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ABSTRACT

In order to infer the effects of rotation on the revival of a stalled shock in supernova explosions, we investigate
steady accretion flows with a standing shock. We first obtain a series of solutions for equations describing nonrotat-
ing, spherically symmetric flows and confirm the results of preceding papers, that for a given mass accretion rate,
there is a critical luminosity of irradiating neutrinos above which there exists no steady solution. Below the critical
value, we find two branches of solutions; one is stable and the other is unstable against radial perturbations. With a
simple argument based on the Riemann problem, we can identify the critical luminosity as that at which the stalled
shock revives. We also obtain a condition satisfied by the flow velocity for the critical luminosity, which can easily
be applied to the rotational case. If a collapsing star rotates, the accretion flow is nonspherical as a consequence of
centrifugal forces. Flows are accelerated near the rotation axis, whereas they are decelerated near the equatorial
plane. As a result, the critical luminosity is lowered; that is, rotation assists the revival of a stalled shock. According
to our calculations, the critical luminosity is �25% lower for a mass accretion rate of 1 M� s�1 and a rotational
frequency of 0.1 Hz at a radius of 1000 km than that for a spherically symmetric flow with the same mass accretion
rate.We find that the condition on the flow velocity at the critical luminosity is first satisfied at the rotation axis. This
suggests that shock revival is triggered on the rotation axis and a jetlike explosion ensues.

Subject headinggs: hydrodynamics — shock waves — stars: rotation — supernovae: general

1. INTRODUCTION

Core-collapse supernovae play important roles in, for example, star formation, the evolution of galaxies and the entire universe, and
the acceleration of cosmic-ray particles, owing to their nucleosynthesis, energetic shock waves, and high luminosity. Recently, the
phenomenon has been put in the spotlight because of a likely association with gamma-ray bursts. Unfortunately, however, the mecha-
nism behind supernova explosions is still unresolved (see, e.g., Wheeler 2003 for a review).

Supernova explosions commence with the gravitational collapse of massive stars at the ends of their lives. When the nuclear satu-
ration density is reached at the center of the core, the core bounce occurs, producing a shock wave that starts to propagate outward in
the core. There is near-consensus among researchers that this shock wave does not produce the supernova explosion directly, since the
shock loses energy by photodissociation of nuclei, as well as by neutrino cooling, and stalls somewhere inside the core. It is widely
expected that the shock will be revived by irradiation from neutrinos diffusing out of the proto–neutron star, the scenario originally
proposed by Wilson (1985). Although many researchers have studied this scenario intensively and extensively, state-of-the-art
numerical simulations so far have shown that as long as the collapse is spherically symmetric, the stalled shocks do not revive
(Liebendörfer et al. 2001; Buras et al. 2003; Thompson et al. 2003; Liebendörfer et al. 2005).

These simulations are concerned with the dynamical evolution of the entire core from the onset of the collapse till long after the
stagnation of the shock. Burrows & Goshy (1993) took a contrary approach, focusing on the revival of the stalled shock wave. After
the shock stagnates because of the energy losses mentioned above, the accretion flows through the standing shock wave are quasi-
steady (see Janka 2001 for a criticism on this point). Burrows & Goshy approximated these flows with steady state solutions for
constant mass accretion rates and neutrino luminosities. Varying these constant values, they found that for a given mass accretion
rate there is a critical neutrino luminosity above which there exist no steady solutions. Using this fact, they argued that the revival
of the stalled shock occurs when the neutrino luminosity exceeds this critical value. The existence of the critical luminosity was also
observed in numerical experiments done by Janka & Müller (1996), in which they artificially increased neutrino luminosities in
their failed-explosion models and saw what happened to the stalled shocks. Merits of these steady state calculations are that not only
are they relatively simple computationally, but they can also clearly demonstrate, if only qualitatively, the cause of the failure to
produce explosions—that is, according to this theory, an inappropriate combination of the neutrino luminosity and the mass accretion
rate.

So far, we have been talking about studies of spherically symmetric collapse. However, several observations suggest that supernova
explosions are intrinsically asymmetric. For example, Leonard et al. (2000) andWang et al. (2002) have observed linear polarizations
of a few percent for photons from collapse-driven supernovae and argued that the stellar envelopes are globally asymmetric, either ob-
late or prolate, with an aspect ratio of�2. We also know that supernova remnants are asymmetric in general. One can easily imagine a
couple of possible causes for this asymmetry, for example, hydrodynamic instabilities, rotation, and magnetic fields. In fact, young
pulsars are thought to have rather large angular momenta (Kaspi et al. 1994; van der Swaluw&Wu 2001) andmagnetic fields (Kulkarni
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1992), which are probably inherited from the precollapse stars. It is also believed that some convective motions occur in the supernova
core. Large-scale nonspherical oscillations of the standing accretion shocks may also cause the stellar envelope to be globally asym-
metric (Blondin et al. 2003).

Among these effects, we pay particular attention to stellar rotation in this paper. Note, however, that the rotation of the core may not
be so rapid after all. Recent evolution models by Heger et al. (2000, 2004) suggest that the transport of angular momentum during the
quasi-static evolutionary phase of the progenitor deprives the core of a substantial fraction of its angular momentum, particularly
when magnetic torque is taken into account (Spruit 2002; Heger et al. 2004). If this is really the case, rotation will play no significant
role in the dynamics of core collapse, as shown by Buras et al. (2003; see also Müller et al. 2004). One should bear in mind, however,
that these evolutionmodels are based on one-dimensional calculations and have some uncertainties in themechanism and treatment of
angular momentum transport.

The dynamics of rotational collapse has been explored numerically by some authors. For example, Mönchmeyer & Müller (1989)
and Yamada & Sato (1994) demonstrated that rapid rotation tends to weaken the prompt shock wave because the centrifugal force
prevents the core from contracting sufficiently. Fryer & Heger (2000) found that the efficiency of energy transfer by convection was
reduced by the decrease of effective gravity near the equatorial plane due to the centrifugal force, and as a result, the shock does not
propagate as much as in the no-rotation case. They also asserted that the resultant anisotropy of energy transfer would have made the
explosion jetlike had it been successful. Kotake et al. (2003) estimated the anisotropy of neutrino radiation due to a rotating core. They
claimed that the deformed neutrinosphere, which is in general oblate, yields a neutrino flux and a heating rate that are larger near the
rotation axis than near the equatorial plane. Given this result by Kotake et al. (2003) and the results by Shimizu et al. (2001) that such
anisotropic neutrino irradiation could lead to a successful jetlike explosion, we may well expect rotation to help along the explosion in
the neutrino-heating scenario.

In order to see the effects of rotation more clearly, if qualitatively, we follow the lead of Burrows & Goshy (1993). We solve the
time-independent Euler equations describing steady accretion flows through a standing shock, taking rotation into account. We pay
particular attention to how the critical luminosity of neutrinos is altered by stellar rotation and demonstrate that rotation assists the re-
vival of the stalled shock.

This paper is organized as follows: In the next section, we discuss the spherically symmetric case. We find two branches of steady
solutions and discuss the revival of the shock wave, employing the critical luminosity. We examine in x 3 the stability of the two solu-
tion branches obtained in x 2. In x 4, we analyze the steady axisymmetric solutions with rotation and discuss the effect of rotation on
the revival of the stalled shock. The final section is devoted to a summary and some additional discussion.

2. SPHERICALLY SYMMETRIC FLOWS WITH A STANDING SHOCK

In this and the next section, we discuss spherically symmetric flows, solving one-dimensional hydrodynamic equations. The
calculations in this section are similar to those of Burrows &Goshy (1993). After the shock stalls, the mass accretion rate and neutrino
luminosities change rather slowly, and the flows become quasi-steady. Idealizing this situation, in this section we seek steady solu-
tions for the accretion flow.

Since our purpose in this paper is not to quantitatively determine the critical luminosity of neutrinos, we make the following
assumptions and simplifications:

1. We do not consider the flows outside the shock wave in detail, simply assuming a free fall, and restrict our calculations to the
inside of the shock surface.

2. Newtonian formulations are adopted, because the region of interest is outside the neutron star and general relativistic effects are
negligible there.

3. We do not solve the neutrino transfer equations, assuming that the luminosity and energy of the neutrinos are independent of
radius. It is also assumed that the neutrinos are thermal with a fixed temperature (T� ¼ 4:5 MeV), for simplicity.

4. A simplified equation of state and rates of neutrino heating and cooling are employed.
5. Photodissociation of nuclei, magnetic fields, and convection are neglected for simplicity, although there should exist regions

where the flows are convectively unstable.

Then, the basic equations describing steady, spherically symmetric accretion flows are given in spherical coordinates by

4�r 2�ur ¼ Ṁ ; ð1Þ

ur
dur

dr
þ 1

�

dp

dr
þ GM

r 2
¼ 0; ur

d�

dr
� p

�2
ur

d�

dr
¼ q̇; ð2Þ

where ur , �, p, and � denote the radial velocity, density, pressure, and specific internal energy, respectively; Ṁ ,G,M, and q̇ are the mass
accretion rate, gravitational constant, neutron star mass, and net heating rate due to neutrino irradiation, respectively. For the neutron
star’s mass, we adopt 1.3 M�.

The pressure and specific internal energy of nucleons, photons, and relativistic particles are approximately written as

p ¼ 11�2

180

k 4

c3f3
T 4 þ �kT

mN

; � ¼ 11�2

60

k 4

c3f3
T 4

�
þ 3

2

kT

mN

; ð3Þ

where k, c, f, andmN are the Boltzmann constant, speed of light, Planck constant, and nucleon mass, respectively; T is the temperature
of matter and photons.
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As for the heating and cooling processes, we take into account only the absorption and emission of neutrinos by nucleons.We adopt
the formulae given by Herant et al. (1992) for degeneracy factor � ¼ 0; that is,

q̇ ¼ 4:8 ; 1032
�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� (r�=r)

2

q �
L�e (foe s�1)

2�r 2�
T 2

� � 2:0 ; 1018T 6 (ergs s�1 g�1); ð4Þ

where L�e is the luminosity of electron neutrinos (1 foe = 1051 ergs), which is assumed to be equal to that of antielectron neutrinos, and
r� is the radius of the neutrinosphere, that is, the inner boundary.

The outer and inner boundaries of the calculations are set at the shock surface and the neutrinosphere, respectively. We impose the
Rankine-Hugoniot relations at the shock surface. The flow into the shock is assumed to be a free fall with velocity uf ¼ �(2GM /r)1/2

and temperature of zero. Thus, the outer boundary conditions are written as

�u2
r þ p ¼ �f u

2
f ;

1
2
u2
r þ �þ p=� ¼ 1

2
u2
f ; ð5Þ

where �f is the upstream density at the shock surface. The continuity equation is automatically satisfied by imposing equation (1) on
each side of the shock. We impose the condition that the density is 1011 g cm�3 at the inner boundary; this approximately corresponds
to the condition that the optical depth from the neutrinosphere to infinity is equal to 2

3
. The latter condition was adopted by Burrows &

Goshy (1993).
We note that the position of the inner boundary is determined by the relation

L�e ¼
�
7�T 4

�=16
��
4�r 2�

�
; ð6Þ

where � is the Stefan-Boltzmann constant. On the other hand, the position of the outer boundary is determined so as to satisfy the
above jump conditions. Thus, the problem can be regarded as an eigenvalue problem. We solve these equations for a wide range of
values of the mass accretion rate and the neutrino luminosity.

The results of the calculations are shown in Figures 1 and 2. In Figure 1, one can see there are two solutions for a given mass
accretion rate and neutrino luminosity when the neutrino luminosity is below a certain critical value. The shock radii of these two
solutions differ. From here on, we refer to the solution with the smaller shock radius as the inner solution and to the other solution
as the outer solution. As shown in Figure 2, as the neutrino luminosity is raised with the mass accretion rate fixed, the shock radius for
the inner solution becomes larger, whereas that for the outer solution becomes smaller. The two solutions coincide when the lumi-
nosity reaches the critical value. For luminosities above the critical value, there is no solution. (This critical value of the neutrino
luminosity is shown in Fig. 8 below.) Note that when the luminosity is close to the critical value, the shock radii are insensitive to the
luminosity. Although our formulation is different in detail from that of Burrows & Goshy, the results are in good agreement (cf. Fig. 1
of Burrows & Goshy 1993). As mentioned, the shock radius for the critical luminosity is almost independent of the mass accretion
rate; it is about 200–300 km according to our calculations.

fig. 1afig. 1bFig. 1.—(a) Inner solution curves for spherical steady accretion flows with Ṁ ¼ 2:0 M� s�1 and L�e = (5, 6, 7, 8) ; 1052 and 8.3167 ; 1052 ergs s�1 (the critical
value), from left to right. (b) Outer solution curves for steady accretion flows with Ṁ ¼ 2:0M� s�1 and L�e = (6, 7, 8) ; 1052 and 8.3167 ; 1052 ergs s�1, from left to
right. Dashed lines denote shock jumps. Dotted lines show the downstream values satisfying the Rankine-Hugoniot relations at each radius.

Fig. 1a Fig. 1b
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This behavior of the solutions can be understood if one recalls the adiabatic subsonic Bondi-Hoyle flow (see Shapiro & Teukolsky
1983). Here we introduce upost (r) as the postshock velocity that we would obtain if the shock radius were r. The velocity upost(r) is
shown by dotted lines in Figure 1. The subsonic adiabatic flows accelerate outside a certain radius, whereas they decelerate inside that
radius. The critical radius is determined by the balance of gravitational energy and thermal energy and is close to the sonic point in a
transonic accretion flow. On the other hand, the free-fall velocity decreases monotonically. Furthermore, the acceleration of the adi-
abatic flow is larger than that of the free fall outside the critical radius, owing to the pressure gradient force. Therefore, if any, there are
two radii where the accretion flow joins with the free-falling stream via the Rankine-Hugoniot relations. In other words, the solution
curve of the adiabatic accretion flow ur(r) intersects upost(r) at two points. Although the solution curves are somewhat modified if one
takes account of the neutrino irradiation, this behavior is not altered for the amplitudes of neutrino luminosity under consideration.
The irradiation tends to heat and push out the infalling matter. Hence, as the luminosity gets larger, the infall velocity gets smaller in
the whole range and the solution curves go down. When the luminosity exceeds a critical value, there exists no point where the sub-
sonic accretion flow joins with the free-falling stream, via the Rankine-Hugoniot relations: the solution curves of the accretion flow
ur(r) never intersect upost(r).

From the above explanation, we can also understand another important property of the solutions. As the luminosity is raised with
the mass accretion rate fixed, the radial derivative of the velocity of the accretion flow at the shock radius, dur(r) /dr, becomes larger
for the inner solutions, whereas it becomes smaller for the outer solutions. If the flow is adiabatic, this derivative coincides with
dupost(r) /dr at the shock radius for the critical luminosity. The neutrino heating, however, makes the former slightly smaller than the
latter. This characteristic will be utilized in x 4.

Finally, let us discuss what happens when the luminosity exceeds the critical value. Since there is no steady solution, we should ad-
dress this issue with time-dependent calculations. However, we can infer at least the initial response of the shock with a simpler anal-
ysis. We can see from Figure 1 that when the luminosity exceeds the critical value, the downstream velocity at the shock wave
becomes inevitably smaller than upost(r). In addition, the downstream entropy should be larger than that for the critical luminosity,
because of the higher luminosity. We can regard this situation as a Riemann problem that has a discontinuity with a velocity slightly
lower and an entropy slightly larger in the downstream than those satisfying the Rankine-Hugoniot relations. The solution of the
Riemann problem tells us that a shock wave will propagate outward, while a weak rarefaction wave or another weak shock wave will
propagate inward at the same time (Courant & Friedrichs 1976); in other words, the shock wave revives. Thus, we can conclude that
the condition for the shock to revive is that the neutrino luminosity exceed the critical value.

3. STABILITY AGAINST RADIAL PERTURBATIONS

In the previous section, we found that there are two branches of steady solutions for an accretion flow with a shock. In this section
we discuss which type of solutions is realized, examining the stability of these solutions with a global linear analysis. We consider
perturbations of the neutrino luminosity; that is, nonadiabatic effects are taken into account.

In this paper, stability only against radial perturbations is considered. This is because we did not take into account the effects of
convection in obtaining the unperturbed flows in the previous section. There is, in general, a region where heating prevails over cool-
ing under the irradiation of neutrinos; in this region, entropy increases in the direction of gravity and the flow is convectively unstable.
Thus our solutions are convectively unstable against nonradial perturbations, which fact is of no consequence here, though.

Fig. 2.—Radius of the shock surface for the inner (solid curves) and outer (dashed curves) solutions, with Ṁ = 1.0, 2.0, 3.0, and 4.0M� s�1 from left to right. Crosses
represent the critical points.
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Since we consider perturbations accompanying variations of the positions of the inner and outer boundaries, it is convenient to
introduce a new variable x, defined as

x � (r � r�)=(rs � r�); ð7Þ

where rs denotes the shock radius. Then, the basic equations describing the time-dependent flows are written as

@�

@t
� 1

rs � r�

�
x
@ rs
@ t

þ (1� x)
@ r�
@ t

�
@�

@ x
þ 2�ur

r
þ �

rs � r�

@ ur
@ x

þ ur

rs � r�

@�

@ x
¼ 0; ð8Þ

@ ur
@t

� 1

rs � r�

�
x
@ rs
@ t

þ (1� x)
@ r�
@ t

�
@ ur
@ x

þ ur

rs � r�

@ ur
@ x

þ 1

rs � r�

1

�

@ p

@ x
þ GM

r 2
¼ 0; ð9Þ

@�

@t
� 1

rs � r�

�
x
@ rs
@ t

þ (1� x)
@ r�
@ t

�
@ �

@ x
� p

�2

@�

@t

þ 1

rs � r�

�
x
@ rs
@ t

þ (1� x)
@ r�
@ t

�
p

�2

@�

@ x
þ ur

rs � r�

@�

@ x
� ur

rs � r�

p

�2

@�

@x
� q̇ ¼ 0: ð10Þ

Since we assume that the flow outside the shock is steady, the Rankine-Hugoniot relations at the outer boundary are expressed as

� (ur � us) ¼ �f (uf � us); � (ur � us)
2 þ p ¼ �f (uf � us)

2; 1
2
(ur � us)

2 þ �þ p=� ¼ 1
2
(uf � us)

2; ð11Þ

where us is the shock velocity, which can be written as us ¼ @rs /@t. In calculating the perturbations of the heating and cooling rates,
we assume, for simplicity, that the effective temperature of the neutrinos is not perturbed.

We perform a linear analysis, assuming that all the perturbed quantities have a time dependence of the form e!t. In the rest of this
section, a subscript 1 is attached to the perturbed quantities and a subscript 0 to the unperturbed ones. Then the equations describing
the perturbations become

@(�1=�0)

@x
þ @(ur;1=ur;0)

@x
þ rs;0 � r�;0

ur;0
!
�1
�0

þ 2

r0

�
rs;0

rs;1

rs;0
� r�;0
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r�;0

�
þ
�
2
rs;0 � r�;0

r0
þ @ ln �0
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þ @ ln ur;0
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��
�1
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ur;0
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�

1

r0

@ ln ur;0
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@ ln �0
@x
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ur;0

@ ln �0
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��
xrs;0
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rs;0
þ (1� x)r�;0

r�;1

r�;0

�
¼ 0; ð12Þ
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r;0

pN ;0
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þ 1

u2
r;0
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where pR,0, pN,0, and r0 are defined as

pR;0 �
11�2

180

k 4

c3f3
T 4

0; pN ;0 � �0kT0=mN ; r0 � xrs;0 þ (1� x)r�;0: ð15Þ

All the variables, ur,1 /ur,0, �1 /�0, T1 /T0, rs,1 /rs,0, r�,1 /r�,0, and L�e;1 /L�e;0, and the eigenvalue ! can be complex-valued.
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The outer boundary conditions (x ¼ 1) become

�
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�1
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T1

T0
¼ 0; ð18Þ

where �f,0 and uf,0 are the density and velocity of the free fall at the shock in the unperturbed state. Since we set the neutrinosphere as
the inner boundary (x ¼ 0) and the density is fixed there by definition, we impose the condition

�1=�0 ¼ 0 ð19Þ

at the inner boundary. In addition, we assume

ur;1=ur;0 ¼ 0 ð20Þ

at the inner boundary, supposing that the infalling matter comes to rest on the neutron star. Since the neutrino temperature is assumed
to be unperturbed, the variation of the luminosity is related to that of the neutrinosphere radius as

L�e;1

L�e;0
¼ 2

r�;1

r�;0
: ð21Þ

The above equations are solved as follows: We first take trial values of ! and r�,1 /r�,0 (rs,1 /rs,0 is set to unity) and solve the outer
boundary conditions (eqs. [16]–[18]) and equations (12)–(14) from the outer boundary to the inner boundary. The solution obtained
in this way does not, in general, meet the inner boundary conditions (eqs. [19]–[20]).We then improve the values of! and r�,1 /r�,0 and
repeat the procedure until equations (19) and (20) are satisfied at the inner boundary.

We find, for a given unperturbed solution, many modes with complex eigenvalues (probably an infinite number of overtones, in
fact) and only one mode with a real eigenvalue. All modes with complex eigenvalues are damped, namely, the real part of the
eigenvalue is negative, owing to the thermal-smearing effect of the neutrino irradiation.We display only the results for themodewith a
real eigenvalue. The growth rates are shown in Figure 3. One can see that the inner solutions are always stable, while the outer solu-
tions are always unstable. Further, when the luminosity reaches the critical value, both solutions become neutral. The eigenfunctions
are shown in Figure 4. Ratios of the luminosity perturbation to that of the shock radius are shown in Figure 5. Since the amplitude of

Fig. 3.—Same as Fig. 2, but for the growth rates under radial perturbations.
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the luminosity perturbations is twice that of the neutrinosphere radius, we can see that the perturbations of the inner and outer bound-
aries are in phase for the inner solutions, whereas they have opposite phase for the outer solutions.

We should note again that we have investigated stability against radial perturbations only. As several authors have pointed out,
spherical accretion shocks are, in general, unstable against nonradial perturbations (Houck & Chevalier 1992; Foglizzo 2002; Blondin
et al. 2003). In this sense, we cannot say that the inner solutions are stable. Detailed studies of the stability against nonradial perturba-
tions will be necessary with the effects of convection and neutrino irradiation properly taken into account.

4. EFFECTS OF ROTATION

In this section, we discuss the effects of rotation on the revival of the shock. We extend the one-dimensional analysis of x 2 to the
two-dimensional case. A brief summary of our results in this section has appeared previously (Yamada et al. 2004). Since, as we found
in the previous section, the outer solutions are unstable, we consider only the inner solutions in this section. The assumptions and
simplifications mentioned in x 2 are also adopted here, except for the assumptions about the flows outside the shock, which will be

fig. 4afig. 4bFig. 4.—Eigenfunctions of radial perturbations with Ṁ ¼ 2:0 M� s�1 and L�e = (6, 7, 8) ; 1052 and 8.3167 ; 1052 ergs s�1 (the critical value) for (a) the inner
solutions, from left to right, and (b) the outer solutions, from right to left near the shock. Note that the functions are defined in different radial ranges for different models.

Fig. 4a Fig. 4b

Fig. 5.—Same as Fig. 2, but for the ratio of luminosity perturbation to that of shock radius.
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addressed below. Assuming axial symmetry, we use spherical coordinates. Then the basic equations describing the steady flow inside
the shock are written as
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where u denotes the velocity and the other notation is the same as in x 2.
Since we seek solutions with axial and equatorial symmetry, we impose the following conditions:
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The outer and inner boundaries are set at the shock surface and neutrinosphere, respectively. The neutrinosphere will be oblate
because of centrifugal force, and as a result, the neutrino flux will be anisotropic (Kotake et al. 2003). Such an effect may have some
influence on the explosion (Shimizu et al. 2001). Since our concern here is the hydrodynamic effect of rotation on the accretion flow,
we assume that the neutrinosphere is spherical and that the neutrino flux and temperature are isotropic. Unlike in x 2, the shock surface
is not spherical and is oblique to the flow, in general.

As in the one-dimensional calculations, we impose the condition that the density is 1011 g cm�3 at the inner boundary. The Rankine-
Hugoniot relations for oblique shocks are imposed at the outer boundary. For the flows outside the shock, we make the following
approximations:

1. The flows are radial except for rotation and free fall.
2. The density is independent of latitude, and thus the accretion is isotropic outside the shock.
3. The rotational frequency is independent of latitude and the specific angular momentum is conserved along each stream curve.

Although these assumptions are artificial and not self-consistent, in reality, since the centrifugal force is small compared with the
gravity or the inertia, the radial component of the velocity must be predominant.

We define the parameter f as the rotational frequency at a radius of 1000 km. We performed the calculations for f = 0.03 s�1

and f = 0.1 s�1, which correspond to specific angular momenta averaged over the whole sphere outside the shock wave surface of
1.256 ; 1015 and 4.187 ; 1015 cm2 s�1, respectively. (The definition of the specific angular momentum is that employed by Heger
et al. [2000, 2004] in their calculations of stellar evolution.)

In Figure 6, we show the stream curves for the parameter values Ṁ ¼ 2:0M� s�1, L�e = 7.0 ; 1052 ergs s�1, and f ¼ 0:1 s�1. We
can see that the flow is pushed toward the equatorial plane as a result of centrifugal force. The stream curves bend rather abruptly near

Fig. 6.—Meridian section of a collapsing star and stream curves for Ṁ ¼ 2:0 M� s�1, L�e = 7 ; 1052 ergs s�1, and a rotational frequency of 0.1 s�1 at r ¼ 1000 km.
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the neutrinosphere because the infalling matter is decelerated as it lands on the neutron star’s surface and the radial velocity falls
rapidly there. We also note that the shock surface is slightly deformed into an oblate configuration, and the flows are directed toward
the rotation axis at large radii.

The angular dependence of the radial velocity inside the shock is shown in Figure 7. At large radii, the velocity is larger near the
rotation axis than at the equatorial plane, whereas the opposite is true near the inner boundary. We attribute this behavior to the varia-
tion of the cross section of the flow. The theory of Laval nozzles tells us that subsonic flows are decelerated when the cross section of
the nozzle gets larger, and vice versa (Landau & Lifshitz 1987). As we saw in Figure 6, the flow is bent toward the equatorial plane
near the neutrinosphere but toward the rotation axis near the shock. As a result, at small radii the cross section of the flow becomes
larger near the axis, whereas it gets smaller near the equatorial plane, and vice versa at large radii. Thus we obtain the observed angular
dependence of the velocity.

Next we discuss the effect of rotation on the critical luminosity. In Figure 8, we show the dependence of the critical luminosity on
the mass accretion rate. One can see that the smaller the mass accretion rate is, or the larger the rotational frequency is, the more

Fig. 8.—Critical luminosity. The solid curve denotes the spherically symmetric case, and the others correspond to the rotational models. The rotational frequencies
are 0.03 and 0.1 s�1 at 1000 km for the dotted and dashed curves, respectively. No steady solution exists for luminosities above the critical value.

Fig. 7.—Radial velocity at latitudes � of 0, �/8, �/4, 3�/8, and �/2 for the rotating steady accretion flow with Ṁ ¼ 2:0M� s�1, L�e = 8.10 ; 1052 ergs s�1 (the critical
value), and rotational frequency 0.1 s�1 at r ¼ 1000 km, from top to bottom. The dotted line shows the downstream value satisfying the Rankine-Hugoniot relations at
each radius.
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reduced the critical luminosity is. According to the results of our calculations, if f is 0.03 s�1 and the accretion rate is 0.1 M� s�1,
the critical value is about 25% smaller than that of a spherically symmetric flow with the same mass accretion rate. If the rotation pa-
rameter is 0.1 s�1, the effect is more remarkable. For mass accretion rates of 1.0 and 0.5M� s�1, we obtain critical luminosities reduced
by about 25% and 43%, respectively, from the value for a spherically symmetric flow.

Finally, we discuss the fate of the shock wave when the critical luminosity is reached. In x 2 we discussed the movement of the
steady shock for the inner solutions; the radial derivative of the infall velocity increases when the neutrino luminosity is raised, and it
becomes nearly equal to that of upost(r) when the luminosity reaches the critical value. The angular dependence of the velocity at the
critical luminosity is shown in Figure 7. One can see that the derivative is largest at � ¼ 0. This suggests that the steady flow first
ceases to exist at the axis. Thus, we can infer that the stalled shock is revived and starts to propagate outward first at the rotation axis
and that the jetlike explosion follows, although time-dependent numerical simulations are necessary to confirm this.

This breakup of the shock at the rotation axis and the resulting reduction of the critical luminosity are also attributable to changes of
radial flow velocities, which can be understood based on the theory of Laval nozzles, as we saw above. The variation of flow cross
section causes an acceleration of the radial flow at large radii near the rotation axis, whereas it leads to a deceleration near the equa-
torial plane. As a result, the revival of the stalled shock is more easily attained at the rotation axis for lower neutrino luminosities than
in the case of a spherically symmetric flow.

5. SUMMARY AND DISCUSSION

In this paper, we have investigated the behavior of the stalled shock in a supernova’s core and the effects of rotation on its revival.
Spherically symmetric accretion flows were considered first. We found that there exist two branches of solutions when the luminosity
of the irradiating neutrinos is below a critical value. No steady solution exists when the luminosity is higher than the critical value.

In order to consider which of the two solutions is realized below the critical luminosity, we then examined the stability of the spher-
ical accretion flows against radial perturbations and found that the inner solutions are stable while the outer solutions are unstable. In
fact, for the small luminosities expected for the early phase of the shock’s stagnation, the radii of the outer solutions are extremely
large (Fig. 2). Thus, the outer solutions will not occur in reality. The inner solutions are always stable until the neutrino luminosity
reaches the critical value, where the two branches merge and the solution becomes neutrally stable. It should be noted, however, that
the stability of the outer solutions may be affected by rotation, which we will take up in a future work.

We did not discuss stability against nonradial perturbations, since our models are convectively unstable. Several authors have
shown that a spherical accretion shock is unstable against nonradial perturbations. Blondin et al. (2003) demonstrated such an insta-
bility for adiabatic perturbations with numerical simulations. Houck & Chevalier (1992) also examined the subject, taking into ac-
count cooling processes whose rates are determined locally. In the present situation, however, the heating rates are not determined
locally because the flow is irradiated by neutrinos coming out of the proto–neutron star; the perturbations of the flow affect the neu-
trino luminosity, and the latter then affects the former, by varying the heating and cooling rates. Thus, the problem is different from
those just mentioned. A detailed analysis of this situation is left to future work. Furthermore, a stability analysis with rotation taken
into account is also an interesting issue.

Finally, we discussed the effects of rotation on the revival of the stalled shock. We showed that rotation lowers the critical lu-
minosity. However, we also claimed that the shock revival would first take place at the rotation axis. We took rotational frequencies of
0.03 and 0.1 s�1 at a radius of 1000 km and found that the effect of rotation is substantial. The rotational frequency of newly born
neutron stars guessed from the spin-down rate of young pulsars is several tens of rotations per second (Kaspi et al. 1994; van der
Swaluw &Wu 2001). Thus, the frequency we adopted here is an order of magnitude higher than the value inferred from observations
of young pulsars. It might be possible, however, for this discrepancy to be removed by some mechanism such as magnetic braking in
the late phase of the explosion, which could take away the excess angular momentum from the proto–neutron star. In fact, the values
we adopted are consistent with those obtained in calculations of the evolution of rotating stars (Heger et al. 2004). In any event, the an-
gular momentum distribution inside massive stars is not yet well understood, because of our poor knowledge of the mechanism of
angular momentum transfer (see Heger et al. 2000, 2004). As long as the angular momentum of the infalling matter is large enough,
our results suggest that rotation assists the revival of the shock.

In this paper, we have employed various assumptions and simplifications in the formulations. We assumed that the neutrinosphere
is spherical and the neutrino flux is isotropic. If the collapsing star is rotating, the proto–neutron star will have angular momentum.
Kotake et al. (2003) investigated how the neutrinosphere is affected by rotation. They showed that the neutron star becomes oblate and
that, as a result, the emerging flux is more concentrated to the rotation axis. On the other hand, Shimizu et al. (2001) studied how the
explosion is affected when the neutrino flux is greater near the rotation axis and claimed that such a neutrino anisotropy can trigger a
jetlike explosion in otherwise failed models. Such effects were neglected in this paper only for simplicity and are expected to further
reduce the critical luminosity, an expectation we will study in the future.

Convection should also be affected by rotation. Fryer & Heger (2000) have studied such effects with numerical simulations. They
found that the centrifugal force reduces the effective gravity and that the efficiency of convection is thus lowered near the equatorial
plane. As a result, the explosion energy was also decreased. The explosion, however, becames jetlike. In order to investigate the effect
of convection in time-independent models, it is necessary to introduce some simplification, such as mixing-length theory or another
formulation to smooth the entropy gradient. This is currently being undertaken.

Finally, the collapsing stars may havemagnetic fields, which would be be amplified by rotation. Recent work suggests that the mag-
netic fields are amplified by differential rotation or magnetorotational instability (Akiyama et al. 2003; Kotake et al. 2004; Ardeljan
et al. 2004). If the magnetic energy is amplified to a level comparable to the rotational energy, it must affect the accretion flow and the
behavior of the stalled shock as suggested by such work. This issue is also a future task.
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