolution. Thus, our result that the primary accretes more than
the secondary is not due to the softening employed.

It is enlightening to compare the numerical viscosity with the
standard � viscosity. The former is � � (�x)2 /�t � 1:67vmax�x
in terms of the kinetic viscosity while the latter is � � �csH ,

where H denotes the disk thickness. They are evaluated to be
� � 7:4 ; 10�2acs and 8:8 ; 10�3acs for the numerical viscos-
ity and � viscosity, respectively, in model 6-16 when computed
with 20482 cells. Thus, the numerical viscosity is much larger
than the turbulent viscosity expected from the standard theory even
when cs is rather high. If we take account the turbulent viscosity,
the flow will gain a small radial drift velocity, vr ’ �c2s /v’ (see,
e.g., Frank et al. 1985; Hartmann 1998). Since the drift veloc-
ity is much smaller than the rotation velocity, it is unlikely that
the gas inflowing through the L2 point accretes directly onto the
secondary. It should flow toward the L1 point, as shown in our
simulations.

It is possible for the secondary to capture the inflow directly if
it is large and comparable with the Roche lobe, i.e., R2k 0:3a.
This can happen only for a very short period binary. Suppose
that the radius of the secondary is 10 times larger than the Sun
(R1 ¼ 10 R�) and the masses of the primary and secondary are
M1 ¼ 0:625 M� and M2 ¼ 0:375 M�. Then the orbital period
of the binary is 23 days when R2 ¼ 0:3a. Thus, the secondary is
much smaller than the Roche lobe in most binaries since this
period is very short.

It is interesting to compare our simulations with those of
Günther & Kley (2002). They modeled four binaries, AK Sco,
DQ Tau, UY Aur, and GG Tau. All of them have appreciable
eccentricities (0:13 � e � 0:56). AK Sco and DQ Tau are close
binaries, while UY Aur and GG Tau are wide binaries. They
assumed a geometrically thin, coplanar, circumbinary disk in
Keplerian rotation and computed accretion onto the binary in the
orbital plane. They found that the accretion rate of the primary is
larger than the secondary in three out of the four models. Their
figures show a sharp bridge near the L1 point, which indicates
mass exchange between the primary and secondary lobes. They
adopted a dual-grid technique to achieve high spatial resolution
around the binary. This supports our results in the sense that high
spatial resolution results in higher primary accretion rates.

As mentioned earlier, our models predict that gas accretion
increases the mass difference between the primary and second-
ary, since the primary accretion rate is higher than the secondary
one in almost all the models. Not only the absolute accretion
rate, but also the accretion rate per unit mass (Ṁ /M ), is higher
for primaries in most models.

The ratio of the primary and secondary accretion rates de-
pends little on the initial infall velocity, vinf . We have made
model 6-16c, whose parameters are the same as those of model
6-16 except vinf . The initial infall velocity is twice as large in
model 6-16 as in model 6-16c. Consequently the average accre-
tion rate is 50% higher in model 6-16. The total accretion rate is
Ṁ1d þ Ṁ2d ¼ 3:45 over the period 20� � t � 30� in model 6-
16, while it is Ṁ1d þ Ṁ2d ¼ 2:26 in the same period in model 6-
16c. The branching ratio, Ṁ1d /Ṁ2d , is nearly the same; it is 2.51
and 2.44 in models 6-16 and 6-16c, respectively. This is further
evidence that the ratio of the accretion rates depends on the flow
inside the Roche lobe.

4.3. Comparison with Young Close Binaries

Our numerical simulations are aimed to model a protobinary
in the main accretion phase. It is deeply embedded in a molecular
cloud, and the components are hard to distinguish. Thus, we com-
pare our simulations with close binaries of classical T Tauri stars.
They are a little evolved and have slightly lower accretion rates.
Hence, each component can be discriminated and is easier to
compare with our simulations.

Hartigan & Kenyon (2003) obtained Space Telescope Imag-
ing Spectrograph spectra for 20 close T Tauri binaries in the
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Taurus-Auriga dark cloud. They derived mass accretion rates
and other stellar parameters from the spectra. According to them,
the primaries tend to have somewhat larger accretion rates than
their secondaries do. They also found four mixed pairs of clas-
sical T Tauri and weak-lined T Tauri stars. The primary is the
classical T Tauri in three out of the four pairs. It is another evi-
dence that a primary tends to have a larger accretion rate.

The apparent separation is less than an arcsecond in most of
these binaries. This means that the typical separation is less than
100 AU and the specific angular momentum of the binary is
small. Accordingly, the gas accreted onto the binary is likely to
have had a large specific angular momentum when measured in
units of the binary specific angular momentum. In this sense our
simulations are consistent with those of Hartigan & Kenyon
(2003).

4.4. Implication for Mass Ratio Distribution

As shown in the previous section our computations have
shown that the primary has a larger accretion rate and accord-
ingly the mass ratio decreases. We consider the implication for
the mass ratio distribution.

According to recent surveys (Köhler & Leinert 1998; Köhler
et al. 2000;Woitas et al. 2001;White &Ghez 2001; Patience et al.
2002), the mass ratio distribution is flat in the range of q � 0:2
except for the detection bias. This implies that the primary tends
to have a slightly higher accretion rate. If the secondary had a
higher accretion rate, the mass ratio would increase by accretion
and the mass ratio distribution would have a sharp peak near
q ’ 1. On the contrary, low mass ratio binaries would become
more abundant if the mass ratio decreased rapidly by accretion.
Thus, the flat distribution implies that accretion decreases and
disperses the mass ratio slowly. In this sense our simulations are
consistent with the mass ratio distribution.

4.5. Unresolved Issues

We adopted a very simple model in this paper; we assumed a
circular orbit, coplanar gas accretion, constant sound speed, and
so on. This simple model enabled us to achieve high spatial
resolution and hence high Reynolds number. We should, how-
ever, remember the shortcomings of this simple model. We as-
sess these shortcomings in this subsection.

When the binary has an eccentric orbit, the separation
changes periodically and the accretion rate changes accordingly
(Artymowicz & Lubow 1996). The Roche lobe repeats expan-
sion and contraction synchronized with the orbital motion. Then
the gas flow into the Roche lobe should be larger at the apocen-
ter than at the pericenter. In addition, the accretion rates of the
primary and secondary should vary synchronously. The ratio of
Ṁ1d to Ṁ2d should vary, and the average ratio may depend on
the eccentricity. Accretion onto an eccentric binary is beyond the
scope of this paper and an open problem. It should be investi-
gated with future simulations of high resolution.

The assumption of a coplanar circumbinary disk seems to be
reasonable as far as binaries are concerned. Observed circum-
binary rings seem to be coplanar with the binary located in the
central hole. However, we should remember that an appreciable
fraction of stars belong to hierarchical triplets and quadruples.
The outermost member of the multiple may not be coplanar
with the central pair, since it is highly likely to be scattered by
gravitational interaction. It may disturb the circumbinary disk
around the central pair. Effects of the third body are beyond the
scope of this paper.

Our numerical simulations might depend on the adopted
sound speed of the gas. For simplicity we assumed that the sound

speed of the gas is constant in the range 0:18a! � cs � 0:30a!.
The assumed sound speed is a little higher than a realistic value.
The unit velocity and the sound speed are evaluated to be

a! ¼ 2:97
M

0:1 M�

� �1=2
a

10 AU

� ��1=2

km s�1 ð14Þ

and

cs ¼ 0:19
T

10 K

� �1=2

km s�1: ð15Þ

Of course these numbers may change from binary to binary and
should evolve with time. The gas temperature may increase, since
radiation from the protobinary may heat up the surrounding gas.
We have chosen the value of cs /(a!) mainly for a technical

reason. When cs is smaller, the computation requires higher spa-
tial resolution and accordingly takes more computation time.
Although we have assumed a rather high sound speed, our con-
clusion depends only weakly on the sound speed as long as the
flow is relatively cold. As shown in x 3, the ratio of the accretion
rates depends mainly on the flow within the Roche lobe. The gas
pressure has only minor effects on the flow. The Roche poten-
tial is � (L2) ¼ �1:77, � (L1) ¼ �1:99, and � (L3) ¼ �1:68 at
the three Lagrange points, respectively, for q ¼ 0:6, while c2s ¼
0:0625. In fact, the accretion rates of the primary and secondary
depend little on the sound speed in the rangewe have investigated.

5. SUMMARY

As shown and discussed earlier, the accretion rate of the
primary is larger than that of secondary, even when the ac-
creting gas has a large specific angular momentum. This con-
clusion contradicts the simulations of Bate & Bonnell (1997),
which have been regarded as a standard. The difference comes
mainly from their large numerical viscosity. Very high spatial
resolution and low numerical viscosity are essential for simu-
lating the flow inside the Roche lobe and for evaluating the
accretion rate of each component star. It has been believed thus
far that the primary accretes more than the secondary only when
the accreting gas has a low specific angular momentum. Our
simulations have refuted this belief. Gas accretion tends to in-
crease the mass difference and hence to decrease the mass ratio.
The gas accretion onto the binary consists of fast and slow

components. The former is significant only when jinf � 1:7, i.e.,
when the accreting gas has a specific angular momentum smaller
than the critical value. The critical value depends little on themass
ratio, q. The slow component is due to spiral shock waves in the
accretion flow. When the sound speed is lower, the slow com-
ponent begins later. The accretion rate of the slow component de-
pends little on the sound speed.
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