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ABSTRACT

Because of mass assignment onto grid points in the measurement of the power spectrum using a fast Fourier
transform (FFT), the raw power spectrum h|� f(k)|2i estimated with the FFT is not the same as the true power
spectrum P(k). In this paper we derive a formula that relates h|� f(k)|2i to P(k). For a sample of N discrete objects, the
formula reads hj� f (k)j2i ¼

P
n½jW (kþ 2kNn)j2P(kþ 2kNn)þ 1=N jW (kþ 2kNn)j2�, where W(k) is the Fourier

transform of the mass assignment function W(r), kN is the Nyquist wavenumber, and n is an integer vector. The
formula is different from that in some previous works in which the summation over n is neglected. For the nearest
grid point, cloud-in-cell, and triangular-shaped cloud assignment functions, we show that the shot-noise termP

n 1=Nð ÞjW (kþ 2kNn)j2 can be expressed by simple analytical functions. To reconstruct P(k) from the alias sumP
n jW (kþ 2kNn)j2P(kþ 2kNn), we propose an iterative method. We test the method by applying it to an N-body

simulation sample and show that the method can successfully recover P(k). The discussion is further generalized to
samples with observational selection effects.

Subject headinggs: galaxies: clusters: general — large-scale structure of universe — methods: data analysis —
methods: statistical

1. INTRODUCTION

The power spectrum P(k) of the spatial cosmic density dis-
tribution is an important quantity in galaxy formation theories.
On large scales, P(k) is a direct measure of the primordial
density fluctuation, and P(k) on small scales carries information
on later nonlinear evolution; therefore, measuring P(k) can
serve to distinguish between different theoretical models.

The power spectrum P(k) as a clustering measure has already
been applied by many authors to observational samples of gal-
axies and clusters of galaxies, including the Center for Astro-
physics (CfA) and Perseus-Pisces redshift surveys (Baumgart &
Fry 1991), a radio galaxy survey (Peacock & Nicholson 1991),
the IRASQDOTsurvey (Kaiser 1991), the galaxy distribution in
nearby superclusters (Gramann & Einasto 1992), the Southern
Sky Redshift Survey (SSRS) sample (Park et al. 1992), the CfA
and SSRS extensions (Vogeley et al. 1992; da Costa et al. 1994),
the 2 Jy IRAS survey (Jing & Valdarnini 1993), the 1.2 Jy IRAS
survey (Fisher et al. 1993), and redshift samples of Abell clusters
(Jing & Valdarnini 1993; Peacock & West 1992). The power
spectrum is also widely measured for cosmological N-body sim-
ulations, since it can easily characterize the linear and nonlinear
evolution of the density perturbation (e.g., Davis et al. 1985).

All these workers except Fisher et al. (1993), have used
the fast Fourier transformation (FFT) technique to make the
Fourier transforms (FTs). In fact, one can use the direct sum-
mation (eq. [5] below) to measure the power spectrum for a
sample of a few thousand objects (Fisher et al. 1993). However,
it appears to be more convenient for most workers to use FFT
packages (now available on many computers) to analyze the
power spectrum. This is probably the reasonwhymost of the pre-
vious statistical studies of the power spectrum have used FFT.
For N-body simulations, one has to use FFT to obtain the power
spectrum, since normally there are more than a million particles.
When using FFT, one needs to collect density values �(rg) on a
grid from a density field �(r) (or a particle distribution), which

is usually called ‘‘mass assignment.’’ The mass assignment is
equivalent to convolving the density field by a given assign-
ment function W(r) and sampling the convolved density field
on a finite number of grid points. The FTof �(rg) generally is not
equal to the FT of �(r), and the power spectrum estimated di-
rectly from the FT of �(rg) is a biased one. The smoothing effect
has already been considered in many previous works (e.g.,
Baumgart & Fry 1991; Jing & Valdarnini 1993; Scoccimarro
et al. 1998), but the sampling effect has not.

In this paper we derive the formulae that express these effects
of the mass assignment on the estimated power spectrum. A
procedure is proposed to correct for these effects, in order to
recover the true power spectrum. The procedure is tested and
shown to be very successful with a simulation sample.

2. FORMULAE

Let us first recall the definition of the power spectrum P(k).
Let �(r) be the cosmic density field and � the mean density. The
density field can be expressed with a dimensionless field �(r)
(which is usually called the density contrast):

� (r) ¼ �(r)� �

�
: ð1Þ

Based on the cosmological principle, one can imagine that �(r)
is periodic in some large rectangular volume V�. The FT of �(r)
is then defined as

�(k) ¼ 1

V�

Z
V�

�(r)ei r = k dr; ð2Þ

and the power spectrum P(k) is simply related to �(k) by

P(k) � �(k)j j2
D E

; ð3Þ

where h: : :i means the ensemble average.

559

The Astrophysical Journal, 620:559–563, 2005 February 20

# 2005. The American Astronomical Society. All rights reserved. Printed in U.S.A.



In a practical measurement of P(k) either for an extragalactic
catalog or for simulation data, the continuous density field �(r) is
sampled by only a finite number N of objects. In these cases one
needs to deal with the ‘‘discreteness’’ effect arising from the
Poisson shot noise. To show this, let us consider an ideal case in
which no selection effect has been introduced into the sample.
(In fact, some kind of selection effects must exist in extragalac-
tic catalogs.We discuss this in x 3.) The number density distribu-
tion of objects can be expressed as n(r)¼

P
j �

D(r� rj), where rj
is the coordinate of object j and �D(r) is the Dirac �-function. In
analogy with the continuous case, the FT of n(r) is defined as

� d(k) ¼ 1

V�n

Z
V�

n(r)ei r = k dr� �Kk;0; ð4Þ

where n is the global mean number density, the superscript d
represents the discrete case of �(r), and �K is the Kronecker
delta. Following Peebles (1980, xx 36–41), we divide the vol-
ume V� into infinitesimal elements {dVi} with ni objects inside
dVi. Then the above equation can be written as

� d(k) ¼ 1

N

X
i

nie
i ri = k � �Kk;0; ð5Þ

where N is nV�, the number of objects in V�. Since dVi is taken
so small that ni is either 0 or 1, we have ni ¼ n2i ¼ n3i ¼ : : : ,
hnii ¼ n dVi, and hninjii 6¼j ¼ n2 dVi dVj ½1þ h�(ri)�(rj)i�.We can
find the ensemble average of � d(k1)�

d�(k2):

� d k1ð Þ� d� k2ð Þ
� �

¼ 1

N 2

X
i; j

ninj
� �

ei ri = k1�i rj = k2 � �Kk1;0�
K
k2;0

¼ 1

N 2

X
i6¼j

ninj
� �

ei ri = k1�i rj = k2

þ 1

N 2

X
i

nih iei ri = k1�k2ð Þ � �Kk1;0�
K
k2;0

¼ � k1ð Þ�� k2ð Þh i þ 1

N
�K
k1;k2

: ð6Þ

The last equation assumes k1 6¼ 0 or k2 6¼ 0. The true power
spectrum is then

P kð Þ � � kð Þj j2
D E

¼ � d kð Þ
�� ��2D E

� 1

N
: ð7Þ

Therefore, the discreteness (or shot noise) effect is to introduce
an additional 1/N term to the power spectrum h|�d (k)|2i. This
fact is already well known to cosmologists. We present the
above derivation because this method is useful in the following
derivations.

In principle one can use the direct summation of equation (5)
to measure the power spectrum for a sample of discrete objects.
However, as described in x 1, most of the previous statistical
studies of the power spectrum have used an FFT. Moreover, it
would be impossible to use direct summation to measure the
power spectrum for an N-body simulation. The quantity com-
puted by the FFT is

� f (k) ¼ 1

N

X
g

n f (rg)e
i rg = k � �Kk;0; ð8Þ

where the superscript f denotes quantities in the FFT, n f(rg) is
the convolved density value on the ggg th grid point rg ¼ gH (ggg is
an integer vector; H is the grid spacing),

n f rg
� �

¼
Z

n rð ÞW r� rg
� �

dr; ð9Þ

and W(r) is the mass assignment function.
Following Hockney & Eastwood (1981), equation (8) can be

expressed in a more compact way by using the so-called sam-
pling function. The sampling function �(r) is defined as the
sum of the Dirac �-functions spaced at unit length in all three
spatial directions, i.e., �(r) ¼

P
n �

D(r� n), where n is an in-
teger vector. Defining

n0 f rð Þ � �
r

H

� �Z
n r1ð ÞW r1� rð Þ dr1 ð10Þ

and constructing

� 0 f (k) ¼ 1

N

Z
n0 f (r)ei r = k dr� �Kk;0; ð11Þ

one can easily prove

� 0 f (k) ¼ � f (k): ð12Þ

Therefore, one can express � f(k) as (see eqs. [10]–[12])

� f kð Þ ¼ 1

N

Z
V�

�
r

H

� �X
i

niW ri � rð Þei r = k dr� �K
k;0: ð13Þ

The ensemble average of � f (k1)�
f �(k2) then reads

� f k1ð Þ� f � k2ð Þ
� �

¼ 1

N 2

Z
V�

�
r1
H

� �
�

r2
H

� �

;

"X
i6¼j

hninjiW ri1ð ÞW rj2
� �

þ
X
i

hniiW (ri1)W (ri2)

#

; e i r1 = k1�i r2 = k2 dr1 dr2

� 1

N

Z
V�

�
r1
H

� �X
i

nih iW(ri1)e
i r1 = k1�K

k2;0
dr1

� 1

N

Z
V�

�
r2
H

� �X
i

nih iW (ri2)e
�i r2 = k2�Kk1;0dr2

þ �Kk1;0�
K
k2;0

; ð14Þ

where rij ¼ ri � rj. Using

�(k) ¼ 1

V�

Z
V�

�
r

H

� �
ei r = k dr ¼

X
n

�k;2kN n; ð15Þ

where kN ¼ �=H is the Nyquist wavenumber, one can find

� f k1ð Þ� f � k2ð Þ
� �

¼
X
n1;n2

h
W k01
� ��� ��2P(k01)�Kk 0

1;k
0
2

þ 1

N
W k01
� ��� ��2�Kk 01;k 0

2

i
; ð16Þ
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where k0i ¼ ki þ 2kNni and W(k) is the FT of W(r). For k1 ¼
k2 ¼ k we obtain our desired result:

j� f kð Þj2
D E

¼
X
n

jW kþ 2kNnð Þj2P kþ 2kNnð Þ

þ 1

N

X
n

jW kþ 2kNnð Þj2; ð17Þ

where the summation is over all three-dimensional integer
vectors n. The meaning of the above equation is very clear. The
density convolution introduces the factor W 2(k) both to the
power spectrum and to the shot noise (1/N ). The finite sam-
pling of the convolved density field results in the ‘‘alias’’ sums
(i.e., the sums over n). The alias effect is well known in Fourier
theory but has not been taken seriously in the power spectrum
analysis of large-scale clustering in observational cosmology.
The effects of both the convolution and the alias are significant
near the Nyquist wavenumber kN (see Figs. 1 and 2 in x 3).

3. A PROCEDURE TO RECOVER P(k)

In the practical measurement of P(k) using an FFT, one should
first choose a mass assignment function. The nearest grid point
(NGP; p ¼ 1), clouds-in-cell (CIC; p ¼ 2), and triangular-
shaped cloud (TSC; p ¼ 3) assignment functions are the most
popular functions for this purpose. For these schemes, we have
(Hockney & Eastwood 1981)

W kð Þ ¼ sin �k1=2kNð Þ sin �k2=2kNð Þ sin �k3=2kNð Þ
�k1=2kNð Þ �k 2=2kNð Þ �k 3=2kNð Þ

� 	p
; ð18Þ

where ki is the ith component of k.
Once one has selected the assignment function, the shot-noise

effect (the second term on the right-hand side of eq. [17]) is easy
to correct. For the NGP, CIC, and TSC assignments, the shot-
noise term can be expressed by

D2(k) � 1

N

X
n

W 2(kþ 2kNn) ¼
1

N
C1(k); ð19Þ

Fig. 1.—Shot noise D 2(k) estimated from 10 samples of Poisson-distributed
random points. Each symbol represents the result for each mass assignment, as
indicated in the figure. Top: Result with the function hD 2(k)N/C3(k)id , i.e., the
D 2(k) scaled to 1/NC1(k). The estimated result agrees quite well with the ana-
lytical prediction hD2(k)N=C3(k)id ¼ 1. Bottom: Comparison of the estimated
hD 2(k)N id with our analytical predictions for the NGP (solid line), CIC (dotted
line), and TSC (dashed line) assignment functions. For CIC and TSC, we have
used the approximate formulae of eq. (21).

Fig. 2.—Six power spectra that we measured for an N-body simulation
sample using three mass assignments (NGP, CIC, and TSC) and two grids (643

and 2563 grid points), where k64N is the Nyquist wavenumber for 643 grid points.
Top: Raw power spectra h|� f(k)|2i estimated directly from the FFT (eq. [8]).
Bottom: True power spectra P(k) reconstructed from the h|� f(k)|2i following the
procedure described in the text. The six reconstructed P(k) agree so well that
their curves overlay each other.
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where C1(k) are simple analytical functions:

C1(k) ¼

1; NGP;

�i 1� 2

3
sin2

�ki
2kN

� �� 	
; CIC;

�i 1� sin2
�ki
2kN

� �
þ 2

15
sin4

�ki
2kN

� �� 	
; TSC:

8>>>>><
>>>>>:

ð20Þ

Furthermore, one can easily show that the C1(k) of the CIC and
TSC schemes are approximately isotropic for k � kN, i.e.,

C1(k) �
1� 2

3
sin2

�k

2kN

� �
; CIC;

1� sin2
�k

2kN

� �
þ 2

15
sin4

�k

2kN

� �
; TSC:

8>>><
>>>:

ð21Þ

We have tested equations (19)–(21) by calculating h|� f(k)|2i
for 10 random simulation samples, each of which consists of
N ¼ 105 points randomly distributed in a unit cube. In this case,
D2(k) ¼ hj � f (k) j2i. In Figure 1 (top) we show the average
values and 1 � errors of hD2(k)N/C1(k)id estimated from the
10 samples, where (there and below) h: : :id means an aver-
age over all directions of k. In this calculation we have used
the NGP, CIC, and TSC assignment functions and have used
equation (20) forC1(k). The result for each assignment is shown
by one symbol in the figure. From equation (19), one ex-
pects hD2(k)N=C1(k)id ¼ 1 for all three assignment functions.
Clearly, the simulation results agree very well with equation
(20). In Figure 1 (bottom), we show the results in a slightly
different way, i.e., the averages and 1 � errors of hD2(k)N id .
The solid line shows hD2(k)Nid ¼ 1 for the NGP assignment.
The dotted and dashed lines are the approximate expressions of
equation (21) for the CIC and TSC assignments. Again we find
a very good agreement between equation (21) and the results
from the random sample. This means that in most applications,
one can use equation (21) to correct the shot noise in the FFT
measurement of the power spectrum.

After correcting the shot noise, our central problem becomes
how to extract P(k) from the first term of equation (17). Let us
consider the correction factor C2(k), which is defined as

C2 kð Þ ¼
P

n W
2 kþ 2kNnð ÞP kþ 2kNnð Þ

� �
d

P kð Þ : ð22Þ

SinceW(k) is a decreasing function and P(k) is also a decreasing
function on the scales kk kN, we expect the alias contribution
of large |n| to C2(k) to be small. In particular, for kTkN, any
alias contribution is small, and we have C2(k) � W 2(k) � 1
independent of P(k). For k � kN, the alias contribution to C2(k)
becomes important, most of which is owing to the alias of
jkþ 2kNnj � k. Therefore, the dependence of C2(k) on P(k) is
only on the shape of P(k) at k � kN, i.e., the local slope �N of
P(k) at k � kN, �N ¼ ½ ln P(k)= ln k�k�kN

.
Since the local slope �N is unknown a priori in practical

measurement of P(k), we propose an iterative method to get the
correction factor C2(k). Suppose that we have measured the
power spectrum Pr (k):

Pr kð Þ ¼ j� f kð Þj2
D E

� D2 kð Þ
D E

d

¼
X
n

W 2 kþ 2kNnð ÞP kþ 2kNnð Þ
* +

d

ð23Þ

for k � kN. The local slope �0 of Pr (k) at k � kN is calculated
by a power-law fitting to Pr(k) at 0:5kN � k � kN. Assuming
the power-law form k� 0 for P(k) of equation (22), we calculate
C2(k, �0) and get P0(k) ¼ Pr(k)=C2(k; �0). Using the local
slope �0 at 0:5kN � k � kN of the P0(k) just obtained, we cal-
culate C2(k, �0) and P0(k) ¼ Pr(k)=C2(k; �0) again. This cal-
culation is repeated until P0(k) (or �0) converges to some
defined accuracy. The converged P0(k) is our desired P(k).
Success of the above iteration procedure is shown by

Figure 2, in which we present our measurement of P(k) for a
simulation sample of Jing et al. (1995). The sample consists of
five realizations of a particle-particle-particle-mesh simulation
of a low-density flat universe with �0 ¼ 0:2, �0 ¼ 0:8, and
h ¼ 1. The simulation box size is 128 h�1 Mpc, and the num-
ber of simulation particles is N ¼ 643. Since the details of the
simulation are unimportant for our result here, we do not dis-
cuss them anymore. Figure 2 (top) shows the raw power spectra
h|� f(k)|2i, which are calculated with the NGP, CIC, or TSCmass
assignment and with 2563 or 643 grid points. As expected, the
raw power spectrum depends on the scheme of the mass as-
signment: a higher order mass assignment gives a smaller
h|� f(k)|2i near the Nyquist frequency. At k � k 64N , the Nyquist
wavenumber of 643 grid points, the raw power spectra calcu-
lated with 2563 grid points are expected be very close to the true
power spectrum P(k) because the effect of neither the shot noise
[D2(k)TP(k)], the convolution [W (k) � 1], nor the alias
[C2(k) � 1] is important. The differences at k � k 64N between
the power spectra calculated with 643 grid points and those with
2563 grid points show the importance of the effects discussed
in this paper. Figure 2 (bottom) plots the power spectra P(k),
which are corrected following the procedure prescribed previ-
ously in this section. In this example we use equation (21) to
correct for the shot noise, and we require that the slope �0

converge to the accuracy of j��0j � 0:02 in the iterative
method of deconvolving the alias summation. For this accu-
racy, only fewer than five iterations are needed in each cal-
culation. The six power spectra P(k), measured with different
mass assignments and with different numbers of grid points,
agree so well that their curves overlay each other in the fig-
ure. The biggest difference between the 643 and 2563 P(k) is at
k ¼ k 64N , which is less than 4%. The result is very encouraging,
and it tells us that using the correction procedure prescribed in
this paper, one can obtain the true P(k) for k � kN in the FFT
measurement, independent of which mass assignment is used.
In the above derivations and discussions, we have assumed

for simplicity that the sample is uniformly (within Poisson
fluctuation) constructed in a cubic volume. However, the above
method is also valid for a sample with selection effects (e.g.,
an extragalactic catalog). To show this, let us introduce a selec-
tion function S(r) defined as the observable rate of the sample
at position r. If the underlying density distribution is n(r), the
density distribution ns(r) of the sample is then

ns(r) ¼ S(r)n(r): ð24Þ

In this case, we define the following transformation for the FFT:

� f
s kð Þ ¼ 1

N

X
g

n f
s rg
� �

� nS rg
� �
 �

ei rg = k; ð25Þ

where n f
s (rg) is the convolved density of ns(r) at rg (see eq. [9])

and n is the mean underlying number density. Following the
derivation of equation (16), we can easily find
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� f
s k1ð Þ� f �

s k2ð Þ
� �

¼
X
n1;n2

h
W k01
� �

W �k02
� �

;
X
k 03

S k01 þ k03
� �

P k03
� �

S �k02 � k03
� �

þ 1

N
S k01 � k02
� �

W k01
� �

W �k02
� �i

; ð26Þ

where S(k) is defined as

S(k) ¼ 1R
S(r) dr

Z
S(r)ei r = k dr: ð27Þ

Because S(k) peaks at k � 0, the coupling of the selection and
the power spectrum (the first term of eq. [26]) is important only at
small k. How to treat this coupling is a nontrivial task and beyond
the scope of this paper (but see, e.g., Peacock&Nicholson 1991;
Jing & Valdarnini 1993). However, for larger k for which the
effects discussed here become significant, we have

j� f kð Þj2
D E

�
X
k3

S 2 k3ð Þ
X
n

W 2 kþ 2k Nnð ÞP kþ 2kNnð Þ

þ 1

N

X
n

W 2 kþ 2kNnð Þ: ð28Þ

The difference between equations (28) and (17) is only the factorP
k3 S

2(k3). Therefore, our procedure for correcting the effects
of the mass assignment is still valid for observational samples
with selection effects. Equation (28) is derived on the assumption
that S(k) is compact in k-space. This assumption is valid for
many redshift surveys, e.g., the CfA and IRAS redshift surveys,
but it is not valid for surveys of irregular boundaries, e.g., pencil-
beam surveys. In addition, current redshift surveys of galaxies

already cover a volume of (1000 h�1 Mpc)3. Because one is also
interested in clustering information down to scales of 0.1 h�1

Mpc, a (10,000)3 grid point FFT is required to explore the clus-
tering on all scales, which is still difficult to realize on modern
supercomputers. Other estimators, e.g., the FT of the two-point
correlation function (Jing & Börner 2004), should be used to
determine P(k) on small scales.

4. SUMMARY

In this paper we have derived for the first time the formula
(eq. [17]) that relates the raw power spectrum h|� f(k)|2i estimated
with an FFT to the true power spectrum P(k). The formula shows
clearly how the mass assignment modifies the power spectrum.
The convolution of the density field with an assignment function
W(r) reshapes the power spectrum (including the shot-noise
spectrum) by multiplying by the factor |W(k)|2; the finite sam-
pling of the convolved density field leads to the alias sum. We
have described how to reconstruct P(k) from h|� f(k)|2i. For the
NGP, CIC, and TSC assignment functions, the shot noise D2(k)
can be expressed by simple analytical functions; therefore, the
shot noise can be easily corrected. To extract P(k) from the alias
sum

P
n W

2(kþ 2kNn)P(kþ 2kNn), we propose an iterative
method. The method has been tested by applying it to an N-body
simulation sample. Using different numbers of grid points, we
have shown that the method can very successfully recover P(k)
for all the NGP, CIC, and TSC assignment functions.
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